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Diabetic retinopathy (DR) is a remarkable microvascular complication of diabetes and it has been considered the
leading cause of legal blindness in working-age adults in the world. Several overlapping and interrelated molec-
ular pathways are involved in the development of this disease. DR is staged into different levels of severity, from
the nonproliferative to the advanced proliferative form.
Over the years the progression of DR evolves through a series of changes involving distinct types of specialized
cells: neural, vascular and glial. Prior to the clinically observable vascular complications, hyperglycemia and in-
flammation affect retinal glial cells which undergo a wide range of structural and functional alterations. In this
review, we provide an overview of the status of macroglia and microglia in the course of DR, trying to briefly
take into account the complex biochemicalmechanisms that affect the intimate relationship among neuroretina,
vessels and glial cells.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diabetic retinopathy (DR) is the primary cause of visual impairment
in the working-age population of the Western world as a recent report
has indicated [1]. Amongmicrovascular complications related to diabe-
tes mellitus such as nephropathy and neuropathy, DR is the most com-
mon. Several complex inflammatory mechanisms are involved in the
pathogenesis of DR. A systemic low/high grade of inflammation medi-
ates structural and molecular changes in the neuro-vascular network.
a, 40123, Italy.
tino).

. This is an open access article under
Still too little is known about the subtle mechanisms underlying the in-
flammatory pathways associated with DR [2]. However, the following
four distinct biochemical pathways have been assumed to be associated
with the development of DR: increasing polyol pathway flux, increasing
hexosamine pathway flux, accumulation of advanced glycation end
products (AGEs), and activation of protein kinase C isoforms [3]. As a
consequence of the above-mentioned molecular dysregulation, several
biochemicalmechanisms are activated to counterbalance the abnormal-
ities of themicroenvironment of diabetic tissues. The oxidative stress as
well as the production of free radicals in mitochondria markedly in-
crease. Plus, the abnormal rheology and the activation of the renin-an-
giotensin system contribute to upregulate the release of inflammatory
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 2
Activation of glial cells in the course of diabetic retinopathy.
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molecules and growth factors [2–4]. As a result, the vascular wall integ-
rity diminishes, the vascular permeability goes up, and the increasing
leukostasis is responsible for the lumen occlusion and the resulting is-
chemia [5,6].

The constriction of major arteries and arterioles observed in DR di-
minishes the retinal blood supply provoking several biochemical and
metabolic alterations. The loss of capillary pericytes causes endothelial
cell degeneration and unstable retinal perfusion [7]. The resulting reti-
nal ischemia and hypoxia are strong stimulus to enhance the expression
of VEGF (vascular endothelial growth factor) and other proinflammato-
ry cytokines (tumor necrosis factor alpha - TNF-α, interleukin 6 - IL-6,
and interleukin 1β – IL-1β) [8,9]. In addition, hyperglycemia can stimu-
late the production of VEGF and some cytokines implicated in insulin re-
sistance such as TNF-α and IL-6 [10]. Ischemia also provokes the
expression of chemokines such as monocyte chemotactic protein-1
(MCP-1) that acts making macrophages to be attracted into less per-
fused areas. Hypoxia-activated macrophages and microglia produce
TNF-α, which in turn stimulates the release of IL-6, MCP-1, and VEGF
in endothelial or in retinal microglial cells [11].

The human retina works through fine-tuning interactions among
neurons, glia and blood vessels. As described by Cajal more than one
hundred years ago, threemain types of glial cells are found in the retina:
astrocytes, Müller cells and resident microglia. They not only provide
structural support, but they are also involved in maintaining the com-
plex homeostasis of the retina by regulating themetabolism, the phago-
cytosis of neuronal debris, and the release of neurotransmitters and
trophic factors [12] (Table 1).

Neuroinflammation is one of the aspect that plays a remarkable role
in the pathogenesis of DR [13]. A recent report has proposed the phrase
“microglial activation” to better describe the microenvironment where
microglia cells become activated and start to produce proinflammatory
mediators in response to retinal nervous tissue perturbations [14]. The
diabetic retina always presents a low chronic level of inflammation
due to different factors such as hyperglycemia, dyslipidemia and oxida-
tive stress [15,16]. This particular context induces the activation of the
retinal resident innate immune system, which is primarily composed
of tissue-resident macrophage-like cells called microglia [17]. Since
microglial cells are supposedly hypersensitive to early tissue damage,
they generally give birth to neuroinflammation. Afterwards, other glial
cells such as astrocytes are activated and amplify the inflammatory re-
sponse [18]. As Graeber and coauthors claimed, microglial activation is
the main mechanism by which neuroinflammation is induced in re-
sponse to nervous tissue perturbations [14].

DR is characterized by pathologic microvascular abnormalities, in-
cluding dilated veins, microaneurysms, hemorrhages, cotton-wool
spots, as well as vitreoretinal neovascularization. Many studies have
highlighted a large prevalence of cells staining with monocytic markers
near the retinal vessels [19,20]. Monocytes may originate from the
Table 1
Physiological role of glial cells in the human retina.
retina (microglia), the vitreous (hyalocytes), or the circulation (macro-
phages). These cells might play an important role in the origin and de-
velopment of DR. Reacting microglia cells are usually located in the
periphery of leaky vessels in order to try to clear away hemorrhage or
exudates deposits. When the phagocytic clearance of extravasated plas-
ma proteins no longer suffices, neuroinflammation rapidly increases.
Furthermore, activated glial cells contribute to expand the inflammato-
ry response featured by diapedesis through activated endothelial cells
and leukostasis in the vascular lumen [19].

With this review, we would like to overview the dysfunction of ret-
inal glial cells in the course of DR, where glial cells play a critical role
along with neuronal sufferance and vascular abnormalities (Table 2).

2. Astrocytes

Derived from the Greek, the term astrocytewas first used in 1893 by
Michael von Lenhossek to describe the stellate morphology of those
cells which have been previously observed by Camillo Golgi in the ner-
vous system and regarded as the “glue” of the brain [21]. Astrocytes do
not originate from the retinal embryonic epithelium but seem to origi-
nate in the optic nerve head. It is believed that the mitotic precursors
of the oligodendrocytes and astrocytes migrate into the optic nerve
from the sub-ependymal germinal layer of the brain [22]. After local mi-
toses in the optic nerve, astrocytes enter the retina alongwith the blood
vessels migrating to the innermost retinal layers [23,24]. Thus, they are
almost exclusively located in the inner nuclear and plexiform layers and
their processes cover the blood vessels forming the inner retinal blood
barrier. Astrocytes appear to play a pivotal role in ion homeostasis, in
neuronal signaling and in making up retinal endothelial barrier proper-
ties [25].

The distribution of retinal astrocytes is strikingly correlated with the
presence and distribution of retina blood vessels, so vascularized areas
of the retina are rich in astrocytes, while avascular zones contain no as-
trocytes. This peculiar distributionmight confirm that this population of
macroglia enters the retina along with its vasculature. During both nor-
mal and pathological vessel formation, astrocytes are the main pro-
ducers of VEGF [26,27]. In different circumstances, the role of
astroglial cells is of paramount importance because of their strong rela-
tionship with the retinal vasculature. Astrocytes provide neurotrophic
and mechanical support for both healthy and degenerating axons, but
their main activity is the maintenance of the inner blood-retina barrier.
In response to injury or disease, they are able to upregulate the expres-
sion of various genes encoding cytokines, chemokines and elements of
the complement cascade, compromising the integrity of the blood-reti-
na barrier and promoting retinal degeneration [28].
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In both forms of DR, proliferative and non-proliferative, dysregulat-
edmetabolites (glucose, amino acids, lipids, amines, vitamins,minerals)
disturb the homeostasis of growth factors, neurotrophic factors, cyto-
kines and adhesion molecules, consequently affecting capillary perme-
ability and cell turnover [29]. Consistent high blood glucose, AGEs
accumulation, dyslipemia and the complex inflammatory systemic sta-
tus lead to the rapid rise of reactive oxygen species. As a result, the ret-
inal microvasculature and the glial cells are affected and, somehow,
damaged [30,31]. Astrocytes react becoming activated [32,33] and un-
dergo a series of changes: proliferation, migration, hypertrophy, glial fi-
brillary acid protein (GFAP) expression, secretion of pro-inflammatory
signals such as IL-6, MCP-1 and macrophage inflammatory protein 2
alpha (MIP-2α). Nagayach and coworkers carried out several experi-
ments on developing diabetes in rats. They have seen phenotypic
changes of astrocytes characterized by a stellate morphology due to el-
evated level of S100β. In the meantime, they have observed an increase
in the number of thesemacroglial cells alongwith the overexpression of
GFAP [34].

Astrocytes try to face the insult of the disease and they need to coop-
erate with other glial cells [35]. High glucose blood levels alter inflam-
matory cytokine expression of astroglial cells, stimulating the TNF-α/
TNFR signaling, activating the nuclear factor kappa-light-chain-enhanc-
er of activated B cells (NF-kB) and increasing the oxidative stress [36].
Therefore, the natural history of DR is characterized by high level of sig-
naling among retinal neurons, endothelial cells and astrocyteswith sub-
sequent alteration of the retinal homeostasis and the upcoming death of
neuroretinal cells.

3. Müller cells

Müller cells are a subset of the retinal macroglia. They form the
supporting architectural structure radially stretching across the entire
thickness of the neuroretina and take part in making the outer and
inner limiting membrane, which are respectively the limits of the
neuroretina. Müller cells can be regarded as the core of a columnar
‘micro-unit’ in the neurosensory retina since they constitute the ana-
tomical link between retinal neurons, blood vessels and vitreous body,
where nourishing exchanges of molecules and oxygen occur. Müller
cells establish a strong relationship with the large retinal blood vessels
by means of their little conical terminal buttons featured by no special-
ized junctions forming the inner limiting membrane on the innermost
surface of the retina. Also, Müller cells strongly linkwith the retinal pig-
ment epithelium, establishing connections with the subretinal space
and choroidal vasculature [37].

To carry out their noteworthy tasks, Müller cells are endowed with
several ion channels, ligand receptors, transmembraneous transporters,
and numerous enzymes.Müller are supposed to be themain nutritional
supporting cells of the retina. They have an elevated rate of glycolysis
and present, under normal conditions, the transporter isoform glucose
transporter-1 (GLUT1), typically expressed by tissues with a barrier
function. For instance, in the neovascular tissue of proliferative diabetic
retinopathy the lack of expression of this glucose transporter means the
loss of selective permeability of retinal capillary network [38,39].

Photoreceptors have the highest rate of oxidative metabolism in re-
spect to all other cells in the body, so theymost require oxygen and glu-
cose. Glucose metabolism generates a lot of carbon dioxide and water.
Thus, another important function of Müller cells is to redistribute,
through their long processes, the metabolic waste (not only carbon di-
oxide and water, but also potassium and neurotrasmitters released) of
the intense neural activity of photoreceptors and the other neuronal
cells into the blood and vitreous [40]. So this important subset of
macroglia are not only essential for structural reasons but also for the
role they have in the complexmolecular network of activation/response
of the sensory neuroretina under stressful conditions as it occurs in
traumas or diseases characterized by the cascade of inflammation [41].
In the early diabetes with just a mild elevated blood glucose
concentration, the leakage of retinal vessels and the accumulation of
leukocytes in retinal capillaries contribute to the activation of Müller
cells which play a key role in the development of neovascularization
and fibrosis during the late stages of DR [42].

Hyperglycemia increases insulin-like growth factor 1 and hypoxia-
inducible factor-1 alpha in both serum and vitreous, contributing to
stir up hypoxia and inflammation locally and systemically. The upregu-
lation of these factors activates Müller cells and raises the production of
VEGF and basic fibroblast growth factor, which in turn trigger patholog-
ical neovascularization and retinal fibrosis [43]. The combined epiphe-
nomena of new abnormal blood vessel growth and epiretinal fibrosis
bring about tractional forces on the surface of the retina, leading to ret-
inal detachment with subsequent severe vision loss.

In diabetic eyes, there is also the upregulation of heme oxygenase-1
that is awell-known oxidative stressmarker supposedly involved in the
formation of advanced lipoxidation end-products and AGEs, both re-
markably involved in macroglial dysfunction [44].

Actually, in DR Müller cells acquire a complex and specific reactive
phenotype characterized by the induction of acute-phase response pro-
teins and other inflammation-related genes [45]. Beyond the overex-
pression of interleukin 1 as the possible main mediator of local
inflammation, recent studies have investigated the upregulation of the
following genes in DR: alpha-2macroglobulin, angiotensinogen, cerulo-
plasmin, complement components C1, C3, C2, and C1 inhibitor, lipocalin
2, metallothionein, serine protease inhibitor 2/antichymotrypsin, trans-
ferring, tissue inhibitor ofmetalloprotease 1, transcription factor C/EBPδ
[46]. Other investigations studied several molecules involved in the in-
flammatory response, such as major histocompatibility complex, inter-
cellular adhesion molecule-1, nuclear factor kappa-light-chain-
enhancer of activated B cells, osteopontin, scavenger receptor B1,
galectin-3, and annexin 1 [47].

The intimate connection between macroglia and retinal blood ves-
sels is definitely affected during the natural history of DR and the devel-
opment of late complications. A large number of neurotrophic factors
are produced from both Müller and endothelial cells contributing to
the alteration of the integrity of the blood-retina barrier. Some factors
(glial cell line-derived neurotrophic factor, neurturin, pigment epitheli-
um-derived growth factor) increase the tightness of this efficient barri-
er, whereas others (TNF-α, VEGF) make it weaker and leaky [48,49].

In proliferative DR Müller cell are deeply involved in the process of
retinal fibrosis. They strongly react to the chronic inflammatory stimu-
lus with gliosis, that is a non-specific reactive answer of glial cells in re-
sponse to damage and involves the production of a dense fibrous
network underneath or inside the neuroretina [50]. Gliotic Müller
changes also comprise a sort of downregulation of the K+ channels
since the K+ conductance remarkably decreases in the neuroretinal tis-
sue in the course of diabetes [51].

Finally, in DR Müller cells, characterized by their unique geographic
arrangement spanning thewhole thickness of retina, play an active role
in inducing chronic inflammation, neovascularization and vascular leak-
age. In the meantime, part of these complex cells go through apoptosis
after the activation of specific signaling biochemical cascades [48,52].
Also, it has been suggested that the cysts featuring the cystoid macular
edema are formed by swollen and dying Müller cells, which undergo
several morphological and functional changes because of hypoxia and
breakdown of the blood-retinal barrier [53].

4. Microglia

Microglia are the resident inflammatory cells of the CNS (central
nervous system) and they are regarded as the innate neural immune
system. Like dendritic cells, they have a small round cell body with
many branching projections or processes. In the adult retina, under nor-
mal conditions, microglia cells are localized in both inner and outer
plexiform layer. During the early childhood these cells play a crucial
role for neurogenesis and synaptic pruning [54,55], but they also take
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on great importance during the development of the retina. At any time
the communication among microglia, Müller cells and neurons is fine-
tuned due to a delicate balance between excitatory and inhibitory neu-
rotransmission. The survival or apoptosis of photoreceptors are finely
regulated by a molecular network made up of several neurotrophic fac-
tors (brain-derived neurotrophic factor, ciliary neurotrophic factor, glial
cell-derived neurotrophic factor, nerve growth factor, neurotrophin-3
and basic fibroblast growth factor) which are consistently released
into the retina. Therefore, the final role of microglia is not only to mon-
itor the retinal microenvironment but also to respond to potential ab-
normalities maintaining the tissue homeostasis and modulating the
inflammatory processes.Microglia are equippedwith an array ofmolec-
ular pattern recognition receptors and scavenger receptors that enable
them to recognize and react to the presence of “nonself,” such as path-
ogens, and to “altered self,” such as damaged and/or apoptotic neurons
[56].

Microglia cells, approximately 5% to 12% of cells of CNS, have been
first described by Pio del Rio-Hortega in 1932 [57]. They origin from
mesoderma/mesenchima deriving from myeloid progenitors that mi-
grate from periphery during the late embryogenic and postnatal life
[58–60]. They are bone marrow-derived mononuclear phagocytes. For
long they have been considered similar to peripheral macrophages,
but recent profile gene expression studies have detected a unique mo-
lecular signature [61,62]. Several studies have shown that microglia
cells survived by continuously extending and retracting their highly
motile processes in order to promptly react to any subtle or big alter-
ation of their microenvironment [63,64]. These cells can act as either
neuroprotective or toxic elements [65–67]. In response to neuroinflam-
mation or any neural damage, the activation of microglia is featured by
proliferative, morphological, immunoreactive and migratory changes
[68,69]. In non proliferative DR, perivascular microglia settled into the
retinal plexiform layers are moderately hypertrophic and slightly in-
creased in number. In proliferative DR, cluster of microglial cells sur-
round ischemic areas, whereas a significant rise in their number with
enhanced level of ionized calcium binding adaptor molecule 1 has
been observed around new dilated vessels [70]. Like macrophages in
the rest of the body, microglia use phagocytic and cytotoxic mecha-
nisms to destroy foreign materials. Furthermore, as peripheral macro-
phages are able to present distinct phenotypes in different situation,
microglia cells can convert from their surveilling phenotype into a spec-
trum of alternative activation states, depending on the type and extent
of tissue dysfunction, damage, or infection [71].

Concerning themorphological appearance,microglia cells are distin-
guished in “surveillant” phenotypewith highly ramified units and “acti-
vated” (or ameboid) state with larger cell bodies and thicker processes.
The activated phenotype represents the first reply to threatens against
the CNS such as autoimmune inflammation, neuronal injury, cancer, in-
fection and hyperglycemia [72].

During the average development of CNS, microglia are first charac-
terized by an ameboid outfit and then change to themature highly ram-
ified form. Microglia may be activated in acute inflammation or
infections to protect the CNS, but they can also have a remarkable role
with deleterious effects on the CNS during chronic inflammation in dis-
eases such as HIV, multiple sclerosis, Alzheimer and diabetes [73].

The most reliable characteristics differentiating microglia from in-
vadingmonocytes are a low cluster of differentiation 45 (CD45) expres-
sion and a highly ramified, dendritic morphology. Nevertheless, the
activated phenotype can sometimes have high expression of CD45
being less ramified at the same time [74]. In addition, circulatingmacro-
phages may infiltrate damaged nervous tissue, adopting a microglial
phenotype and replacing resident microglial populations [75,76]. How-
ever, further studies are needed to differentiate the activation and pro-
liferation of resident microglia from the infiltration of the retina by
circulating macrophages and conversion into microglial cells. Yang
and coauthors defined the DR as a chronic low-inflammatory disease
of the retina. The activation of microglia is due to the occurrence of
the following vicious circle triggered by the strong stimulus of chronic
hyperglycemia: recruitment of leukocytes, vascular breakdown, release
of cytotoxic substances, glial dysfunction and neuronal cell death [77].

To date little is known about the exactway of activation ofmicroglial
cells in the course of diabetes. Normally standing in the capillary wall or
in the inner retina,microglia are assumed to be the first detector of early
signals of hyperglycemia. The chronic low-inflammatory state in DR
causes an increase of the capillary permeability with a subsequent re-
markable rise of cytokines, advanced glycation end-products and oxida-
tive stress. As a result, activated microglia start to produce glutamate,
metalloproteases, and nitrous oxide. All of thesemolecules are extreme-
ly toxic to retinal ganglion cells, provoking neuronal cell dysfunction
and deeply damaging capillary pericytes and endothelial cells. These
cells, partially injured, contribute to maintain the chronic inflammatory
state of the diabetic retina by expressing several molecules such as in-
tercellular adhesionmolecule 1, vascular cell adhesion protein 1 and cy-
clooxygenase-2.

At early stages of DR, perivascular microglial cells moderately grow
in number and gradually become hypertrophic in the innermost retinal
layers. In the pre-proliferative form, hypertrophic microglia pool sur-
rounding cotton-wool spots and then migrate into the optic nerve re-
gion. In the proliferative DR, several microglial cells have been
detected around dilated new vessels [78]. Although the precise mecha-
nisms of glial activation are not yet fully understood, it can be said that
both genotypic variations and genetic susceptibilitymight regulate indi-
vidual microglial response in the course of DR. However, somemolecu-
lar pathways have been described. For instance, there has been
observed accumulation of Amadori-glycated albumin, an AGE product
which stimulates microglia to produce TNF-α in early stages of DR
[79]. Plus, some specific enzymes are activated during the inflammatory
cascades featuring diabetes. For example, aldose reductase, an enzyme
that catalyzes the synthesis of polyols, is activated already during the
early stages of DR inducing the activation of retinal microglia [80]. It is
interesting to see that the inhibition of this enzyme or its genetic defi-
ciency significantly reduce the inflammatory changes, ameliorating
the degeneration of capillaries and diminishing the production of super-
oxide anions and other reactive oxygen species found in DR [81,82].
5. Conclusion

Many studies carried out in diabetic patients and diabetic animal
models have shown that tissue hypoxia and immuno-dysregulation
might provoke the growing expression of intravitreal inflammatory
molecules, such as cytokines, chemokines, and other growing factors re-
sponsible for the development of DR.

Glial cells are critically located between vasculature and neurons of
the retina, having a key role in finely regulating themolecular composi-
tion of the retinal microenvironment which is often responsible for
early harm of neuroretina in the beginning stages of DR.

As research carries on, there is evidence that neuroinflammation and
neurodegeneration play a significant role in the pathophysiology of
early DR. Thus, changes in the metabolism of glia cells and subsequent
damages of retinal neurons contribute to increase themicrovascular im-
pairment. New technologies able to detect early alterations in astrocytes
andMüller cells or changes in the amount ofmicroglial cellsmight be an
interesting support for interventions in advance just trying to slow
down the progression of DR. We believe that neuroprotection is a
valid option to prevent chronic neurodegeneration, but supplements
acting on vessel walls and improving the microvascular blood flow are
worth to be administered in early phases of DR. In fact, alterations in
the neurovascular coupling, that is the strong physiological link be-
tween neurosensory retina and retinal vasculature, are crucial in the
course of DR. Glial cells are the main actors that help maintain this cou-
pling. In diabetes, there is a progressive harm in bothmacroglia andmi-
croglia, resulting in neuroretinal damage and visual impairment. The
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improvement ofmicrocirculation in both retina and choroid could be an
important therapeutic target if associated to neuroprotection.

Further studies are needed to better understand the deepest links
and the complexmolecular networks underlying the background of oc-
ular inflammation in patients with DR.
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