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Abstract 

This paper investigates the scale effect in relatively thin welded joints subjected to 

fatigue loading made of steel. In the scientific literature, the fatigue behaviour of arc-

welded joints is usually divided into two groups: thick and thin joints. A cut-off 

thickness, typically in the range of 13 mm to 22 mm, was introduced; under such cut-

off value, the design fatigue strength does not increase when the thickness is 

decreased. Despite this common approach, in this paper, the concept of cut-off 

thickness is revised and a numerical procedure is proposed, regardless of the 

thickness of the joint, by means of the implicit gradient method. Classical non-load-

carrying and load-carrying cruciform joints made of steel are considered in the three-

dimensional numerical analysis. Finally, the fatigue behaviour of joints two 

millimetres thick with a longitudinal or transversal stiffener was also analysed by 

means of the implicit gradient approach. The Woehler curve was evaluated in terms 

of the nominal stress of such a series and a good correlation was found with 

experimental data by using the numerical procedure optimised for thick welded 

joints. 
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2α = opening angle 

c = characteristic length 

E = elastic modulus 

Kf = fatigue notch factor 

Kref = reference fatigue strength value of Notch Stress Intensity Factor (NSIF) 

k = dimensionless coefficient for analytic  NSIF evaluation 

λ = mode I Williams’ eigenvalue 

N= fatigue life; cycles to failure 

ν= Poisson’s ratio 

Ps  = probability of survivor 

R = stress ratio 

s = arc length 

S = nominal fatigue strength 

SB = nominal fatigue strength from the relevant basic Woehler curve 

σnom = tensile nominal stress 

σeff = effective stress 

σeff,max = maximum effective stress 

σeq = equivalent stress 

σuts = ultimate tensile strength 

t = thickness 

tB =  cut-off thickness 

Ψ = weight function 

∆ = range 

  



 

 

 

1. Introduction 

 

Fatigue design rules of welded joints based on the nominal stress approach consider 

the scale effect by introducing a penalty function of the thickness [1,2,3]. This choice 

is due to experimental evidence: for a given welded detail the fatigue strength 

decreases by increasing the thickness, this is well documented by Gurney [4] and 

Maddox [5]. For example in BS 7608 [3] the thickness effect correction function is: 
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where S is the nominal fatigue strength of the joint under consideration, SB is the 

fatigue strength from the relevant basic Woehler curve at a prefixed cycle to failure 

number N, t is the thickness of the joint and tB is the maximum thickness related to 

the basic Woehler curve, equal to 16 mm for steel joints. The tB is also considered as 

the cut-off thickness because the above equation overestimates the fatigue strength 

when the thickness decreases. However, as underlined by Maddox [5] and Gurney [4], 

the scale effect does not only depend on the thickness but also on the other 

dimensions. The influence of both the main plate thickness and the attachment size 

on the fatigue strength calculations of joints with a transverse non-load-carrying fillet 

weld was introduced. A different penalty function was considered and it was obtained 

as a function of the effective thickness or the apparent thickness of the joint 

dependent both on plate thickness and on the toe-to-toe length of the attachment. 

From another point of view, the scale effect can be summarised as a simple 

relationship by means of the Notch Stress Intensity Factor (NSIF) approach [6]. When, 



at the weld toe or root, the mode I loading is dominant, the nominal fatigue strength 

S of the joint under consideration can be expressed as: 
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where, t is the thickness of the joint, k is a dimensionless coefficient dependent only 

on the geometry, λ is mode I Williams’ eigenvalue and Kref is a reference strength 

value of NSIF related to a prefixed cycle to failure. Eq. (2) has been verified in many 

cases [6,7] and the dependence of the scale effect on Williams’ eigenvalue was 

confirmed in Ref. [7] where the power experimental exponent resulted equal to 0.31 

for toe failure (against a theoretical value of 0.33) and equal to 0.51 for root failure 

(against a theoretical value of 0.5).  

The use of Eq. (1) for a thickness less than 16 mm was analysed in Ref. [8]. On the 

basis of accurate experimental results, Gurney in [8] underlined that the strength of 

axially loaded plates with short transverse non-load-carrying attachments given by 

Eq. (1) is in reasonable agreement with theoretical predictions down to a thickness of 

2 mm. However, in other cases the strength for thin walled joints was not in 

agreement with Eq. (1) [8]. 

The aim of this paper is to investigate the size effects of the thickness under tensile 

loading by means of the implicit gradient approach in the case of cruciform steel 

joints. The numerical procedure optimised for thick welded joints is used without any 

change to the thin transverse load-carrying fillet weld and the non-load-carrying fillet 

weld. Finally, the fatigue life prediction curves of three thin welded joints with a 

longitudinal or transversal stiffener have been evaluated. All elements had a thickness 

of two millimetres. 

 

 

2. Analytical Frame 



 

The idea of using an average stress close to the point where failure occurs was 

proposed by Neuber [9] and can be generalised by considering a body of volume V

and a scalar value σeq of the stress components defined all over . On the other hand, 

in order to simplify the problem, the concepts of strain energy density [7, 10–12] or 

the critical distance approach [13, 14] consider an average in the neighbourhood of 

the critical point. 

According to the non-local theory as proposed in Ref. [15] an effective stress σeff in 

the actual point P can be defined by averaging an equivalent local stress σeq, weighted 

by function ψ: 
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where Q is a point inside volume V and the equivalent stress σeq is an appropriate 

scalar function of the stress tensor in point Q. The weight function ψ is an isotropic 

function of the distance PQ , which vanishes as distance PQ  increases. To overcome 

the evaluation of integral (3) over all the volume V, the evaluation of effective stress 

σeff can be substituted by a differential equation on volume V (for more details, see 

Refs [16]): 

 Vinc eqeff
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where c is a characteristic length and ∇2 denotes the Laplacian operator. As assumed 

in previous papers [17–19], we have considered that c depends only on the material. 

In this paper, to solve the inhomogeneous Helmholtz equation (4), we have 

considered a Neumann-type boundary condition: 

 Von0neff ∂=⋅σ∇  (5) 

V



where n is the outward normal to the boundary and the symbol ∇ indicates the 

gradient operator. 

 

In the case of welded structures under fatigue loading, the stress σeff is replaced with 

its range. Moreover, to correctly define the equivalent stress, considering that under 

proportional loading the principal stress directions are constant, it is possible to 

define three principal stress variations at each point, by comparing the maximum and 

minimum values in each direction. In this paper, dealing only with proportional and 

mainly uniaxial loadings, the maximum principal stress variation is considered to be 

an appropriate choice of the equivalent stress range Δσeq.  

In the case of multiaxial loadings, in order to improve the cycles to failure prediction, 

a stress-invariant based criterion should be used [19], which consists of an 

improvement of the well-established Crossland-like criteria already proposed in the 

literature [20–23]. 

 

Fig. 1 reports the scatter bands in terms of range of the effective stress σeff that is 

assumed independent from the shape and size of welded joints made of steel. The 

scatter band was established on the basis of analysis mainly due to fatigue failure of 

cruciform and T joints under tensile or bending loadings (see for instance reference 

[7] that resumes the fatigue strength of around a hundred series of welded joints).  

The main plate thickness of the joints ranged from 3 mm to 100 mm with 65% of the 

data being relative to a thickness between 10 mm and 50 mm. The opening angle 2α 

was 135° for toe failure and 0° for root failure. The fatigue scatter band of Fig. 1 refers 

to a 2.3% and 97.7% probability of survival and the slope takes the value of 3, which 

is typical in steel welded structures under mode I loadings. In the Figure, the design 

curve of flat specimens are also reported which were obtained by means of heat 



cutting [1] that is very close to 97.7% probability of survival given by the implicit 

gradient approach. For details similar to a heat cutting component, the effective 

stress exactly agrees with the nominal stress and the specimens are simply weakened 

by the thermal process and not by the geometrical effect due to a stress raiser. 

The characteristic length parameter c was found to be equal to 0.2 mm [17] and is 

considered a property of all welded joints made of steel independent of the thickness 

of the main plate or attachments. 

 

 

3. Numerical Analyses 

 

The partial differential equation (4) was solved by means of COMSOL numerical finite 

element (FE) software, which is able to evaluate both conventional linear elastic 

structural analysis and the Helmholtz equation (4) by means of the same mesh. The 

advantage of the use of Eq. (4) is that σeq can be singular at the notch tip while the 

effective σeff is a continuous function all over the component. Furthermore, the 

effective stress is calculated in all points of the body without imposing a priori a 

particular critical zone by assuming the same characteristic length c equal to 0.2 mm 

[17]. All the numerical analyses were made by considering a linear elastic material 

with elastic modulus E of 200 GPa and a Poisson’s ratio ν equal to 0.3 unless otherwise 

specified. Analytical solutions of Eq. (4) are possible, but require a previous asymptotic 

stress analysis that is able to evaluate the mode I notch stress intensity factors (NSIFs) 

of the weld [24]. In the case of spot welded joints, the implicit gradient approach 

proposed in Ref. [17] was used without any difficulty despite the relatively thin plate 

[18]. The fatigue predictions were obtained considering the weldment as a three-

dimensional structure.  



As an example, Fig. 2b, shows the typical results in terms of σeff obtained by means of 

a numerical analysis with the three-dimensional mesh of Fig. 2a. The welded joint is a 

load-carrying joint under tensile loading. A mesh with quadratic elements the size of 

the smaller element ranging between c and c/2 is able to give a precise trend of σeff 

along the weld toe or root (see a convergence test in Ref. [18]). The points where the 

stress becomes singular are the three lines A, B and C. All these locations could be a 

prospective nucleation zone of a fatigue crack. However, based on the FE analysis the 

maximum effective stress is located at the weld root near the free-surface, so that the 

fatigue crack will nucleate at the root and the value of 2.6 can be considered as the 

fatigue notch factor Kf of the weld referred to as tensile nominal stress σnom. 

 

 

 

 

3.1  Load-carrying cruciform joint 

 

 

In order to analyse the thickness effect in welded joints, as a first case study, we 

consider a classical load-carrying joint under tensile loading that showed an 

experimental failure at the weld toe for a thickness of the main plate equal to 2 mm [8]. 

Fig. 3 shows the fatigue life prediction in terms of nominal stress against the main plate 

thickness at 5·106 cycles. The Figure reports the prediction in the case of failure at the 

toe or at the root of the weld when the shape of the joints is taken as constant. The 

attachment length in the direction of nominal stress is equal to 5 times the thickness of 

the main plate and the specimen width is equal to 75 times the thickness. The nominal 

stress was evaluated as a function of the thickness by imposing that the maximum 

effective stress will be equal to 156 MPa at 5·106 cycles for a probability of failure 

equal to 50% . When the thickness is greater than t* the failure occurs at the weld root, 



otherwise failure occurs at the weld toe. So that by considering the same shape of 

welded joints, the failure point depends on the absolute value of the thickness. 

The equation of synthesis reported in Fig. 3 indicates that the scale effect of the welded 

notch is different if the failure occurs at the notch root or notch tip. At the weld toe 

where the opening angle 2α is 135° the penalty exponent is 0.31 whereas at the notch 

root (2α=0°) the exponent is 0.51. These values are in perfect agreement with the scale 

effect analysed in reference [7] in terms of Notch Stress Intensity Factors. Furthermore, 

the same Figure reports the scale effect obtained by means of Eq. (1) for class F2 of 

BS7608 related to load-carrying joints with a partial penetration butt or fillet weld with 

failure at the weld toe for a 50% probability to failure. 

 

Fig. 4 reports the trend of the effective stress σeff at the weld root or at the weld toe for 

the thickness equal to 2 millimetres. The maximum value is at the weld toe. Because 

the weld can be obtained by extrusion of a two-dimensional draw, the values of σeff 

obtained in a two-dimensional FE analysis, are also reported. The two-dimensional 

analysis gives results close to those obtained in the middle of the plate. 

 

As far as the trend of the effective stress along the transverse direction is concerned, 

Fig. 5 shows the comparison between the principal stress and the effective stress. The 

effective stress is evaluated at the weld toe because, in virtue of Eq. 5, it is defined also 

at the notch tip of sharp notches. In contrast, the maximum principal stress is evaluated 

at three different distances from the weld toe because it is singular at the tip [6]. In light 

of the trend of the dimensionless stresses reported in Fig. 5, it is clear that the shape of 

the effective stress is very similar to the shapes of the principal stress as the distance 

from the weld toe decreases. 

As underlined by Pook in Ref. [25], the existence of three-dimensional effects for linear 

elastic materials at cracks and sharp notches has been known for many years, but 

understanding has been limited, and for some situations, it still is. In general, very 

accurate three-dimensional mesh is needed to explain the trend of the stress near corner 



point singularities. For example, in Ref. [26–27] the influence coupled modes 

generated by anti-plane loading is carefully analysed. The plate/disc bending on 

three-dimensional stress fields was considered in the investigation, showing that it 

becomes non-negligible as the thickness decreases. In particular, when it is applied a 

remotely nominal mode III does produce a coupled mode II. Recently, Pook et al. [28] 

showed that the stresses in the vicinity of a corner point appear to be sums of stresses 

due to two different singularities of different orders: stress intensity factors and 

corner point singularities, but further FE analysis with a more detailed mesh is 

needed. 

As far as load-carrying welded joints are concerned, it is clear that the drop behaviour 

of the σeff is related to the first principal stress as appears in Figs 4 and 5. From a 

numerical point of view, the analysis of the effective stress σeff requires a less detailed 

mesh than that in Refs [26–28] because of the integral nature of Eq. (4). A mesh with 

the smaller element size of the same order of c gives good results [8]. For sharp 

notches, at the tip, the effective stress σeff depends on all NSIFs of the weld linked to 

the mode I, mode II and mode III loading. From this point of view, the effective stress 

σeff is directly linked to the actual stress state related to the actual three-dimensional 

nature of the stress that is meaningful as an average value inside a volume of radius 

of 4–5 times c. However, for the load-carrying welded joints under nominal tensile 

loading it is sufficient to assume a Poisson’s ratio v equal to zero to avoid the three-

dimensional effects [29], as reported in Figs 4 and 5. By assuming ν=0, σeff remains 

constant along the entire notch tip. 

In order to underline the rule of the thickness, Fig. 6 reports the value of maximum 

effective stress (σeff,max) for different b/t ratios; with b being the width of the plate. 

When b/t increases the maximum values at the notch tips increase but the maximum 

value is always reached at the toe. 



Fig. 7 shows that, if the geometry changes (attachment length in the direction of 

nominal stress equals 2.4 times the thickness of the main plate, indeed 5 times as in 

Fig. 3), the t* turns out to be different from the previous case. For instance t* moves 

from 21 to 5 mm, respectively. The penalty exponent slightly changes compared to 

those reported in Figure 4. The experimental data obtained by Sørensen et al. [30] 

confirm that for a thickness equal to 10 mm the failure is at the weld root. 

 

 

3.2  Non-load-carrying cruciform joint 
 

The analysis of a non-load-carrying cruciform joint under tensile loading is made in 

Fig. 8. For this type of joint, the location of maximum effective stress is always close 

to the weld toe. Fig. 8 shows the predictions, in terms of nominal stress, of the fatigue 

strength at 5·106 cycles by imposing that the maximum effective stress reaches a 

value of 156 MPa for a 50% probability of failure. The experimental data reported in 

the Figure have a dimensionless coefficient k close to 1.15 (for k see Eq.(2)) and a total 

attachment length around two times the main plate thickness [7]. Furthermore, the 

NSIF approach by means of Eq. (2), predicts these experimental data with good 

accuracy. These analyses were based on a two-dimensional prediction of NSIF [6, 7]. 

The fatigue prediction based on the implicit gradient approach takes into account a 

three-dimensional analysis where the attachment length in the direction of nominal 

stress is equal to two times the thickness of the main plate. The experimental data 

related to a thickness ranging between 3 and 50 mm are in agreement with the 

analytical prediction, however, for a thickness less than 3 mm the fatigue strength 

prediction with the implicit gradient begins to show a different behaviour from the 

NSIF approach, because the increment of the effective stress distribution when b/t 

increases. Finally, Fig. 9 reports the trend of the effective stress along the weld toe. 

The influence of the width b over the thickness t is clear. In the middle of the plate 

the value of the effective stress is close to that obtained by means of a two-



dimensional FE analysis. Usually, for the experimental results proposed in Refs [4 and 

5] the b/t ratio for thickness equal to or greater than 25 mm ranges from 0.5–5, 

whereas when the thickness is around 10–13 mm the b/t ratio ranges from 10–15. So 

that, the equivalent stress obtained from a two-dimensional FE analysis of welded 

joints of Refs [6 and 7] is close to the maximum value evaluated by means of a three-

dimensional FE analysis. Based on the results reported in Fig. 9 the difference in the 

maximum effective stress prediction is around a few per cent. 

 

 

3.3 Specimen with simple welded joints with a thickness of two millimetres 

 

 

In order to predict the fatigue behaviour of thin welded joints, now we consider three types 

of welded joints obtained with plates having a thickness of two millimetres. In the next three 

sections, the use of three-dimensional FE analysis is of fundamental importance. All 

experimental data were considered by Gurney [8] that give detailed information on the 

geometry. The nominal load ratio R was equal to zero for the tensile test, whereas in the 

case of the four-point bending mode, tests were carried out at a small positive stress ratio.  

The prediction of the fatigue scatter band curve in terms of nominal stress has been made 

by applying the following procedure: 

1) Evaluate the maximum effective stress σeff,max for a reference nominal stress σnom by 

means of FE analysis; 

2) Calculate the fatigue strength factor Kf as  σeff,max / σnom; 

3) Draw the fatigue scatter band curve by dividing the values of Fig. 1 by Kf ; 

 

As far as the slope of the fatigue curve is concerned, the experimental data indicated 

that the slope it not determined only by the thickness. In fact, Sonsino et al. [31] 

suggested that the slope is a result of the iteration among the thickness, local geometry 



structural stiffness, loading mode and residual stresses. The complexity makes it 

difficult to identify the driven parameter, so that, in this paper the slope of the fatigue 

scatter band of Fig. 1 was kept constant and equal to 3 as in a previous paper [18] where 

a linear elastic behaviour of material was taken into account. The joints considered in 

the next section are locally subjected mainly to mode I loading, so that a slope equal to 

3 can be appropriate because the experimental data used for the assessments of Fig. 1 

were subjected mainly to mode I loading [7]. If a multiaxial model is introduced, the 

slope can change from 3 to 5 (see paper [19] for details), which may also change by 

introducing a non-linear model for the material [32]. 

 

 

 

3.3.1 Longitudinal non-load-carrying fillet weld  

  

Fig. 10 shows a longitudinal non-load-carrying fillet weld subjected to a tensile loading with 

thickness t=2 mm. Due to symmetries of the model, only a quarter of the plate has been 

analysed. The trend of the effective stress σeff in dimensionless form is reported in Fig. 11. 

The maximum value of effective stress occurs at the point A due to the stress concentration 

given by the longitudinal plates. By moving along the weld toe the stress concentration 

rapidly decreases with the distance measured along the weld toe. The fatigue strength 

predictions are illustrated in Fig. 12. The experimental point falls into the scatter band 

related to the average value plus/minus 2 standard deviations. 

 

 

3.3.2 Transverse non-load-carrying fillet weld with short attachment under tensile 

loading 

 

The principal dimensions of the transverse non-load-carrying fillet weld with short 

attachment under tensile loading are summarised in Fig. 13. The stress analysis confirms 



that the maximum effective stress is located near the end of the transverse plate as shown 

in Fig. 14. If a zero Poisson’s ratio is considered in the analysis, the effective stress preserves 

a drop after point B. In this case the stiffness of the short attachment modified the 

transversal contraction. Note that, the NSIF is not defined in point A, whereas the effective 

stress can be defined in every point of the body. 

Also in this case, the experimental points fall inside the predicted fatigue scatter band 

reported in Fig. 15. 

 

 

3.3.3 Transverse non-load-carrying fillet weld with short attachment under bending 

loading 

 

As with the last case study, the effect of bending was taken into account. The principal 

dimensions of the transverse non-load-carrying fillet weld with a short attachment are 

reported in Fig. 16. The prediction of the fatigue curves in terms of nominal stress is shown 

in Fig. 17. As underlined by Gurney, all specimens were tested at nominal stresses above 

0.2% proof stress of the material (157 MPa). Despite this high stress level, the points fall into 

the scatter band evaluated by imposing a linear elastic behaviour of the material. 

 

  



 

 

 

4. Conclusions  

 

The implicit gradient approach simplified the fatigue strength assessment of arc 

welded joints. By means of a single numerical procedure, based on the linear elastic 

behaviour of the material, different welded joints can be analysed without dividing 

the welded structures into thin and thick joints. A three-dimensional analysis of the 

weld has fundamental importance. A continuous variation of fatigue strength turned 

out, as a function of the thickness of the main plate. In general, there was a very good 

agreement between the theoretical and experimental fatigue strength also when 

considering only a few millimetres in thickness. 

By means of the implicit gradient approach for load-carrying welded joints, it is even 

possible to distinguish when the failure occurs at the root or at the toe and their 

sensitivity to main thickness is different. The numerical analysis shows that the fatigue 

failure moves from weld toe to weld root as a function of the main plate thickness 

and the transition plate thickness depends on the weld joint shape. The exponent of 

the scale effect is different if failure occurs at the notch tip or notch root, depending 

on the analysis based on the NSIF approach. 

The three-dimensional effects related to the increasing of the effective stress near 

the free-surface seem to be due to a combined action of the Poisson’s ratio and of 

the increasing stiffness due to the transverse plate and fillet welds. 
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Fig. 1. Scatter band of steel welded joints in terms of maximum effective stress range 

(scatter bands related to mean values plus/minus 2 standard deviations; NLC: non-

load-carrying joint, LC: load-carrying joint) 
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Fig. 2. a) Mesh used in the FE analysis for a load-carrying joint (the flank angle was of 

135°; all dimensions are in millimetres, the minimum size of the elements is around 0.2 

mm); b) effective stress σeff relate to a nominal tensile stress σnom (c=0.2 mm) 
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Fig. 3. Failure prediction for a load-carrying welded joint with a fixed shape as a 

function of the main plate thickness t (width b equal to 75⋅t  and flank angle was 135° 

(N=5⋅106 cycles to failure, 50% probability of failure, the dashed line is the prediction by 

means of BS 7608 for a thickness less than the cut-off thickness) 
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Fig. 4. Trend of the effective stress at the weld root and weld toe for a load-carrying 

welded joint with a thickness t of 2 mm (width b of 150 mm and a flank angle of 135°; 

z is the distance from the longitudinal symmetry plane; c=0.2 mm) 
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Fig. 5. Trend of the principal stress or effective stress along the transversal direction 

for a load-carrying welded joint with a thickness t of 2 mm (width b of 150 mm and a 

flank angle of 135°; z is the distance from the longitudinal symmetry plane, x is the 

distance from the weld toe; c=0.2 mm) 

 

 

  

σi /σi,max 

free 

surface 

symmetry plane   

2⋅z/b 

x/t=1 

σ
eff

/σ
eff, max

 

σ
1
/σ

1, max
 

z 

x/t=0.5 

x/t=0.1 

x/t=0 

x 

x/t=0, ν=0 



 

 

Fig. 6. Trend of the maximum equivalent stress σ
eff,max

 at the weld root or at the weld toe for 

a load-carrying welded joint as a function of the dimensionless weight  b/t (flank angle equal 

to 135°, t= 2 mm, c=0.2 mm) 
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Fig. 7. Failure prediction for a load-carrying welded joint. Width b equal to 10⋅t and flank angle 

of 135° (experimental data from [30], N=5⋅106 cycles to failure, 50% probability of failure)  
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Fig. 8. Failure prediction for a non-load-carrying welded joint (for experimental data 

the dimensionless coefficient k is close to 1.15 [7], N=5⋅106 cycles to failure, 50% 

probability of failure). For the implicit gradient approach, the width b is equal to 10⋅t  

and  flank angle is 135°, c=0.2 mm) 
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Fig. 9.  Trend of the effective stress at the weld toe for a non-load-carrying welded joint with 

a thickness t of 50 mm and a flank angle of 135° (z is the distance from the longitudinal 

symmetry axis, c=0.2 mm)  
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Fig. 10. Longitudinal non-load-carrying fillet weld under tensile loading. Plate thickness 

2 mm (data from [8]) 
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Fig. 11. Effective stress in dimensionless form for the longitudinal non-load-carrying fillet weld 

of Fig. 10 under tensile loading. s is the arc length along the weld toe (c=0.2 mm). 
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Fig. 12. Fatigue curves prediction in terms of nominal stress for the longitudinal 

non-load-carrying fillet weld of Fig. 10. The scatter band is related to the average value ± 2 

standard deviations (experimental data from [8], R=0.1, c=0.2 mm) 
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Fig. 13. Transverse non-load-carrying fillet weld with short attachment under tensile 

loading. Plate thickness 2 mm (data from [8]). 
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Fig. 14. Effective stress in dimensionless form for the transverse non-load-carrying fillet 

weld with short attachment under tensile loading of Fig. 13. s is the arc length along the 

weld toe with the origin at point C belonging to the longitudinal symmetry axis (c=0.2 mm) 
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Fig. 15. Fatigue curve prediction in terms of nominal stress for the transverse 

non-load-carrying fillet weld of Fig. 13. The scatter band is related to the average value ± 2 

standard deviations (experimental data from [8], R=0.1, c=0.2 mm) 
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Fig. 16. Transverse non-load-carrying fillet weld with short attachment under four 

point bending. Plate thickness 2 mm (data from [8]) 

 

  

6 x 6 leg fillet welds 



 

 

 

4

cicli a rottura N

10 5
10

6
10

7
10

3.0

1

100

215

109

∆σnom

[MPa]

10000

1000

∆σ
nom ∆σnom

 

 

Fig. 17. Fatigue curves prediction in terms of nominal stress for the transverse 

non-load-carrying fillet weld of Fig. 16. The scatter band is related to the average value ± 2 

standard deviations (experimental data from [8], R=0.1, c=0.2 mm) 
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