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Abstract

Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is
also economically competitive with the traditional building construction materials. However, due
to its low volume density combined with its high stiffness, it does not provide sufficient sound
insulation, thus it is necessary to develop specific acoustic treatments in order to increase the
noise reduction performance. The material’s mechanical properties are required as input data to
perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic
constants of a CLT plate are derived by fitting the real component of the experimental flexural
wave velocity with Mindlin’s dispersion relation for thick plates, neglecting the influence of the
plate’s size and boundary conditions. Furthermore, its apparent elastic and stiffness properties
are derived from the same set of experimental data, for the plate considered to be thin. Under
this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by
using an elliptic model and verified with experimental results.

Keywords: orthotropic plate, stiffness properties, elastic constants, wavenumber analysis,
dispersion relation, thin/thick plate

1. Introduction

Cross-laminated timber, often abbreviated to the acronym CLT, is an engineered solid wood
material consisting of an odd number of layers of wooden beams glued together, alternating
perpendicularly the orientation of the fibres of each ply. CLT building panels are generally fabri-
cated with three, five, or seven layers, according to the static requirements, with a total thickness
up to 500 mm. According to the standard EN 16351 [1] the thickness of each layer should be
within the range 4 − 65 mm. The success of CLT plates has continuously been increasing in
the building construction market over the last twenty years. Its high strength, good structural
stability, fulfilment of safety requirements together with the cost competitiveness and the pos-
sibility to rapidly assemble prefabricated panels, make CLT a valuable alternative to traditional
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building construction materials such as concrete, masonry and steel. However, due to their high
stiffness combined with their low density, CLT structures do not provide satisfactory noise re-
duction. Therefore, in order to improve sound insulation performance, it is necessary to design
and optimize specific acoustic treatments, such as additional layers applied to the walls [2], like
gypsum board linings on a cavity, or a concrete floating screed over the CLT floor structures [3].
Most of the prediction methods to compute structure-borne and air-borne sound transmission re-
quire the geometric characteristics of building elements and the materials’ mechanical properties
as input data, in addition to some acoustic descriptors. Since many wood species with different
mechanical characteristics can be used to manufacture CLT structures, an easily implementable
non-destructive procedure to evaluate the elastic and stiffness properties would be beneficial for
a straightforward characterization of specific CLT building elements. The literature offers a vari-
ety of different approches to experimentally investigate the mechanical properties of solid wood
through non destructive tests [4]. Many of them are modal analysis-based methods [5, 6], or
involve ultrasound measurements [7, 8]. The experimental approch presented here is based on
wave propagation analysis within the audible frequency range. The flexural wave velocity can
be directly evaluated by measuring the time-of-flight difference between two adjoining trans-
ducers in line with the excitation source, a technique derived from ultrasound measurements [9]
and also applied for the characterization of visco and poro-elastic materials [10]. Alternatively,
the structural wavenumber can be determined by measuring the phase difference between two
consecutive accelerometers, as proposed by Rindel [11] for low frequency measurements. This
approach has also been applied by Nightingale [12] to study a wooden joist floor, implementing a
slightly different setup in order to investigate higher frequencies. A method to compute the phase
velocity, based on phase difference of the frequency response function FRF between two trans-
ducers [13], was also applied by Thwaites to detect damages in sandwich structures, other than
to determine the material’s elastic properties [14]. While these approaches uses continuous wave
random noise excitation or impact impulses, the method to be described here involves short pulse
excitation. Pulse excitation usually requires more effort during the measurement stage, since a
longer time is needed to investigate a wide frequency range, compared to broadband excitation.
On the other hand, it allows one to obtain accurate results with a much easier signal processing.
The novelty aspect of the proposed method is represented by an analytical data fitting of the
experimental wave velocity in order to diminish the number of single frequencies to be tested
within the investigated band, reducing significantly the measurement time. Besides, the fitting
procedure also limits the influence of the scatter in the experimental data, especially at high
frequencies.

The aim of this work is to present a fast and non-destructive method to investigate the elas-
tic and stiffness properties of particular orthotropic elements using wave propagation analysis.
The dynamic behaviour of CLT plates is known to be orthotropic [15, 16], therefore the elastic
parameters, and the stiffness properties, are direction dependent. The wave velocity has to be
evaluated for many angles over the plate surface to analyse separately the propagation along dif-
ferent directions. The propagation velocity of flexural waves has been measured on a three-ply
cross-laminated timber plate surface for different propagation angles, instead of cutting beams
along those directions [17]. Consequently, due to its non-destructive nature, the method can be
applied either in-situ or in laboratory. The study was motivated by the necessity to investigate the
vibro-acoustic behavior of CLT plates. In structural design CLT elements are generally treated
as multilayered structures, or composite liminates, and analysed using advanced plate theories
[18]. Even though elementary Kirchhoff’s or Mindlin’s theories, might not be enough accurate
for structural analysis of CLT plates and higher order approach are necessary, they allow accurate
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approximated results when applied in vibro-acoustic modelling, since the order of magnitude of
the transverse displacements induced in the structures is much smaller. An example of how they
have been used to model sound radiation efficiency of a CLT plate can be found in [19]. In the
next paragraph the dispersion relation for flexural waves propagating in a plate is introduced,
highlighting the differences between Kirchhoff’s classical thin plate theory and Mindlin’s theory
for thick plates. In Paragraph 3 the tested structure and the measurements setup are introduced,
and the signal processing to determine the real part of the flexural wave velocity is described. The
methods to evaluate the material’s stiffness characteristics are presented in Paragraph 4. From
the experimental wavenumbers the stiffness properties of the equivalent thin orthotropic plate
have been derived. Moreover, it was also possible to evaluate the in-plane elastic constants of the
orthotropic plate under Mindlin’s assumptions. The main results are finally shown and discussed
in Paragraph 5.

2. Theoretical background

The velocity of a flexural wave propagating in an elastic solid depends on the frequency.
The wave dispersion relation can be determined from the equation of motion of the vibrating
structure. There are several simplified analytical approaches to describe the dynamic response of
a beam or a plate. Kirchhoff’s plate theory, also known as classical thin plate theory, considers
only pure bending, neglecting both rotational inertia and shear deformation effect. Under these
assumptions, the equation of motion of a thin isotropic plate undergoing unforced vibration is
described as a function of the transverse displacement w as [20]:

D∇4w + ρh
∂2w
∂t2 = 0. (1)

The bending wavenumber kB depends on the angular frequency ω, the bending stiffness of the
plate D, given in Eq. (11), its density ρ, and its thickness h:

kB =
4

√
ρhω2

D
. (2)

The thin plate assumptions are generally valid for frequencies with a bending wavelength sats-
fying the relationship: λB > 2πh. When this assumption is not fulfilled, rotational inertia and
shear deformation have a significant effect on the plate’s dynamic response and need to be con-
sidered. The equation of motion for free vibrations of a thick isotropic plate of constant thickness
h, derived using Mindlin’s approximation [21], may be written as:

D∇4w −
[
ρD
κ2G

+ I
]
∇2 ∂

2w
∂t2 + ρ

I
κ2G

∂2w
∂t2 + ρh

∂2w
∂t2 = 0, (3)

where I = ρh3/12 indicates the mass moment of inertia of the plate and G is the plate’s shear
modulus. The coefficient κ2, similarly to Timoshenko shear coefficient in thick beam theory
[22], takes into account that the shear stress is not constant over the plate thickness. It can be
approximated using a simple relationship, that follows from some considerations about the phase
velocity limit of large wavenumbers [23], as:

κ =
cR

cS
=

0.87 + 1.12ν
1 + ν

, (4)
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where cS is the pure shear wave velocity and cR represents the Rayleigh surface velocity.
Mindlin’s dispersion relation is obviously more complicated than the simple Kirchhoff classi-
cal thin plate theory and for a rectangular plate it is given in terms of wave velocities by [24]:1 − c2

κ2c2
S

 c2
L

c2 − 1
 =

12

h2
(
ω
c
)2 , (5)

where c represents the flexural wave velocity, while the speed of longitudinal cL and shear waves
cS can be determined from the plate’s elastic modulus E and Poisson’s ratio ν, its density ρ, and
its shear modulus G: 

cL =
√

E
ρ(1−ν2) : longitudinal wave velocity;

cS =
√

G
ρ

: pure shear wave velocity.

The dispersion relation for pure bending, derived from thin plate theory, shows an unlim-
ited increase of the phase velocity with frequency. However, the velocity for large wavenum-
bers should be limited, due to rotational inertia and especially shear deformation. According to
Mindlin’s theory, at low frequencies the flexural wave velocity corresponds to the phase velocity
of a pure bending wave, while at high frequencies, in case of an in-phase motion of the opposite
surfaces of the plate [25], it approaches the Rayleigh surface velocity cR = κcS . A comparison
between thin and thick plate dispersion relations is plotted in Figure 1. Mindlin’s dispersion
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Figure 1: Comparison between thin plate and thick plate wave velocity dispersion curves. The normalised wave velocity:
c̄ = c/cL is plotted against the normalised wavenumber: k̄ = kh/2π.

relation, given in Eq. (5), was derived for an infinite plate, therefore, the influence of bound-
ary conditions and structure’s dimensions is neglected. It should be stressed that the transverse
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displacement of a thick plate is not caused only by pure bending, as in thin plates, but at high
frequencies the contribution of in-plane and shear waves becomes significant. In the following,
for simplicity’s sake, the expression flexural wave will be address to indicate the structural waves
inducing transverse displacement in thick plates and real structures, while bending wave will be
used referring to thin plate approximation.

So far a homogeneous isotropic plate has been considered. However, orthotropic materials,
with different elastic properties along mutually perpendicular directions, are often used in build-
ing constructions, aerospace or automotive industry and many other fields of engineering. In
some structures this peculiar behaviour can be caused by the presence of ribs or stiffeners and it
is common to treat such elements as equivalent orthotropic plates. Yet some materials present a
natural orthotropy due to their inner structure, or to their layered geometry, like CLT plates. The
constitutive relations for an orthogonally orthotropic material make use of nine elastic constants
and are given in the compliance form as:



εx

εy

εz

εxy

εxz

εyz


=
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−
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. (6)

The velocity of a vibrational wave propagating into a solid element depends upon the material
elastic characteristics; therefore in an orthotropic plate, it depends on the propagation direction.
A method to experimentally determine the elastic properties of an orthotropic panel is proposed
in the next section.

3. Experimental setup

The frequency-dependent velocity of a flexural wave, propagating in a cross-laminated timber
plate, was experimentally determined. The three-ply CLT plate investigated is 4.2 m wide and
2.9 m high, and its total thickness is 80 mm: the outer layers are approximately 30 mm thick,
while the inner core thickness is 20 mm. The propagating waves were induced into the plate
with a B&K 4809 vibration exciter driven by short sinusoidal pulses (2.5 cycles). The central
frequency was varied from 100 Hz to 3100 Hz at 40 Hz steps. The transverse acceleration
was measured by five PCB-353B15 accelerometers (10 mV/g) aligned with the excitation point
and equally spaced 10 cm apart, as sketched in Figure 2. In order to avoid the influence of
the vibrational near field, and to consider only the propagating wave neglecting the evanescent
component, the closest accelerometer was placed 50 cm from the excitation point. According to
Cremer et al. [26] the evanescent near-field is usually considered negligible at a distance greater
than half the structural wavelength from the discontinuity. However, it was not possible to know
a priori this wavelength. Thus the 50 cm span was chosen in order to balance the distance of
the transducers from all the discontinuities of the plate: namely the excitation point and the
edges. The signals were generated and acquired by a National Instruments data acquisition
system controlled with an in-house implemented software. Each measurement was performed
for 5 different angles, from 0 to π/2 radians, to investigate the dependency of the wave velocity
upon the propagation direction.
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Figure 2: Experimental setup for different propagation angles at steps of ∆θ = π/8. The first measurement position is
placed at a minimum distance l1 = 50 cm from the excitation point to avoid near field effects and the accelerometers are
equally spaced: ∆d = 10 cm.

To evaluate the phase velocity of lateral displacement each set of measured data was anal-
ysed with two different methods. The wave velocity can be determined by evaluating the phase
difference between each pair of adjoining transducers. In order to consider only the direct incom-
ing wave the measured signals must be windowed, in time domain, removing reflections from
the edges. However, the time window should be long enough allowing the propagating wave
to reach the furthest measurement point. Due to the dispersive nature of the bending wave it is
appropriate to shrink the time window as the frequency increases, since the length of the signal
reduces. The window size is thus determined for each investigated frequency as a function of the
first positive peak of the incomining pulse, detected in the time domain. A clear description of
the window size effects on the measurements can be found in [27], where the phase difference
method was used to investigate the stiffness properties of building components. The phase differ-
ence is evaluated between each pair of consecutive accelerometers, by performing an FFT on the
windowed signals. For each frequency the real part of the bending wavenumber, hence the wave
velocity, can be evaluated by dividing the measured phase shift ∆φ by the transducers spacing
∆d, and averaging over n accelerometer positions:

Re {kB (ω)} =
1

n − 1

n−1∑
i=1

(
−

∆φi,i+1

∆di,i+1

)
, (7)

Re {cB (ω)} =
ω

Re {kB (ω)}
. (8)

In the second method, the wave velocity is determined directly from the time of flight difference
between neighbouring accelerometers. The measured data were first smoothed by applying a
second order Savitzky-Golay polynomial filter in order to have a better signal to noise ratio, then
the time of arrival of the first positive peak was determined for each acceleration signal. The time
of flight is evaluated as the difference between the arrival time of two consecutive accelerometers:
∆ti,i+1 = ti+1 − ti. Assuming the dissipation to be negligible for small distances, the real part of
the wave velocity is given by the ratio of the spacing ∆di,i+1, between the transducers i and i + 1,
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to the related time of flight ∆ti,i+1, averaged over (n − 1) pairs of neighbouring accelerometers:

Re {cB (ω)} =
1

n − 1

n−1∑
i=1

(
∆di,i+1

∆ti,i+1

)
. (9)
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Figure 3: Evaluation of the time of flight of the propagating wave between two consecutive measurement positions:
f = 3100 Hz – θ = π/2.

An example of the determination of the time of flight difference between a pair of consecutive
transducers is given in Figure 3. Both methods assume that all the reflections are removed from
the signal by the time window and that the imaginary part of the wave velocity is negligible. It
is clear from the standard deviations of the measured data, plotted in Figure 4(a) as an example
and reported in Appendix A for all the investigated directions, that the phase difference method
is more reliable in the low-mid frequency range. On the other hand, the results obtained from
the time of flight differences are more appropriate at high frequencies to reduce the spread of
the measured values. The spacing between the transducers should be much smaller than the
bending wavelength to correctly evaluate the phase shift between the signals to apply the first
method. The two data sets were therefore combined using a cut-off frequency: fco = 1500
Hz, determined by minimising the overall error, computed for each investigated frequency by
summing the experimental deviation of all the investigated directions.

4. Experimental wavenumber analysis

The measured wave velocities were fitted to obtain continuous smooth curves within the
frequency range 50 − 5000 Hz using Mindlin’s dispersion relation given in Eq. (5). A fitting
algorithm, based on non-linear regression, was implemented in Matlab R2014b, using Mindlin’s
dispersion relation as input model in the nlinfit function. It returns the estimated coefficients,
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Figure 4: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = π/2.

cL and cS , for which the model function best fits the measured values. The fitted curves agree
very well with the experimental data, as shown in Figure 4(b) and in Appendix A. Moreover the
fitting method proved to be efficient, since the final results are independent from the used initial
guess value, even if the frequency step in the measured data vector is increased from 40 Hz to
160 Hz, as shown in Figure 5.

4.1. Apparent elastic properties: thin orthotropic plate

4.1.1. Principal directions x-y
Solving the equations of motion for an orthotropic thick plate, under Mindlin’s assumptions,

requires a great effort [28]. Sometimes, for engineering applications, simplified approaches are
preferred over the more sophisticated ones. Even if these simplified theories do not rigorously
describe the structure dynamics, they provide accurate approximated results in a relatively short
computational time. The apparent frequency dependent bending stiffness of an equivalent thin
orthotropic plate was derived from the experimental wave velocity measured along the principal
directions. Using Kirchhoff’s theory, which neglects both the rotatory inertia and the shear de-
formation effect, the equation of motion of an orthotropic plate, lying in the x − y plane with the
principal directions oriented along the Cartesian axes, is given by [29]:

Dx
∂4w
∂x4 + 2B

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 + ρh

∂2w
∂t2 = 0, (10)

where Dx and Dy is the apparent bending stiffness along the principal directions:

Dx =
Exh3

12
(
1 − νxyνyx

) ; Dy =
Eyh3

12
(
1 − νxyνyx

) ; (11)
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Figure 5: Comparison between wave velocity curves obtained by fitting the experimental data, measured at steps of
40 Hz and of 160 Hz, within the frequency range 100 Hz to 3100 Hz. Propagation angle: θ = π/2.

and B is the effective torsional stiffness defined as:

B =
νxyDy

2
+
νyxDx

2
+ 2Gxy

h3

12
≈

√
DxDy. (12)

The approximation of the effective torsional stiffness B is only valid under the simplifying as-
sumption that the in-plane shear modulus Gxy is a function of the elastic moduli along the prin-
cipal directions and the plate’s Poisson’s ratio [30]:

Gxy =

√
ExEy

2
(
1 +
√
νxyνyx

) . (13)

The apparent frequency-dependent elastic properties along the principal directions Ex and Ey

can be easily estimated from the experimental wave velocity cexp,θ and the thin plate dispersion
relation, given in Eq. (2), as:

Ex =
12ρc4

exp,x

(
1 − ν2

)
h2ω2 ,

Ey =
12ρc4

exp,y

(
1 − ν2

)
h2ω2 .

(14)

It should be noted that νxy and νyx are elastic constants corresponding to the structure config-
uration [31] and the Poisson’s ratio is assumed to be ν =

√
νxyνyx = 0.3, as typical for wood

materials.

4.1.2. Direction dependent elastic properties: elliptic model
To account for the orthotropic behaviour of the CLT plate a well-established elliptic model

[32, 33] is adopted assuming the wavenumbers along the principal directions to be independent.
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For any propagation angle θ the bending wavenumber kB(θ) is derived from the data measured
along the x-direction (θ = 0) and the y-direction (θ = π/2) as:

kB (θ) =

√
k2

B,x (θ) + k2
B,y (θ); (15)

kB,x (θ) = kB,x cos θ,
kB,y (θ) = kB,y sin θ.

(16)

The orthotropic plate’s bending stiffness, like the structural wavenumber, is direction dependent
and it is defined as:

D (θ) = Dx cos4 θ + 2B cos2 θ sin2 θ + Dy sin4 θ. (17)

Computing the orthotropic bending stiffness using Eq. (17) would require the knowledge of the
in-plane shear modulus Gxy. Alternatively the direction dependent bending stiffness might be
approximated for each propagation angle θ as a function of the orthotropic wavenumber kB (θ)
obtained from Eq. (15):

D (θ) =
ρhω2

k4
B (θ)

. (18)

4.2. Elastic constants: thick orthotropic plate
As pointed out in the previous section, the simplifying assumptions of Kirchhoff’s classical

plate theory, which disregards the influence of rotatory inertia and shear deformation, need to
be compensated by considering frequency dependent material elastic properties. A more sophis-
ticated approach to investigate the plate dynamics, like Mindlin’s thick plate theory, requires a
greater effort and longer computational time, but it allows to derive the material elastic constants.
The resulting coefficients of the fitting algorithm represent the plate longitudinal and shear waves
velocities. From the values of cL and cS it is possible to derive directly the elastic modulus E (θ)
and the shear modulus G (θ) for all the investigated propagation directions:

Eθ = ρc2
L,θ

(
1 − ν2

)
, (19)

Gθz = ρc2
S ,θ. (20)

The bending stiffness along the principal directions Dx and Dy can be computed using the same
formulation given for a thin plate in Eq. (11), while the in-plane shear modulus Gxy can be
approximated according to Eq. (14).

It should be recalled that the dynamic properties of elastic materials always present, to some
extent, a frequency dependency; which might be significant, like in highly damped elastomers, or
negligible in low damped materials like steel, concrete, and wood. A complex modulus is often
used in vibro-acoustic analysis to characterise the material’s elastic and damping properties.
Even though the method here proposed allows only to determine the real part of the complex
dynamic modulus, the storage modulus E, its imaginary part El, sometimes called loss modulus,
can be determined as a function of the plate loss factor η:

E = E (1 + iη) = E + iEl (21)

where E is the complex elastic modulus and i =
√
−1 represents the imaginary unit. The plate’s

loss factor η can be experimentally evaluated by means of different approaches [34]. Further,
since the real dynamic modulus and the loss modulus are interrelated, the latter, or analogously
the loss factor, can be reconstructed from the real part of the dynamic modulus, as clearly ex-
plained by Pritz [35].
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5. Results and discussion

5.1. Material properties along the principal directions

The apparent parameters derived from the fitted wave velocity using the simplified thin plate
dispersion relation are frequency dependent, as found in other studies when simplified assump-
tions are applied over more sophisticated theories for thick or composite plates [36, 37]. The
frequency dependency of the apparent elastic modulus, or the apparent bending stiffness, takes
into account that the plate dynamics at high frequencies is mostly governed by the shear defor-
mation, which is neglected in classical thin plate theory. The apparent elastic moduli along the
principal directions are plotted in Figure 6. The frequency dependent properties are compared
with the elastic constant derived from the longitudinal wave velocity cL resulting from the fitting
algorithm, as described in section 4.2. Moreover, the shear moduli Gxz and Gyz were estimated
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Figure 6: Comparison between the frequency dependent elastic properties of an equivalent thin orthotropic plate along
the principal directions and the elastic constants derived using Mindlin’s dispersion relation.

from the shear wave velocity cS . The elastic and the shear moduli experimentally determined for
different directions are reported in Table 1. The elastic and the shear moduli along the x−axis,

Table 1: CLT’s elastic constants for different propagation angles.

θ [rad] 0 π/8 π/4 3π/8 π/2

E [Pa] 7.34e+08 9.68e+08 1.66e+09 3.80e+09 1.08e+10

G [Pa] 2.40e + 08 4.84e+08 2.52e+08 4.96e+08 5.72e+08

θ = 0, have a comparable order of magnitude, while along the y−axis, θ = π/2, the shear modulus



Published article available online: https://doi.org/10.1016/j.jsv.2017.04.018

k
x
 [rad/m]

           

0 1 2 3 4 5

k
y
 [

ra
d

/m
]

0

1

2

3

4

5

k
B,x

k
B,y

k
B, θ,ortho

num
π/4

exp
π/4

num
π/8

exp
π/8

num
3π/8

exp
3π/8

k
x
 [rad/m]

           

0 2 4 6 8

k
y
 [

ra
d

/m
]

0

2

4

6

8

k
x
 [rad/m]

           

0 5 10 15

k
y
 [

ra
d

/m
]

0

2

4

6

8

10

12

k
x
 [rad/m]

0 5 10 15 20

k
y
 [

ra
d

/m
]

0

5

10

15

20

k
x
 [rad/m]

0 10 20 30 40

k
y
 [

ra
d

/m
]

0

10

20

30

40

k
x
 [rad/m]

0 10 20 30

k
y
 [

ra
d

/m
]

0

5

10

15

20

25

30

f = 100 Hz f = 250 Hz f = 500 Hz

f = 1000 Hz f = 2000 Hz f = 3000 Hz

Figure 7: Elliptic model: comparison between the elliptic interpolation and the experimental wavenumbers, determined
for the angles: π/8, π/4 and 3π/8; at the frequencies: 100 Hz; 200 Hz, 500 Hz, 1000 Hz, 200 Hz and 3000 Hz.

is almost two orders of magnitude lower than the elastic modulus. For this reason, the equiva-
lent elastic properties along this direction, as the frequency increases, exhibit a more emphasized
reduction than in the opposite direction, and the same is obviously valid for the apparent bend-
ing stiffness. These findings agree very well with the results from a recent study performed on
cross-laminated timber beams using a modal analysis approach [38].

5.2. Orthotropic elliptic model

To demonstrate the suitability of this approach for the investigated CLT plate, the theoretical
bending wavenumbers obtained using the elliptic model were compared with the experimental
values, for different propagation angles at various frequencies. This comparison between exper-
imental and numerical data, given in Figure 7 in the wavenumber space, proves that the elliptic
model is a reliable approximation to describe the orthotropic behaviour, showing a remarkably
good agreement up to 1000 Hz. At higher frequencies the experimental wavenumbers slightly
deviate from the predicted ellipse, consistent with the results of the analysis of wood material
properties presented in [39]. Above 1000 Hz, the measured wavenumber along the θ = π/4
direction is larger than the estimated value, whereas for θ = π/8 the experimental wavenumbers
is smaller than the numerical one. In other words, at high frequencies the elliptic model tends
to overestimate the wave velocity propagating at θ = π/4 while it underestimates the wave ve-
locity along the direction θ = π/8. However, it should be noted that in the high frequency range
the standard deviation of the measured velocity is significantly higher and of the same order of
magnitude as the difference between the experimental and estimated wavenumbers.

A similar comparison, with consistent results, is presented in Figure 8. The apparent bending
stiffness approximated using Eq. (18), is compared with the values directly computed from the
experimental wavenumber according to Eq. (2), for different angles, and at different frequencies.
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Figure 8: Elliptic model: comparison between the elliptic approximation and the experimental bending stiffness, de-
termined for the angles: π/8, π/4 and 3π/8; at the frequencies: 100 Hz; 200 Hz, 500 Hz, 1000 Hz, 200 Hz and 3000
Hz.

Lastly, the frequency and direction dependent apparent bending stiffness of the orthotropic cross-
laminated timber plate is shown in Figure 9.

6. Conclusion

In this paper the elastic and stiffness characteristics of an orthotropic cross-laminated timber
plate have been investigated as a function of the experimental flexural wave velocity. The real
part of the wave velocity was evaluated using two different approaches. The phase difference
method gives more accurate results in the low frequency range, while at high frequencies it is
more convenient to determine the velocity from the time of flight difference, evaluated between
neighbouring transducers. Using a non-linear fitting algorithm, the elastic E and the shear moduli
G have been derived from the experimental wave velocities, measured along the plate’s principal
directions. Results show that the y-direction, in which the outer layers fibres are vertically ori-
ented, is stiffer than the orthogonal x-direction. Moreover, the elastic modulus Ey is two orders
of magnitude higher that the shear modulus Gyz, while along the x-direction the elastic and the
shear moduli have a comparable order of magnitude.

Furthermore, the apparent stiffness properties of an equivalent thin CLT plate have been de-
rived from the experimental flexural wavenumbers, using Kirchhoff’s dispersion relation. The
equivalent thin plate exhibits a frequency dependent bending stiffness, which compensates the
fact that rotational inertia, shear effects, and the layered structure are neglected. The elastic mod-
ulus and the bending stiffness decrease as the frequency increases. The frequency dependence is
much more emphasised along the y−direction due to the big difference between the elastic and
the shear moduli. The stiffness properties, evaluated along the principal directions, are derived
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Figure 9: Apparent bending stiffness of an equivalent orthotropic thin CLT plate, frequency and direction dependent.

for each propagation angle by using an orthotropic elliptic model, which provides a good approx-
imation of the experimental data within the considered frequency range. Although the classical
thin plate theory does not rigorously describe the dynamic behaviour of the CLT structure, it is
often used in vibro-acoustic analysis providing well approximated results.

The presented method allows one to quickly evaluate the elastic and stiffness properties of
orthotropic building elements. Moreover, the data fitting using Mindlin’s dispersion relation
provides an efficient method that does not require a dense frequency sampling, reducing sig-
nificantly the measurement time. The non-destructive nature of the test makes this method a
suitable approach both for in-situ and laboratory applications. The main drawback of the method
is the high influence of the measurement points spacing on the accuracy of experimental results.
Especially at high frequencies, as the wavelength become shorter, a small uncertainty in the ac-
celerometers spacing will increase the scatter of the results. The perfectly free propagating wave
assumption, where both the evanescent near field and the reflections from the plate discontinuity
can be neglected, is neither easy to obtain, nor to verify. Despite these uncertainties the method
represents an useful tool to quickly investigate the stiffness properties of orthotropic structures
that are usually required as input data in vibro-acoustic prediction models.
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Appendix A. Experimental results

In this section the flexural wave velocity measured along five propagation directions is pre-
sented. The propagation angles 0 ≤ θ ≤ π/2 were investigated at steps of π/8 radians. The inner
core fibres are oriented along the principal x-direction, θ = 0 while the outer layers fibres are ver-
tically oriented along the principal y-direction, θ = π/2. The velocities obtained from the phase
difference method, and by evaluating the time of flight difference, are compared in the graph on
the left-hand side: (a). The experimental data set, derived from the combination of these results
by using a cut off frequency f = 1500 Hz, were fitted using Mindlin’s wave dispersion relation,
given Eq. (5), as shown in the graph on the right-hand side: (b).
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Figure A.10: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = 0.

References

[1] EN ISO 16351 – Timber structures. Cross laminated timber. Requirements, Standard, International Organization
for Standardization, Geneva, CH (2015).
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Figure A.11: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = π/8.
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Figure A.12: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = π/4.
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Figure A.13: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = 3π/8.
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Figure A.14: (a) – Experimental wave velocity determined from the phase difference (phd) and the time of flight (tof )
methods. (b) – Curve fitting of the experimental wave velocity using Mindlin’s dispersion relation. The shaded area
represents the standard deviation of measured data. Propagation angle: θ = π/2.


