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ABSTRACT 

Manufacturing and assembly (geometric) errors affect the positioning precision of manipulators. In six-

degrees-of-freedom (6-DOF) manipulators, geometric error effects can be compensated through suitable 

calibration procedures. This, in general, is not possible in lower-mobility manipulators. Thus, methods that 

evaluate such effects must be implemented at the design stage to determine both which workspace region is less 

affected by these errors and which dimensional tolerances must be assigned to match given positioning-precision 

requirements. In the literature, such evaluations are mainly tailored on particular architectures and the proposed 

techniques are difficult to extend. Here, a general discussion on how to take into account geometric error effects 

is presented together with a general method to solve this design problem. The proposed method can be applied 

to any non-overconstrained architecture. Eventually, as a case study, the method is applied to the analysis of the 

geometric error effects of the translational parallel manipulator Triflex-II. 

Keywords: lower-mobility manipulators, positioning precision, geometric errors, dimensional tolerances. 

 

1. INTRODUCTION 

Geometric accuracy is crucial for manipulators designed to accomplish high precision tasks since geometric 

errors affect end effector’s positioning precision [1]. It requires small dimensional tolerances and precise 

assembly procedures. Both these requirements bring to increase manufacturing costs. 
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In six-degrees-of-freedom (6-DOF) manipulators, geometric error effects can be compensated through 

suitable calibration procedures and/or control algorithms [2]; whereas, in less-than-six-DOF (lower-mobility) 

manipulators, this, in general, cannot be done [3]. Thus, identifying manipulator configurations where the 

positioning precision is higher, and which geometric parameters need small tolerances is a mandatory step to 

implement when designing lower-mobility manipulators. 

Lower-mobility manipulators, when applicable, are appealing since they offer simplified architectures, 

higher speeds and require only a few actuators [4,5]. Overconstrained manipulators are a family of lower-

mobility manipulators. Such manipulators require precise manufacturing to avoid jamming and, at the design 

stage, models that take into account both link flexibility and external loads to prevent jamming [30]. Jamming 

avoidance requirements are usually tighter than positioning-precision ones. Therefore, positioning-precision 

requirements are somehow implicitly satisfied in those manipulators and, anyway, the models developed to 

prevent jamming can be used to check that positioning-precision requirements are matched, too. Differently, 

non-overconstrained lower-mobility manipulators needs specific analyses (see, for instance, [31]) to satisfy 

positioning precision requirements. Thus, techniques that allow the analysis of their positioning precision are 

necessary. 

In the literature, the most commonly adopted criteria to relate errors both in the values of the actuated-joint 

variables and/or in the geometric parameters to the pose error of the end effector are based on the condition 

number of suitable Jacobian matrices [2,4,6–16]. 

Gosselin and Angeles [7] proposed the Global Conditioning Index (GCI) to assess the distribution over the 

whole workspace of the condition number of the Jacobian that maps the actuated-joint rates onto end effector’s 

twists. GCI proved to be a good index for both serial and parallel robots. Then, Merlet [9] reviewed and 

discussed the application of some accuracy criteria to serial and/or parallel manipulators including GCI. 

For parallel manipulators, error detection methods [11,15], classification of errors [8], performance indices 

for joints with clearances [12] as well as strategies to overcome the geometric-error effects have been proposed. 

Also, Di Gregorio and Parenti-Castelli [3] stated some simple conditions on the Jacobian matrices that allow the 

separation of compensatable and uncompensatable errors. Later, Liu et al. [1] proposed an analytic technique 

based on homogeneous transformations and screw theory to obtain the same separation. 

Some of the proposed methods [12–14] are based on classical tools, such as Denavit-Hartenberg convention 

or screw theory among others. Such methods seek for the best of each tool such as the improvement of the 

numerical efficiency. 
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In general, the works presented in the literature either address specific accuracy problems or analyze 

specific architectures. Both these points of view make the proposed methods difficult to extend. 

The work presented here tries to overcome this limitation through a formalization of the positioning-

precision problem that refers to a general architecture, which can be particularized to any serial or non-

overconstrained parallel manipulator. The proposed formalization brings to naturally delineate a technique for 

taking into account geometric error effects. Such technique is well framed into the design procedure, and makes 

it possible to select either which workspace region is less affected by geometric errors or which geometric 

constants must be carefully sized to reduce these effects. The presented technique is also exemplified by 

illustrating its application to a lower-mobility parallel manipulator. 

This paper is organized as follows. Section 2 resumes some background concepts and presents the adopted 

notations. Section 3 illustrates the proposed technique; then, section 4 discusses how geometric errors can be 

included in a general model. Eventually, section 5 illustrates one case study and section 6 draws the conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graph of a manipulator with general architecture: vertices and arcs represent links and joints, 

respectively; Li for i=1,…,n are open kinematic chains (legs) which simultaneously connect the platform to the 

base; whereas, Lt is an added virtual kinematic chain. 
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2. BACKGROUND AND NOTATIONS 

Figure 1 shows the graph [17,18] of a general manipulator architecture. In this graph, the vertices represent the 

links and the arcs represent the joints. The branches Li, for i=1,…,n, are the open kinematic chains (legs) that 

simultaneously connect the end effector (platform) to the base in the manipulator (for serial manipulators n=1); 

whereas, the branch Lt is a virtual kinematic chain (VKC) which is added just to identify the platform pose 

through the values of its joint variables qtj, for j=1,…,6. The joint variables of the i-th leg are denoted qik for 

k=1,…,mi. Ob−xbybzb and Op−xpypzp are two Cartesian reference systems fixed to base and platform, 

respectively. Since all the lower pairs can be transformed into suitable serial kinematic chain containing only 

revolute (R) and/or prismatic (P) pairs [19], all the joints are assumed to be R or P pairs without losing 

generality. 

The general architecture of Fig. 1 has (n–1) actual loops. Such loops contain a number, say r ( i
i=1,n

m ), of 

joint variables that must satisfy the following relationship 

 

 r = f + d (n – 1) (1) 

 

where f is the DOF number of the manipulator, and d is the dimension of the displacement group the 

manipulator moves in (e.g., 3 for planar or spherical manipulators, 6 for spatial manipulators, etc. [20]). 

Hereafter, the set of joint variables will be split into f actuated-joint variables, collected into the f-tuple qf, and 

(r–f) passive-joint variables, collected into the (r–f)-tuple q(r-f). Also, g and the g-tuple qg will denote the number 

of independent geometric constants that enter into the computation of the platform pose and the g-tuple that 

collects all these constants, respectively. Eventually, the 6-tuple qt will collect the six joint variables, qtj for 

j=1,…,6, of the virtual kinematic chain Lt that parameterizes the platform pose 

In order to take into account possible geometric errors, the manipulator must be always considered a spatial 

manipulator since, in general, geometric errors change the displacement group the manipulator moves in1. As a 

consequence, the i-th loop, i=1,…,n, of Fig.1, constituted by the i-th branch Li plus the VKC Lt, must be 

considered one spatial loop when writing the closure equations. In so doing, 6 independent scalar equations for 

each loop come out and the resulting closure equation system consists of 6n scalar equations, which contain all 

                                                           
1 In lower-mobility manipulators (i.e., those with f<6), the effects of the geometric errors that do not change the displacement group the 

platform moves in can generally be eliminated through calibration procedures [3].  
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the joint variables and the pose parameters of the platform. Such system can be written in vector form as 

follows: 

 

 F(qt, qf, q(r-f), qg) = 0 (2) 

 

where 0 is the null vector, and F is the (6n)-tuple that collects all the left-hand sides of the 6n scalar equations. 

Equation (2) yields the following system of constraint equations in differential form 

 

 Jt dqt = Jf dqf + J(r-f) dq(r-f) + Jg dqg  (3) 

 

where Jt, Jf, J(r-f), and Jg are Jacobian matrices with 6n rows and respectively 6, f, (r–f) and g columns 

analytically defined as follows 
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The hypothesis, commonly adopted (1st order approximation), that the joint-variable errors qf and q(r-f), 

the geometric errors qg, and the errors qt, which must be used for computing the pose error of the platform, 

can replace the corresponding differentials into Eq. 3, yields the following relationship  

 

 Jt qt = Jf qf + J(r-f) q(r-f) + Jg qg  (5) 

 

3. EVALUATION OF GEOMETRIC ERROR EFFECTS 

The set of independent geometric constants, which enter into the computation of the platform pose (i.e., the ones 

collected in qg), are either lengths or angles. Such lengths and angles can be considered the values assumed by 

the joint variables of locked P and R pairs, respectively, embedded in the links. By unlocking these P and R 

pairs, the actual manipulator generates an extended spatial mechanism (ESM) where the links of the actual 

manipulator are replaced by suitable kinematic chains and the qg entries are additional passive-joint variables. In 

the ESM, Eq. (3) become the analytic relationship among joint rates when rewritten as follows 
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 Jt tq  = Jf fq  + J(r-f) (r-f)q  + Jg gq   (6) 

 

Consequently, the ESM can be used to geometrically deduce the explicit expressions of all the above-defined 

Jacobian matrices by using screws [19]. 

Let  and v denote respectively the angular velocity of the platform and the velocity of the platform point 

Op (see Fig. 1), the platform twist $ [(T, vT)T] can be written in n different ways. Indeed, by moving from the 

base to the platform through the n legs Li, i=1,…,n, of the ESM obtained from the corresponding legs of the 

actual manipulator (Fig.1), the following system of 6-dimensional vector equations comes out 

 

 
i

i
ik ik p p

k=1,m p=1,g

ˆ ˆq q  $ $ $  , i=1,…,n       (7) 

 

where qp, for p=1,…,g, is the p-th entry of qg, and ik$̂  is the unit screw2 of the joint corresponding to the joint 

variable qik. Differently, i
p$̂ , for p=1,…,g, is equal to the unit screw of the joint corresponding to the joint 

variable qp, if this joint belongs to the leg Li, otherwise, it is a 6-dimensional null vector. The comparison of the 

right-hand sides of systems (6) and (7) straightforwardly yields the explicit expressions of the Jacobian matrices 

Jf, J(r-f), and Jg. 

 

3.1 Relationship between Pose Errors and Geometric Errors 

The subtraction of the first vector equation of system (7) from the remaining (n–1) transforms it as follows: 

 

 
1

1
1k 1k p p

k=1,m p=1,g

ˆ ˆq q  $ $ $   (8a) 

 
i 1

i 1
ik ik 1k 1k p p p

k=1,m k=1,m p=1,g

ˆ ˆ ˆ ˆq q ( )q     0 $ $ $ $   , i=2,…,n         (8b) 

 

                                                           
2 Here, unit screws [19] are always equal to (0T, sT)T or (sT, [(Q–Op)s]T)T respectively for P or R pairs, where s and Q are a unit vector 

parallel to the joint axis and a point of the same axis, respectively. 
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The introduction into Eqs. (8a) and (8b) of null 6-dimensional vectors that multiply the entries of fq  and 

(r-f)q , which do not appear at their right-hand sides, makes it possible to put system (8) in the following matrix 

form 

 

 $ = Af fq  + A(r-f) (r-f)q  + Ag gq  (9a) 

 B(r-f) (r-f)q  = Bf fq  + Bg gq  (9b) 

 

where Af, A(r-f), and Ag are Jacobian matrices with 6 rows and respectively f, (r–f) and g columns; whereas, Bf, 

B(r-f), and Bg are Jacobian matrices with 6(n–1) rows and respectively f, (r–f) and g columns. 

Since linear system (9b) contains 6(n–1) scalar equations and, according to Eq. (1), the passive-joint 

variables (i.e., the entries of q(r-f)) are d(n–1) with d  6, d(n–1) scalar equations of system (9b) can be always 

exploited to write the explicit expression of (r-f)q  as follows 

 

 (r-f)q  = Cf fq  + Cg gq  (10) 

 

where Cf, and Cg are Jacobian matrices with d(n–1) rows and respectively f and g columns. 

The introduction of Eq. (10) into Eq. (9a) yields 

 

  = Df fq  + Dg gq  (11a) 

 v = Ef fq  + Eg gq  (11b) 

 

where Df (Ef), and Dg (Eg) are Jacobian matrices with 3 rows and respectively f and g columns defined as 

follows: 

 

 f

f
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 = Af + A(r-f) Cf ;             

g

g

 
 
 

D

E
 = Ag + A(r-f) Cg  (12) 

 

The above-mentioned 1st order approximation applied to Eqs. (11a) and (11b) yields 
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 u = Df qf + Dg qg (13a) 

 Op = Ef qf + Eg qg (13b) 

 

where Op is the displacement of the platform point Op (see Fig.1) due to the pose error and it measures 

platform’s position error; whereas, u and  are rotation-axis’ unit vector and rotation angle, respectively, of the 

rotation matrix, say nRa, that represents the rotation which makes the nominal platform orientation coincide with 

the actual one (i.e., the one that takes into account the orientation error of the platform). 

It is worth noting that the 1st order approximation of nRa brings to write 

 

 nRa = I + uSk  (14) 

 

where I is the identity matrix and the right superscript “Sk” on a vector denotes the skew symmetric matrix 

associated to that vector. 

 

3.2 Maximum Pose-Error Computation 

Any definition of a vector norm induces the definition of a matrix norm, named operator norm, through the 

following relationship 

 

 max



x 0

Ax
A

x
, (15) 

 

Hereafter, the Euclidean norm for vectors and the induced operator norm (i.e., the spectral norm) for matrices3 

will be used [21]. 

The triangle inequality of vector norms [21] applied to vector Eqs. (13a) and (13b) yields 

 

   Df qf + Dg qg (16a) 

 Op  Ef qf + Eg qg (16b) 

                                                           
3 The spectral norm of a real matrix A is the square root of the largest eigenvalue of the positive-semidefinite matrix AT A. The square 

roots of the eigenvalues of AT A are the “singular values” of A; thus, the spectral norm of A is equal to its largest singular value. 
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Also, the application of the same norm property to each term at the right-hand sides of inequalities (16a) 

and (16b) yields 

 

 Df qf  Df,P qf,P + Df,R qf,R (17a) 

 Dg qg  Dg,P qg,P + Dg,R qg,R (17b) 

 Ef qf  Ef,P qf,P + Ef,R qf,R (17c) 

 Eg qg  Eg,P qg,P + Eg,R qg,R (17d) 

 

where qf,P and qf,R (qg,P and qg,R) collect all the joint variables of P and R pairs, respectively, that appears in qf 

(in qg). Df,P (Dg,P) and Df,R (Dg,R) are Jacobian matrices which collect the columns of Df (Dg) that refer to the 

entries of qf,P and qf,R (of qg,P and qg,R), respectively. Analogously, Ef,P (Eg,P) and Ef,R (Eg,R) are Jacobian matrices 

which collect the columns of Ef (Eg) that refer to the entries of qf,P and qf,R (of qg,P and qg,R), respectively. The 

entries of qf,P and qg,P (qf,R and qg,R) are all lengths (angles); thus, qf,P and qg,P (qf,R and qg,R) are homogeneous 

vectors and their Euclidean norm is dimensionally consistent. 

By taking into account formulas (15) and (17) into inequalities (16a) and (16b), inequalities (16a) and (16b) 

are transformed as follows 

   f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R (18a) 

 Op  f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R (18b) 

 

where f,P , f,R , g,P , g,R , f,P , f,R , g,P , and g,R, hereafter referred to as “accuracy coefficients”, are the largest 

singular values of the Jacobian matrices Df,P , Df,R , Dg,P , Dg,R , Ef,P , Ef,R , Eg,P , and Eg,R, respectively. 

Inequalities (18a) and (18b) highlight that the accuracy coefficients bound the effects on the pose errors 

both of the joint-variable errors and of the geometric errors. Thus, they can be used to quantify the local pose 

accuracy (LPA) of a manipulator. Actually, these coefficients depend on the manipulator configuration and can 

be mapped as a function of qf in the manipulator workspace. Accordingly, the global pose accuracy (GPA) can 

be measured by their average values on the useful workspace. 
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4. DISCUSSION 

Since inequalities (18a) and (18b) hold, the design requirements max and OpOpmax, for assigned 

maximum values max and Opmax, are matched in the workspace regions where the following inequalities 

are satisfied 

 

 f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R  max (19a) 

 f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R  Opmax (19b) 

 

In order to satisfy conditions (19a) and (19b), designers can implement one or more of the following actions 

a) Dimensional synthesis: the values of the accuracy coefficients can be reduced by suitably changing the 

sizes of the links, 

b) Control design: the values of qf,P and/or qf,R can be reduced by improving actuators’ hardware 

and/or the algorithms adopted to control the actuated-joint variables, 

c) Manufacturing precision: the values of qg,P and/or qg,R can be reduced by reducing the 

dimensional tolerances on the link sizes. 

The actions (b) and (c) can be further detailed until to determine the actuation or geometric tolerance of 

each entry of qf or qg. Indeed, the terms at the right-hand sides of inequalities (17a)–(17d) can be further 

partitioned until to contain only one qf or qg entry and the corresponding Jacobian matrix column. In so doing, 

the proposed method brings to conclude that the accuracy coefficient of a given entry of qf or qg is the square 

root of the dot product of the corresponding Jacobian-matrix column by itself (i.e., the magnitude of this column 

vector). 

The actual use of the above-deduced formulas needs the identification of the set of independent geometric 

constants that enter into the platform-pose computation (i.e., the entries of qg). This apparently difficult task can 

be accomplished in many ways, for instance, by analyzing with a case-by-case approach the geometric constants 

that appear in the closure equation system. If a program that holds for any manipulator has to be developed, then 

the use of a standard convention [e.g., Denavit-Hartenberg (D-H) convention] that parameterizes both links’ and 

joints’ geometry becomes mandatory. In this case, the use of the D-H convention brings to introduce three 

geometric constants for each binary link. 

In the literature (see, for instance, Refs. [6,7,9]), the effects of joint-variable errors are related to the 

“distance” of the manipulator configuration from the singular configurations [22–24]. Such “distance” is 
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evaluated with the “Conditioning Index” (CI). In serial (parallel) manipulators, the CI is defined as the inverse 

of the condition number of the Jacobian matrix whose product by the vector of the actuated-joint rates (the 

platform twist) yields the platform twist (the vector of the actuated-joint rates). It ranges from 0, at singular 

configurations, to 1, at isotropic configurations, which are the best configurations. If the spectral norm is 

adopted, the so-defined CI is equal to the ratio between the smallest and the largest singular values of the 

involved Jacobian matrix. If the involved Jacobian is interpreted as coefficient matrix of a linear input-output 

relationship, bounding its condition number corresponds to bounding the ratio (i.e., the gain) between the 

relative errors in the outputs and in the inputs [6,9]. 

The approaches based on the CI have a number of drawbacks (homogeneity of the involved inputs and 

outputs, meaningfulness of relative error for angular variables and poses, etc.) which can be somehow 

overcome, but they are not able to provide the tolerances on the actuation system in a straight way as the 

formulation proposed here does. Also, the formulation proposed here keeps the manipulator far from the 

singularities of the “Forward Instantaneous Kinematic Problem (FIKP)” [24] by bounding the largest singular 

values [see inequalities (19a) and (19b)], even though it does not provide a “distance” from such singularities. 

Nevertheless, it does not bound the “distance” from the singularities of the “Inverse Instantaneous Kinematic 

Problem (IIKP)” [24]. Such singularities are the configurations where the smallest singular values are equal to 

zero and are located at the workspace boundaries. Thus, bounding the minimum values of the smallest singular 

values is sufficient to keep the manipulator far from its workspace boundaries. Anyway, the minimum values to 

use depend on statics considerations4 and their determination is out of the scope of this paper. 

5. CASE STUDY 

Figure 2(a) shows a translational parallel manipulator (TPM) of type PRRR-PRRU-PRRS5, named Triflex-II 

[25]. Triflex-II is a patented 3-DOF non-overconstrained TPM, which came out as an evolution of Triflex-I 

[26,27] and Tripteron [28,29]. It features three legs connected to the base through three actuated prismatic pairs 

whose sliding directions are mutually orthogonal. In each leg, the sliding direction of the actuated P-pair and the 

axes of the R-pairs are all parallel. Also, in the U-joint, the R-pair axis fixed to the platform passes through the 

S-pair center, point A2 of Fig. 2(b), and the other R-pair axis is parallel to the sliding direction of the P-pair of 

the PRRU leg. 

                                                           
4 It is worth reminding that, at the workspace boundaries, the platform pose does not change (along the directions perpendicular to the 

workspace boundaries) for an infinitesimal change of the actuated-joint variables [22,24], that is, in the 1st order approximation, the platform 
pose is insensible to actuated-joint variables’ errors. 
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The length, ap, of segment A3Op (see Fig. 2) is the minimum distance between the line passing through the 

U-joint center, point A1 of Fig. 2(b), and the S-pair center, point A2, and the axis of the R-pair that joins the 

platform to the PRRR leg. The reference system Op−xpypzp, fixed to the platform, has the yp-axis coincident with 

the line passing through points A1 and A2 and the xp-axis passing through point A3 [Fig. 2(b)]. Hereafter, ip, jp, 

and kp denote the unit vectors of the coordinate axes xp, yp, and zp, respectively. 

The axes of the two cylindrical pairs (C-pairs) constituted by the PR chains that joins the PRRR and the 

PRRS legs intersect each other at Ob. [see Fig. 2(a)]. The reference system Ob−xbybzb, fixed to the base, has the 

zb-axis (yb-axis) coincident with the axis of the C-pair that joins the PRRR leg (PRRS leg) to the base. Hereafter, 

ib, jb, and kb denote the unit vectors of the coordinate axes xb, yb, and zb, respectively. 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

(b) 

Figure 2: Triflex-II: (a) kinematic scheme, and (b) platform’s reference points. 

                                                                                                                                                                                     
5 U and S stand for universal joint and spherical pair, respectively. The underscore indicates an actuated joint. The hyphen separates the 

strings that give legs’ topology by moving from the base to the platform (Fig.1). 
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Also, with reference to the points indicated in Fig. 2, the following segment lengths are defined. In the base, 

ab is the constant length of segment ObB1; d1, d5, and d10 are the variable lengths of the segments ObO1, B1O5, 

and ObO10, respectively. In the platform, dp and ds are the constant lengths of the segments OpA1 and OpA2, 

respectively. In the PRRR leg, a2 and a3 are the constant lengths of the segments O1O2 and O2A3, respectively. In 

the PRRU leg, a6 and a7 are the constant lengths of the segments O5O6 and O6A1, respectively. In the PRRS leg, 

a11 and a12 are the constant lengths of the segments O10O11 and O11A2, respectively. The three actuated-joint 

variables are d1, d5, and d10, that is, qf = (d1, d5, d10)T. 

Eventually, in Fig. 2, the twelve angles 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, and 15 are the passive-joint 

variables, that is, qr-f = (2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)T. These angles are defined according to the 

D-H convention. 

 

5.1 Determination of the Independent Geometric Constants 

Triflex-II is a spatial manipulator, which makes the platform translate with respect to the base. Its kinematic 

behavior is easy to understand when realizing that the PRRR leg constrains the platform to make a Shoenflies 

motion, which, here, is a planar motion whose motion plane is parallel to the xbyb plane and can perform 

controlled translations along the zb-axis. Then, the PRRU leg forbids the remaining platform rotation around the 

zb–axis with its U-joint and controls the platform translation along the xb-axis with its actuated P-pair; whereas, 

the PRRS leg uniquely controls the platform translation along yb-axis with its actuated P-pair.  

The effects of all the geometric errors that do not violate the translational nature of this TPM can be 

eliminated through calibration procedures [3]. Since calibration procedures are much cheaper than the 

manufacture of components with smaller dimensional tolerances, the geometric constants whose errors do not 

affect the translational constraint between platform and base are assumed without relevant geometric errors. 

Also, the links are all assumed rigid. 

In the Triflex-II, the base geometry just fixes the angles among the three P-pair sliding directions. Since it is 

quite clear that the translational constraint between platform and base keeps valid, even though these three 

directions are not mutually orthogonal (provided they are not coplanar), the base geometry will be assumed 

without geometric errors. 

The platform geometry fixes the minimum distance, ap [Fig. 2(b)], between two R-pair axes (one of the 

PRRR leg and the other of the PRRU leg) and the mutual positions among these axes and the centers of the U-

joint and of the S-pair. Since any variation in these geometric data just yields a constant change in the location of 
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the Op−xpypzp reference frame, which does not affect the translational constraint between platform and base, the 

platform geometry will be assumed without geometric errors. 

Regarding the PRRS leg, a simple static analysis, which is immediately clear by using the screw theory, 

reveals that the wrench, this leg applies to the platform, is one force whose line of action passes through A2 and 

is parallel to the sliding direction, jb, of the P-pair. Moreover, the same analysis highlights that this result does 

not depend on the parallelism of the R-pair axes and on the values of the lengths a11 and a12. Since geometric 

errors in this leg do not affect its kinetostatic role and the translational constraint between platform and base, the 

PRRS leg will be assumed without geometric errors. The adopted notation (Fig. 2) makes it possible to write Eq. 

(7) of this leg as follows 
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Regarding the PRRU leg, an analogous static analysis reveals that the wrench, this leg applies to the 

platform, is constituted by one force, whose line of action passes through A1 and is parallel to the sliding 

direction, ib, of the P-pair, and one torque, perpendicular to the two R-pair axes of the U-joint. The same analysis 

highlights that this result does not depend on the parallelism of the R-pair axes and on the values of the lengths 

a6 and a7. Even though PRRU leg’s geometric errors do not affect its static role, a mobility analysis reveals that 

the translational constraint between platform and base needs the parallelism of the axes of the three intermediate 

R pairs, and the perpendicularity of the axes of the two R pairs that form the U joint. Therefore, it will be 

assumed that geometric errors are present only in the parallelism of the axes of the three intermediate R pairs, 

and in the perpendicularity of the axes of the two R pairs that form the U joint. In so doing, this leg geometry is 

modified as shown in Fig. 3(a) where d6, d7, 6, 7, and 8 are the geometric errors. 
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With reference to Fig. 3(a), i6 and i7 are the unit vectors of the second and third R-pair axes, respectively, 

and the following relationships hold 

 

 i6 = ib cos6 + (u6ib) sin6 (21a) 

 i7 = i6 cos7 + (u7i6) sin7 (21b) 

 d6 = (O6– O6’)  i6  (21c) 

 d7 = (A1– O7)  i7  (21d) 

 

where u6= (O6’ – O5)/a6 and u7= (O7 – O6)/a7. In addition, Eq. (7) of this leg can be written as follows 

 

 5 5 j j P,k k R,k k R,8 8
j=6,9 k=6,7

ˆ ˆ ˆ ˆ ˆd θ ( d α ) α     $ $ $ $ $ $     (22) 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 3: Introduction of the geometric errors: (a) PRRU and (b) PRRR legs with geometric errors. 
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Regarding the PRRR leg, a possible error in the parallelism between P-pair’s sliding direction and the axis 

of the first R-pair or in the values of the lengths a2 and a3 does not change the type of motion it imposes to the 

platform (i.e., it still is a Shoenflies motion). On the contrary, a possible error in the parallelism among the three 

R-pair axes do change that motion and violate the translational constraint between platform and base. Therefore, 

it will be assumed that geometric errors are present only in the parallelism among the three R-pair axes. In so 

doing, this leg geometry is modified as shown in Fig. 3(b) where d2, d3, 2 and 3 are the geometric errors.  

With reference to Fig. 3(b), k2 and k3 are the unit vectors of the second and the third R-pair axes, 

respectively, and the following relationship hold 

 

 k2 = kb cos2 + (i2kb) sin2 (23a) 

 k3 = k2 cos3 + (i3k2) sin3 (23b) 

 d2 = (O2– O2’)  k2  (23c) 

 d3 = (A3– O3)  k3  (23d) 

 

where i2= (O2’ – O1)/a2 and i3= (O3 – O2)/a3. Also, Equation (7) of the PRRR leg can be written as follows 
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The conclusion is that, in the Triflex-II, qg=(d2, d3, d6, d7, 2, 3, 6, 7, 8)T with qg,P=(d2, d3, d6, d7)T and 

qg,R=(2, 3, 6, 7, 8)T. 

 

5.2 ESM and Jacobian Matrices 

The analysis reported in sub-section 5.1 shows that the ESM of the Triflex-II is obtained from the nominal 

geometry of Fig. 2(a) by modifying the geometry of the PRRU and PRRR legs as shown in Fig.3 and by 

considering d2, d3, d6, d7, 2, 3 6, 7 and 8 as additional joint variables. Thus, the ESM is a PRRPRRPR-

PRRPRRPRRR-PRRS mechanism. Equations (20), (22) and (24) constitute system (7) of this ESM. If Eq. (24) 

is used as Eq. (8a) and it is subtracted from the remaining two equations, such system can be transformed as 

follows 

 

1 1 j j P,k k R,k k
j=2,4 k=2,3

ˆ ˆ ˆ ˆd θ ( d α )    $ $ $ $ $    (25a) 

1 1 10 10 j j 1i 1i P,k k R,k k
j=2,4 i=1,5 k=2,3

ˆ ˆ ˆ ˆ ˆ ˆd d θ θ ( d α )        0 $ $ $ $ $ $      (25b) 

1 1 5 5 j j i i P,k k R,k k P,k k R,k k R,8 8
j=2,4 i=6,9 k=2,3 k=6,7

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd d θ θ ( d α ) ( d α ) α            0 $ $ $ $ $ $ $ $ $         (25c) 

 

System (25) can be put in the canonical form of system (9), that is, 

 

 $ = Af fq  + A(r-f) (r-f)q  + Ag gq  (9a) 

 B(r-f) (r-f)q  = Bf fq  + Bg gq , (9b) 

 

with the following definitions  

 

Af = 1
ˆ , , 
 $ 0 0 ;  Ar-f = 2 3 4

ˆ ˆ ˆ, , , , , , , , , , , 
 $ $ $ 0 0 0 0 0 0 0 0 0 ;  Ag = P,2 P,3 R,2 R,3

ˆ ˆ ˆ ˆ, , , , , , , , 
 $ $ 0 0 $ $ 0 0 0 ; 
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Br-f =
2 3 4 11 12 13 14 15

2 3 4 6 7 8 9

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

     
 

     

$ $ $ 0 0 0 0 $ $ $ $ $

$ $ $ $ $ $ $ 0 0 0 0 0
; 

qf = (d1, d5, d10)T;   qg = (d2, d3, d6, d7, 2, 3, 6, 7, 8)T; 

qr-f = (2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)T. 

 

Also, in this case, the matrices Cf and Cg of system (10) are 

 

Cf = Br-f
 –1 Bf ,      Cg = Br-f

 –1 Bg. 

 

5.3 Determination of the Accuracy Coefficients 

In the nominal geometry [i.e., with reference to Figs. 3(a) and 3(b), when k2=k3=kb, O2’O2, O3A3, i6=i7=ib, 

O6’O6 and O7A1], Df is the 33 null matrix and Ef is the 33 identity matrix (Triflex-II is a fully-isotropic 

TPM [25]). Also, Dg,P is the 34 null matrix and Eg,P is a 34 constant matrix equal to [kb, kb, ib ,ib]; whereas, 

Dg,R and Eg,R are 35 configuration-dependent matrices respectively equal to [i2, i3, v6, v7, kb] and to [s2, s3, s6, 

s7, s8] with v6 = (u6  kb) kb, v7 = (u7  kb) kb, s2=(O1–Op)i2, s3=(O2–Op)i3, s6=(O5–Op)u6, s7=(O6–Op)u7 and 

s8=(A1–Op)kb. The result is that f,P , f,R , g,P , and f,R are all equal to zero, f,P and g,P are equal to 1 and 2 , 

respectively, and inequalities (18a) and (18b) become 

 

   g,R qg,R (26a) 

 Op  qf,P  + 2 qg,P + g,R qg,R (26b) 

 

where qf,P coincides with qf, qg,P=(d2, d3, d6, d7)T, qg,R=(2, 3, 6, 7, 8)T, and 

 

 g,R= max 2 2

2 3 6 8 7 81+ , 1+ +  i i u u u u  (27a) 

 g,R= max 2 2 2 2 2

2 3 6 7 8,  s s s s s  (27b) 
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The analysis of Fig. 2(a) and of Eq.(27)6 reveals that the maximum value of g,R (i.e., g,R= 3 ) occurs 

when, in the PRRU leg, O5, O6 and A1 are aligned and orthogonal to the segment A1Op; whereas, its minimum 

value (i.e., g,R=1) occurs when the two segment O1O2 and O2A3 are  orthogonal  in  the  PRRR  leg and Op, O5, 

O6, and A1 are aligned in the PRRU leg. Also, the minimum value of g,R (i.e., g,R=dp) occurs when Op, O1, O2, 

and A3 are aligned in the PRRR leg and Op, O5, O6, and A1 are aligned in the PRRU leg. 

The values of g,R and g,R can be computed for each point of the workspace volume by using Eq. (27). 

Since Triflex-II is a TPM, the coordinates, (x, y, z)T, of point Op, measured in the reference system Ob−xbybzb, 

fixed to the base, uniquely identify the poses the platform can actually assume. Due to the three C-pairs that join 

the legs to the base, such Op coordinates are bounded to stay inside the volume that is the common intersection 

among three right circular cylinders. The first one (due to the PRRR leg) has the axis parallel to the zb axis and 

passing through the point (ap,0,0)T, and has the radius of the cross section equal to (a2+a3). The second one (due 

to the PRRS leg) has the axis coincident with the yb axis and the radius of the cross section equal to (a11+a12). 

The third one (due to the PRRU leg) has the axis parallel to the xb axis and passing through the point (0,dp–

ab,0)T, and  has  the  radius  of  the  cross section equal to (a6+a7). Since the poses, the platform can assume, are  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Workspace boundaries: (a) intersection with the xbyb-plane, (b) intersection with the ybzb-plane, (c) 

intersection with the xbzb-plane, and (d) 3D view (the grayscale indicates the zb value in [l.u.]). 

                                                           
6 From a geometric point of view, s2, s3, s6, and s7 are equal to the distances of Op from the lines respectively passing through O1 and 

O2, O2 and A3, O5 and O6, and O6 and A1; whereas, s8 is equal to the distance of Op from the line parallel to kb  and passing through A1. 
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(c) 

Figure 5: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value). 
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(c) 

Figure 6: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value in [l.u./rad]). 
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symmetrically located with respect to the xbyb coordinate plane [i.e., the plane z=0, see Fig.2(a)], the same 

symmetry holds for the workspace volume and, provided that only leg configurations symmetric with respect to 

the plane z=0 are considered, for the values of g,R and g,R inside that volume, too. Leg configuration’s 

symmetry is preserved, in the PRRR leg, by keeping either 3[0, ] or 3[, 2] and, in the PRRU leg, by 

keeping either 7[0, ] or 7[, 2] for any value of the z coordinate of Op. 

Figure 4 shows the workspace boundaries for a Triflex-II with the following geometric data (l.u. stands for 

length unit): ab=(20/47) l.u., ap=(30/47) l.u., dp=(45/94) l.u., ds=(40/47) l.u., a2=a3=(40/47) l.u., a6=a7=(36/47) 

l.u., a11=a12=1 l.u.. Also, Figs. 5 and 6 show the values of g,R and g,R, respectively, computed by using the same 

geometric data and by keeping 3[0, ] and 7[0, ], when Op lies on the boundary surface of the workspace 

and on the planes z=0 and z=0.75 l.u. . Eventually, the values of g,R and g,R have been computed with the 

same data inside the whole workspace and the following delimitations come out 

 

 1  g,R  3  (28a) 

           0.479  g,R  1.489 (l.u./rad) (28b) 

 

The introduction of the maximum computed values of g,R and g,R into inequalities (26a) and (26b) yields: 

 

   3 qg,R (29a) 

 Op   qf,P  + 2  qg,P + 1.489 qg,R (29b) 

 

Thus, by choosing max =0.026180 rad (=1.5o)7, inequality (19a) gives the following upper bound  

 

 qg,R 0.015115 rad (30) 

 

Since qg,R is equal to 2 2 2 2 2
2 3 6 7 8α α α α α    , if the choice of assigning the same tolerance class, T, to all 

the angular errors 2, 3, 6, 7, and 8 is adopted, inequality (30) will give the following limitation on T 

 

                                                           
7 This value of max has been taken from the data sheets of the commercial delta robot ABB IRB-360 

(http://new.abb.com/products/robotics/industrial-robots/irb-360). 
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 T = 
g,RΔ

5

q
  0.00675965 rad = 0° 23’ (31) 

 

Also, if qg,P is assumed equal to 0.01(l.u.) and the joint-variable errors d1, d5, and d10 are all assumed 

equal to 0.0001(l.u.)8, qf,P (= 2 2 2
1 5 10( d ) ( d ) ( d )     ) will be equal to 0.0001732(l.u.) and inequality 

(29b) will give the following upper bound 

 

 Op  0,037 (l.u.) 

 

6. CONCLUSIONS 

A general discussion on how to take into account geometric error effects has been presented. The presented 

discussion has brought to delineate a general method for modelling such errors and for evaluating their effects 

on the positioning precision in any non-overconstrained manipulator. 

The presented method relies on the spectral norms of suitable Jacobians of an extended spatial mechanism 

(ESM) easy to deduce from the actual manipulator. Such approach overcomes the problem of the variable 

homogenization that arises in the methods based on the “Conditioning Index”. 

Also, the introduction of the concept of “Accuracy Coefficient” makes it possible to analyze the effects both 

of geometric-error sets and of a single geometric error. The same concept is an effective design tool for selecting 

either which workspace region is less affected by geometric errors or which geometric constants must be 

carefully sized to reduce these effects. 

The geometric errors effects in the translational parallel manipulator Triflex-II have been studied by using 

the proposed method. 
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FIGURE CAPTIONS 

 

Figure 1: Graph of a manipulator with general architecture: vertices and arcs represent links and joints, 

respectively; Li for i=1,…,n are open kinematic chains (legs) which simultaneously connect the platform to the 

base; whereas, Lt is an added virtual kinematic chain. 

 

Figure 2: Triflex-II: (a) kinematic scheme, and (b) platform’s reference points. 

 

Figure 3: Introduction of the geometric errors: (a) PRRU and (b) PRRR legs with geometric errors. 

 

Figure 4: Workspace boundaries: (a) intersection with the xbyb-plane, (b) intersection with the ybzb-plane, (c) 

intersection with the xbzb-plane, and (d) 3D view (the grayscale indicates the zb value in [l.u.]). 

 

Figure 5: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value). 

 

Figure 6: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value in [l.u./rad]). 

 



(*) Corresponding Author: Raffaele Di Gregorio Paper #: JMR-16-1049 28 
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respectively; Li for i=1,…,n are open kinematic chains (legs) which simultaneously connect the platform to the 
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Figure 2: Triflex-II: (a) kinematic scheme, and (b) platform’s reference points. 
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Figure 3: Introduction of the geometric errors: (a) PRRU and (b) PRRR legs with geometric errors. 
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Figure 4: Workspace boundaries: (a) intersection with the xbyb-plane, (b) intersection with the ybzb-plane, (c) 

intersection with the xbzb-plane, and (d) 3D view (the grayscale indicates the zb value in [l.u.]). 
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Figure 5: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value).
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Figure 6: Values of g,R when Op lies (a) on the boundary surface of the workspace, (b) on the plane z=0, and (c) 

on the planes z= 0.75 l.u. for 3[0, ] and 7[0, ] (the curves are the contour lines; the grayscales indicate 

the g,R value in [l.u./rad]). 


