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Abstract

This paper analyzes the kinematics of the vane-cam ring mechanism in balanced vane
pumps, by considering both vanes with centered and not-centered circular tip. The
motion of the vane, the position of the contact point and the evolution of the pressure
angle are analytically determined in reference to a generic cam ring profile. The results of
the kinematic analysis are used to obtain the constraints defining the admissibility of the
vane geometry, which is described in terms of tip radius, vane thickness and tip center
eccentricity. A parametric study is performed to show the capabilities of the proposed
formulation and the influence of the vane design parameters on its kinematics. The
analysis demonstrates that the vane kinematic motion in balanced vane pumps is mainly
controlled by the tip radius and the tip center eccentricity, as long as the cam ring profile
is defined. The tip radius is mainly responsible for the shape of the vane motion, while
the tip center eccentricity has a major influence on its timing. Furthermore the effect of
the cam ring profile is evaluated by demonstrating that shape and extension of the rise
and fall phases influence on the vane geometry admissibility.
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1. Introduction

Balanced vane pumps are widely adopted positive displacement machines, especially
in the automotive field, where they are appreciated for their compactness, quietness and
reliability. However, these results are usually achieved through complex and expensive
design processes involving large experimental campaigns and multi-disciplinary compe-5

tences [1, 2], since many design parameters must concurrently satisfy requirements refer-
ring to wear resistance, fluid-dynamic performance and Noise, Vibration and Harshness
(NVH) behavior.

In this scenario, the majority of the studies presented in the specialized literature
are focused on investigating various fluid-dynamic aspects by means of zero-dimensional10
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Nomenclature

β pressure angle

βmax maximum allowable pressure an-
gle

βmin minimum allowable pressure an-
gle

γ angular position of the contact
point

γD initial angular instant of the
lower dwell phase

γF initial angular instant of the fall
phase

γP initial angular instant of the up-
per dwell phase

γR initial angular instant of the rise
phase

·̂ hat symbol representing a specific
(non-dimensional) quantity

ê ratio between maximum and
minimum cam ring radius.

ψ angle of the tangent to the con-
tact point

θ angular position of the vane

ξ precompression ratio.

C center of the tip circle

d vane tip eccentricity

h vane displacement between rotor
and tip center

hv vane thickness

P contact point between cam ring
profile and vane tip

rr rotor radius

rs cam ring radius

rv vane tip radius

rmaxv maximum allowable vane tip ra-
dius

rminv minimum allowable vane tip ra-
dius

V pump displacement per
facewidth unit

models [3, 4] and dedicated experimental campaigns [5]. In particular, Seet G. G. et
al. in [6] introduced a computer model to evaluate the effect of silencing grooves on the
delivery flow ripple and a similar approach was implemented by Watton J.J. et al. in [7]
to evaluate the correct groove timing. Both studies are supported by measured data on
efficiency and pressure ripple, in order to support the quality of the estimations. Similar15

studies have been proposed also by Nakamura K. et al. in [8] and by Jones B. et al in
[9], with the purpose to enlighten the parameters producing the deepest impact on the
model results. The approach at the basis of these studies coincides with the one adopted
for the modeling of other positive displacement machines such as gear pumps [10, 11, 12],
gerotor pumps [13] and axial piston pumps [14].20

The modeling strategy described in these works has been also adopted to analyze other
pump characteristics that can be put in correlation with its fluid-dynamic performance.
Within this context, Hattori K. et al. in [15] adopted a zero-dimensional model to
evaluate the delivery pressure ripple as the main source of emitted noise. A comparable
approach has been also adopted by Cho M. R. et al. in [16], but in this context the25

predicted pressure distribution is used to estimate the loads applied to the vanes and
consequently detect vane detachment phenomena. In both studies, the cam ring profile
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is clearly described as one of the key design parameters for its direct influence on the
vane motion and the pumping behavior of the machine. Similar considerations may be
also derived from the work in [17] by Inaguma Y. and Nakamura K., in which the zero-30

dimensional fluid-dynamic approach is applied to a pump under test. In this context, the
main focus is devoted on the assessment of the effects produced by leakage flow variations
on the outlet pressure ripple.

As it may be observed from this brief literature review, the vane-cam ring mechanism,
i.e. the coupling between the sliding vanes and the external ring of the pump, assumes a35

fundamental role in defining the pump behavior and its performance. The key character
played by the vane-cam ring interaction was firstly investigated by Gellrich R. et al.
in [18] with a mathematical model of the lubricated contacts that was tailored on the
vane pump tribological system. The analysis was supported by a consistent experimental
study reported in [19]. Later, the central role of the vane-cam ring mechanism in the wear40

phenomenon has been further underlined by Mucchi E. et al. in [20], where an extended
experimental study has been conducted to evaluate the vane-cam ring interaction from
a tribological point of view. The lubrication regime has been identified by means of
pressure distribution measurements, as well as cam ring and vane surface measurements,
with the final purpose of its evaluations in reference to different temperature values and45

pump materials. The influence of the vane-cam ring mechanism on the delivery pressure
ripple has been also investigated with a theoretical approach. Giuffrida A. et Lanzafame
R. in [21] described the cam ring profile as the main responsible for the definition of the
kinematic pressure ripple generated by the vane pockets. In addition, the vane motion,
which is also showed to be governed by this fundamental design parameter, resulted the50

main responsible for the characterization of the under vane kinematic pressure ripple.
Giuffrida and Lanzafame proposed a complete procedure for estimating the theoretical
pressure ripple starting from the definition of the cam ring geometry and the relaxed
hypothesis of squared tip vanes.

Since the importance of controlling the vane motion and the vane-cam ring interaction55

is widely recognized in the specialized literature, it is the present authors’ belief that a
formalization of the kinematics of such a mechanism would deepen the understanding of
its behavior and facilitate the development of further investigations on these machines.
The kinematic analysis is the definition of the rigid body motion of the mechanism in
absence of dynamic effects, hence, it defines the displacing action of positive displacement60

pumps. Based on these considerations, the purpose of the present work is to provide a
general formalization of the kinematics of the vane-cam ring mechanism in case of circu-
lar tip vanes, by developing the methodology on a realistic schematic of the pump. The
analysis is carried out for both centered and not-centered tip vanes, with the intent to
involve the main influencing parameters. The definition of the vane motion, the position65

of the contact point, as well as the analytic determination of the kinematic pressure an-
gle, are included within the outcome of the analysis. As a major result, the kinematic
properties of the mechanism are linked to the geometrical constraints defining the vane
shape to obtain the admissibility domain for the vane geometry, i.e. the set of values
ensuring that the vane-cam ring mechanism is inherently compliant. This last step of the70

analysis provides design boundary conditions for the geometrical definition of the vanes.
In addition, the proposed method may find its application in tools for performance pre-
diction since it allows to i) estimate displacement, velocity, acceleration and jerk of the
vanes, which are directly related to the pump dynamic behavior, ii) calculate the pres-
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sure angle determining the components of the variable contact force applied to the vane75

and the cam ring, iii) calculate the vane radial velocity, which coincides with the volume
derivative of the under-vane pockets, giving a relevant contribution to the definition of
the delivery flow rate and pressure ripples. The results of the overall kinematic analysis
are numerically evaluated by means of a parametric study applied to dimensionless link-
ages, in order to provide general results referring to the interactions between the vane80

kinematics and the main design parameters.
The following Section describes the kinematics of the vane-cam ring mechanics, start-

ing with the definition of vane motion through the closure equation, which is then adopted
to obtain the analytic formulation of the pressure angle and the admissibility interval for
the vane tip radius. Section 3 presents the results of the parametric study carried out85

to clarify the influence of the cam ring profile on the vane motion, explaining also how
the proposed formulae can be used as design guidelines for the vane geometry definition.
Finally, Section 4 is devoted to concluding remarks.

2. Kinematic analysis of the vane-cam ring mechanism

The present Section is focused on the kinematic analysis of the vane-cam ring mech-90

anism, with the purpose to define the vane motion in reference to the position of the
contact point, the pressure angle and the admissibility of the vane geometry. The analy-
sis is carried out for both not-centered and centered circular tip vanes, where the latter is
considered as a special case of the first one. Figure 1.a represents a cross-sectional view
of a balanced vane pump: the machine is constituted by an internal rotor that forces the95

vanes to rotate from the inlet side to the delivery one. The internal profile of the cam
ring, which is the main responsible for the pumping action of the machine, governs the
radial motion of each vane. Starting from γ = 0, the radius of the cam ring increases
progressively, after a brief dwell interval, until it reaches a maximum value: during this
phase the volume of the pocket bounded by two consecutive vanes expands and fills itself100

with oil from the inlet port. Such a pocket is then displaced to the delivery port through
the precompression zone and finally released to the outlet port. In order to provide a
perfect balancing of the rotor, this layout is repeated twice per revolution. It is therefore
clear that the cam ring profile requires a careful design, since its shape defines both the
radial movement of the vanes and the pumping action of the entire machine. In this105

context, the cam ring profile can be represented by a Rise-Fall-Dwell (R-F-D) law (see
Figure 1.b), which is mainly defined on the basis of fluid-dynamic considerations and the
required pump displacement.

2.1. Vane kinematic motion

The generic vane-cam ring mechanism, in case of not-centered circular tip vanes, can110

be represented by the equivalent mechanical linkage system described in Fig. 2, where
link #1 represents the pump rotor, link #2 is the vane and link #3 constitutes the cam
ring. The case of centered circular tip vanes can be described by the same linkage by
assuming segment CQ equal to zero. The basic application of the Grübler’s criterion can
demonstrate that the proposed mechanism has a single degree of freedom. The closure115

equation describing the position of contact point P with respect to the angular position
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Figure 1: Generic representation of a balanced vane pump (a) and cam ring profile on a cartesian plane
(b). Parameters rmax

s and rmin
s are the cam ring maximum and minimum radii, respectively.

of the vane θ, therefore becomes:

(rr + h (θ)) eiθ + dei(θ+
π
2 ) + rve

i(θ+β) = rs (γ) eiγ (1)

where rr is the radius of the internal rotor, h is the displacement of point Q with respect
to the rotor and rv represents its radius. Term d, namely the vane tip eccentricity,
defines the position of the center of the circle describing the vane tip with respect to the120

longitudinal axis of the vane, which coincides with segment OQ in Fig. 2. It is worth
clarifying that term d must be kept together with its sign, which is assumed as positive
when it produces a counterclockwise rotation of segment OC with respect to OQ. Radius
rs and angle γ describe the position of the contact point P in terms of polar coordinates
of the cam ring (see also Fig. 1.b), while angle β is the pressure angle between the vane125

tip and the cam ring. It is worth noticing that usually the geometrical features of the
pump, such as vane and rotor dimensions as well as the cam ring profile, are defined a
priori and therefore Eq. 1 can be adopted to determine the actual vane displacement
h (θ). As it emerges from the pump description in the first paragraph, the vane-cam ring
linkage may be considered as a cam-follower mechanism where the cam is fixed and the130

follower rotates around it. The antithetical relationship between these two mechanisms
is made clear also by the design philosophy typically followed for their definition: in the
cam-follower mechanism, the R-F-D law is assigned to the follower and the designer must
determine the profile of the cam that guarantees the required follower motion. On the
contrary, in the vane-cam ring mechanism the cam ring profile is assigned in order to135

perform a predefined pumping action and the vane displacement becomes a dependent
variable.

On the basis of these considerations, Eq. 1 is constituted by two unknowns, which
are vane displacement vector h̄ defined by polar coordinates (h, θ) and pressure angle β.
By referring to Fig. 3, the pressure angle may be linked to the vane angular position by140

using the scalar relationship:
θ + β = γ − ψ (2)
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Figure 2: Equivalent mechanical linkage representing the vane-cam ring mechanism (a) and schematic
representation of the closure equation (b). As reported, angle β is taken positive when counterclockwise.

where the positive sign for each angle is defined by a counterclockwise rotation. In addi-
tion, it is worth noticing that angle ψ is the angle between the tangent to the cam ring
profile at the contact point and the perpendicular line with respect to radius rs (γ). As
a matter of fact, such a term can be calculated by computing the derivative of the cam145

ring radius with respect to angle γ:

ψ = tan−1

[
1

rmins

δrs
δγ

∣∣∣∣
P

]
(3)

therefore, given the cam ring geometry, angle ψ is known. The nonlinear equation system
given by Eqs. 1 and 2 can be effectively used to determine the kinematic displacement of
the vane in polar coordinates (h, θ) and pressure angle β, once the remaining geometrical
parameters are fully defined:150 {

(rr + h (θ)) eiθ + dei(θ+
π
2 ) + rve

i(θ+β) = rs (γ) eiγ

θ + β = γ − ψ
(4)

It is worth underlining that, by assuming d = 0, the obtained equation system can be
adopted to analyze the case of vanes with centered circular tip. Under this hypothesis,
Eq. 4 reduces to: {

(rr + h (θ)) eiθ + rve
i(θ+β) = rs (γ) eiγ

θ + β = γ − ψ (5)

2.2. Pressure angle

Despite Eq. 4 provides a complete description of the kinematics of the linkage, it155

is worth deepening the analysis in order to enlighten the mutual relationship between
pressure angle β and the geometrical characteristics of the system. As a matter of fact,
the pressure angle represents a key reference indicator since it controls the component
of the contact force that is normal to the vane axis and it defines the position of the
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Figure 3: Focus on the relationship between pressure angle β and vane angula position θ.

contact point on the vane tip profile. Based on these aspects, a reliable design of the160

pump requires to keep β as small as possible. In particular, β must stand within the
interval [βmin, βmin], which is defined by the angular sector constituting the tip of the
vane (see Fig. 4). With this purpose, by using Eq. 2 in order to define γ with respect to
θ, Eq. 1 may be rewritten as:

(rr + h (θ)) eiθ + dei(θ+
π
2 ) + rve

i(θ+β) = rs (γ) ei(θ+β+ψ) (6)

Since Eq. 6 must be valid for each angular position of the vane, it may be reduced to:165

rr + h (θ) + dei
π
2 + rve

iβ = rs (γ) ei(β+ψ) (7)

which actually expresses the displacement of the vane with respect to a reference system
that is centered in O and rotates together with the vane itself. By focusing the attention
on the imaginary part of Eq. 7

d+ rv sinβ = rs sin (ψ + β) (8)

after some manipulation, the following relationship is obtained:

d+ (rv − rs cosψ) sinβ = rs sinψ cosβ (9)

Therefore, by considering the case d = 0, the closed-form expression for the pressure170

angle simply becomes:

β = tan−1

[
rs sinψ

rv − rs cosψ

]
(10)

in the open interval −π2 < β < π
2 . It is worth noticing that Eq. 10 states that, for

centered circular tip vanes, pressure angle β strictly depends on the cam ring profile, its
first angular derivative and the vane tip radius. In particular, pressure angle β tends to
increase both with the increment of the vane tip radius and the increment of the first175

derivative of the cam ring profile. On the basis of these considerations, Eq. 10 can
7



be used to determine the pressure angle course along a complete revolution, without the
necessity to estimate the vane kinematic motion and before the geometry of the vane-cam
ring mechanism is fully defined.

In the more general scenario of d 6= 0, a closed-form expression for the pressure angle180

can still be obtained, even if its achievement is less straightforward. With the help of the
substitution:

t = tan

(
β

2

)
(11)

then:

sinβ =
2t

1 + t2
(12)

cosβ =
1− t2

1 + t2
(13)

Equations 12 and 13 may now be substituted into Eq. 9 obtaining:185

d+ (rv − rs cosψ)
2t

1 + t2
= rs sinψ

1− t2

1 + t2
(14)

Since the denominator in Eq. 14 is strictly positive, the problem is reduced to the solution
of the following quadratic equation:

(d+ rs sinψ) t2 + 2 (rv − rs cosψ) t+ (d− rs sinψ) = 0 (15)

By solving Eq. 15 and applying the substitution in Eq. 11, the following expression for
pressure angle β is obtained:

β = 2tan−1

[
rs cosψ − rv ±

√
r2s + r2v − 2rvrs cosψ − d2

d+ rs sinψ

]
(16)

The right choice of the sign before the squared term depends on which side of the cam190

ring profile the contact will take place. Since in a vane-cam ring mechanism the contact
always takes place on the inner side of the cam ring profile, the squared term must be
negative and therefore the correct expression becomes:

β = 2tan−1

[
rs cosψ − rv −

√
r2s + r2v − 2rvrs cosψ − d2

d+ rs sinψ

]
(17)

It is worth underlining that the radicand in Eq. 17 is always positive by construction
and therefore no further conditions are required in order to avoid imaginary roots. In195

order to clarify this aspect, it is possible to focus the attention on segment OC in Fig.
2. By applying the cosine formula with respect to angle OP̂C:

OC
2

= r2s + r2v − 2rvrs cosψ (18)

the following equality can be recognized:

rr + h =
√
r2s + r2v − 2rvrs cosψ − d2 (19)
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Figure 4: Design parameters for centered tip vanes (a) and not-centered tip vanes (b).

which demonstrates that the radicand is always strictly positive since term rr + h is
strictly positive by construction. In addition, Eq. 19 may represent a useful alternative200

to Eq. 1 for estimating the vane motion amplitude h without the necessity to solve the
nonlinear system reported in Eq. 4. However, the complete definition of the vane motion
given by the two parameters (θ, h) still requires to solve also Eq. 2, which is possible
once β has been already calculated. By using the equality in Eq. 19, the expression for
pressure angle β may be finally rewritten as:205

β = 2tan−1

[
rs cosψ − rv − (rr + h)

d+ rs sinψ

]
(20)

which demonstrates that, in case of not-centered circular tip vanes, pressure angle β
depends on the cam ring profile, its first angular derivative and the vane tip radius as
well as the vane tip eccentricity, but its determination is subordinate to the calculation
of the vane motion amplitude h.

2.3. Admissibility of the vane geometry210

The proposed analysis has provided useful tools to calculate the vane motion and
the pressure angle, both obtained in reference to the exact position of the contact point.
Moreover, it has enlightened their relationship with some design parameters of the vane-
cam ring mechanism itself. However, by focusing the attention on the vane geometry,
it is possible to obtain further indications related to its admissibility in reference to215

the cam ring profile. As shown in Fig. 4, the vane tip profile, which is constituted
by a circular arc bounded by the lateral vane flanks, provides a practical limit on the
maximum and minimum values that the pressure angle is allowed to assume, i.e. βmax
and βmin respectively:

βmin ≤ β ≤ βmax (21)

In the special case d = 0 (Fig. 4.a), the vane shape is symmetrical with respect to its220

longitudinal axis through point C. In this scenario, pressure angle limits βmax and βmin
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can be determined as:

βmax = −βmin = tan−1

[
hv√

4r2v − h2v

]
(22)

where hv represents the vane thickness. Hence, by substituting Eqs. 10 and 22 into Eq.
21, it is possible to translate the angular constraint into a design constraint referred to
the tip radius:225 ∣∣∣∣tan−1

[
rs sinψ

rv − rs cosψ

]∣∣∣∣ ≤ tan−1

[
hv√

4r2v − h2v

]
(23)

Since the inverse tangent is a monotonic function, the proposed inequality reduces to:[
rs sinψ

rv − rs cosψ

]2
≤
[

hv
2

4r2v − h2v

]
(24)

which can be solved with respect to tip radius rv. In this context, the standard form
becomes:

r2v
[
h2v − 4r2ssin

2ψ
]
− rv

[
2h2vrs cosψ

]
+ h2vr

2
s ≥ 0 (25)

The roots of the related polynomial can be therefore obtained straightforwardly:

r1,2vlim =
h2vrs cosψ ± h2vrssin2ψ

√
4r2s − h2v

h2v − 4r2ssin
2ψ

(26)

Consequently, the solution of the inequality expressed by Eq. 25 is given by the interval:230 (
−∞,min

(
r1,2vlim

)]
∧
[
max

(
r1,2vlim

)
,+∞

)
(27)

Similarly to the considerations related to Eq. 16, it is possible to notice that the higher
interval, i.e.

[
max

(
r1,2vlim

)
,+∞

)
, can be neglected since it refers to the case where the con-

tact takes place on the external side of the cam ring profile. In practice, root min
(
r1,2vlim

)
represents the maximum value that the tip radius is allowed to assume. In addition, by
focusing on Fig. 4, it must be taken into account that the vane geometry provides also235

the following constraint:

rv ≥
hv
2

(28)

which practically represents a limit on the minimum allowable value for the vane tip.
Thus, from Eqs. 27 and 28, tip radius rv must stand within hv

2 and min
(
r1,2vlim

)
, where the

latter may assume two different expressions depending on the sign of the first derivative of
the cam ring profile. In particular, tip radius rv must observe the following relationship:240

hv
2
≤ rv ≤ min

(
r1,2vlim

)
=


h2
vrs cosψ−hvrssinψ

√
4r2s−h2

v

h2
v−4r2ssin

2ψ
for ψ ≥ 0

h2
vrs cosψ+hvrssinψ

√
4r2s−h2

v

h2
v−4r2ssin

2ψ
for ψ < 0

(29)

Equation 29 mathematically defines the conditions to be respected to ensure the ad-
missibility of the vane geometry. In practice, if Eq. 29 is satisfied, it is guaranteed that
the vane-cam ring mechanism is inherently compliant, meaning that the mechanism can
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move safely and correctly, from a kinematic point of view. It is worth noticing that, while
the lower boundary in Eq. 29 is fixed by the vane thickness, the upper boundary depends245

on both the vane thickness and the cam ring profile, meaning that such a limit assumes a
different value for each point of the cam ring. By taking into account that the cam ring
profile may be described by a R-F-D law, during the dwell phase, angle ψ coincides with
zero and the upper boundary becomes min

(
r1,2vlim

)
= rs. On the contrary, during both

the rise and fall phases, the upper boundary changes point by point depending on the250

mathematical law adopted to describe such phases. Hence, given the vane thickness and
the cam ring profile, the overall upper boundary is defined by the minimum value assumed
by term min

(
r1,2vlim

)
along a complete revolution. However, from these considerations it

follows that, for any cam ring profile, radius rv will never be allowed to overcome the
upper limit constituted by rmins .255

In the more general scenario with d 6= 0, the vane tip profile becomes asymmetric
(see Fig, 4.b) and therefore maximum and minimum allowable values for pressure angle
β become:

βmax = tan−1

 hv − 2d√
4r2v − (hv − 2d)

2

 (30)

βmin = −tan−1

 hv + 2d√
4r2v − (hv + 2d)

2

 (31)

Hence, the constraint condition given by Eq. 21 may be rewritten in the following form:260 
2 tan(β/2)

1−tan2(β/2) ≤
hv−2d√

4r2v−(hv−2d)2
for β ≥ 0

−2 tan(β/2)
1−tan2(β/2) >

hv+2d√
4r2v−(hv+2d)2

for β < 0
(32)

where term tan (β) has been defined with respect to tan (β/2), since no analytical ex-
pression for tan (β) are available in the case d 6= 0. In order to obtain a design constraint
similar to Eq. 27, it would be now necessary to substitute Eq. 17 into both terms of Eq.
32 and then solve it with respect to radius rv. However, in the present case, the purpose
to obtain an analytical solution appears to be less suitable, since the presence of multiple265

quadratic terms leads to inequalities with polynomials of order much higher than two.
For this reason, the most convenient approach is represented by the numerical one, where
the roots of the polynomial in Eq. 32 can be searched within the interval defined by Eq.
29. The result of this analysis, in analogy with the case d = 0, will produce the upper
boundary of the interval defining the admissible values for radius rv. On the other hand,270

based on the same considerations made for the case d = 0, the lower boundary of such
an interval is defined by the practical constraint:

rv ≥
hv
2

+ |d| (33)

The proposed procedure will be further clarified in the following Section, where the
analysis is applied to a realistic pump geometry and the influence of the different design
parameters is evaluated.275
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3. Parametric study

The present Section analyzes the results that are achievable with the equations pro-
vided in Section 2. In particular, Subsection 3.1 focuses the attention on the relationship
existing between cam ring profile and vane geometry in the centered tip scenario, while
Subsection 3.2 extends them to the not-centered tip case. The analysis is performed on280

a given cam ring profile, which is used as reference datum to define the admissible vane
geometry and the influence of the vane design parameters on the vane motion itself.
Later, in Subsection 3.3 the study concentrates on determining how the cam ring profile
affects the admissibility of the vane geometry and its kinematics. In this context, the
adoption of a precompression zone as well as different mathematical laws describing rise285

and fall sections are evaluated in detail, in order to provide a complete overview of the
kinematic characteristics of the vane-cam ring mechanism.

With the purpose to provide general results and avoid the necessity to refer to a
specific pump geometry, all the geometrical parameters are expressed with respect to
minimum cam ring radius rmins on the basis of the Buckingham’s Theorem [22]. By290

defining pump displacement per facewidth unit as:

V = 2π
(
rmaxs

2 − rmins

2
)

(34)

the proposed dimensional reduction allows us to define the specific pump displacement
as:

V̂ = 2π
(
ê2 − 1

)
(35)

where term ê is the ratio between rmaxs and rmins . With the proposed dimensional
reduction, given term ê, it is possible to refer to a family of pump characterized by the295

same specific displacement. By adopting this dimensional reduction for all the pump
geometrical parameters, it is possible to state that two pumps with different size but
same specific geometrical parameters will be kinematically equivalent. On the basis of
this statement, all the parameters in the following study are considered in their specific
form, identified by symbol ·̂.300

3.1. Centered tip vane layout

The present Subsection enlightens the deep connection between cam ring profile and
vane geometry with respect to the definition of the vane-cam ring kinematics. The anal-
ysis is focused on the zero tip eccentricity layout. In order to fulfill this purpose, the
cam ring profile shown in Fig. 5 is taken as reference, where both rise and fall phase305

are obtained with a 5th order polynomial law. Parameter ê has been chosen equal to√
1 + 1/2π in order to obtain V̂ = 1. For the sake of clarity, the precompression rate

has been set to zero and its influence is analyzed in Subsection 3.3, where the effect of
different values of the specific pump displacement are also evaluated.

Since the cam ring profile is defined, the first set of achievable information refers to the310

admissibility of the vane geometry. In this context, Eq. 26 can be adopted to determine
the evolution of the upper limit value for vane tip radius r̂v along the cam ring profile
in reference to the vane thickness, in the case d̂ = 0. Within this framework, the course
of radius rvlim for a complete period of the cam ring and five values of ĥv is reported in
Fig. 6. As previously discussed by describing Eq. 26, during the dwell phases radii r̂1,2vlim315

12



γFγR γDγP

e

1

^

Figure 5: Reference cam ring profile where γR and γP respectively represent the first and last angular
instants of the rising phase, γF is the initial angular instant of the falling phase and γD indicates the
starting of the dwell phase.

Table 1: Design parameter values related to the reference cam ring profile in Fig. 5.

ê
√

1 + 1/2π
γR π/10
γP 2π/5
γF 3π/5
γD 9π/10

coincide with cam ring radius r̂s, while they bifurcate during both rise and fall phases.
The curves that stand above r̂s are referred to the case where the contact takes place on
the external side of the cam ring profile and they are therefore neglected in Fig. 6. In this
scenario, the most relevant aspect is the behavior of the minimum value assumed by r̂vlim ,
which tends to increase as the vane thickness increases. This trend is underlined further320

by Eq. 29 that describes the admissibility interval for vane tip radius r̂v with respect to
vane thickness ĥv, as shown in Fig. 7. As it is expected, while r̂minv is increasing linearly,
the upper limit represented by r̂maxv follows a nonlinear law that suddenly tends to one

as ĥv increases. In particular, it is worth noticing that, independently from the cam ring
shape, the admissible domain is always bounded by two intersections between r̂maxv and325

r̂minv occurring for
(
ĥv, r̂v

)
= (0, 0) and

(
ĥv, r̂v

)
= (2, 1). The first one constitutes the

trivial solution of Eq. 29, while the second one is a practical limit imposed by the cam
ring profile itself: when ĥv = 2 the vane thickness and the minimum cam ring diameter
coincide, constraining the vane tip radius r̂v to be equal to r̂mins .

Once the admissible values for r̂v are determined, it is possible to evaluate how the330

vane tip radius affects the kinematic motion of the vane. Figure 8.(a) shows the variation
of the vane displacement with respect to the cam ring profile for four different values of
r̂v, which have been chosen in order to span all the admissible range for ĥv = 0.1. As it
is also underlined by the zoom in Fig. 8.(b), as the vane tip radius increases, the vane
displacement tends to deviate from the cam ring profile during both rise and fall phases335

and such a phenomenon becomes more and more intense as the vane tip radius approaches
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Figure 7: Admissibility interval for vane tip radius r̂v with respect to vane thickness ĥv in the case
d̂ = 0.

the upper boundary of its admissible range. This aspect becomes even more evident by
focusing the attention on velocity, acceleration and jerk associated to the vane motion,
which are depicted in Fig. 9. While the r̂v = 0.05 case seems to reproduce the derivatives
of the fifth order polynomial law describing the rise and fall phases approximately well,340

the r̂v = 0.2809 case shows an appreciable deviation from the expected shape and this
behavior is particularly enhanced for the r̂v = 0.3964 condition. In this context, it is
worth noticing that the variation of r̂v influences the shape of the motion, but the timing
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Figure 8: Comparison between the cam ring profile and the vane displacement for different values of the
specific vane tip radius in the case d̂ = 0 (a) and detailed view of the deviation (b).

imposed by the cam ring profile is not distorted. The detected behavior differs from
the results that are obtained by calculating the vane motion on the basis of the relaxed345

hypothesis of flat tip geometry, in which the vane thickness influences the timing of the
vane motion while its shape remains unaltered [21].

Based on the purpose to provide a complete overview of the vane-cam ring kinematic
behavior, the proposed analysis may be used also to evaluate pressure angle β of the
contact force between the cam ring profile and the vane tip in the hypothesis of absence350

of friction. Figure 10 shows the obtained results for the four r̂v values defined in the
previous paragraph. As it can be appreciated, by rising the specific vane tip radius, the
maximum and minimum values of β are slightly increased in their absolute value as well.
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Figure 9: Vane kinematic characteristics in terms of velocity (a), acceleration (b) and jerk (c) for different

values of the vane tip radius in the case d̂ = 0.

The observed behavior helps to understand the phenomenon that produces the upper
boundary of the admissible range for the vane tip radius: starting from an admissible355

value of r̂v, as this parameter is rised, the maximum and minimum values reached by β
slowly increases while the limits βmax and βmin defined in Eq. 22 decrease progressively
(in terms of absolute values) until the inequality in Eq. 21 is no longer satisfied.

3.2. Not-centered tip vane layout

The study described in Subsection 3.1 has been carried out with the purpose to explain360

the relationship between vane thickness and tip radius and how the latter influences the
motion of the vane in the hypothesis of zero tip eccentricity. In order to evaluate the
effects produced by this last parameter, the analysis is now repeated for the more general
scenario characterized by not-centered tip vanes (see Fig. 4). The study is performed
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by considering the same cam ring profile defined in Subsection 3.1. In this context,365

by solving Eq. 32 in conjunction with Eq. 33, the tri-dimensional surface in Fig. 11
representing the boundaries of the admissible domain for the combination of vane tip
radius r̂v, vane thickness ĥv and vane tip eccentricity d̂ can be computed. However, due
to the complex shape of the obtained geometry, the result may be better analyzed by
extrapolating the isolines with respect to the available bi-dimensional planes. Figure 12,370

in particular, reports the isolines calculated with respect to the d̂r̂v−plane: for each vane
thickness value the admissible domain is bounded by a quadrilateral polygon that tends
to expand itself and then collapse into a single point as ĥv moves from zero to two. On
the other hand, it is worth to noting that the center of the tip circle is always forced to fall

within the vane thickness, since the vane tip eccentricity is well confined within the

∣∣∣∣_hv

2

∣∣∣∣375

limit. Another interesting point of view is provided by Fig. 13, depicting the isolines
obtained on the ĥv r̂v − plane with respect to different values of the vane tip eccentricity.
Obviously, the curve referring to the d̂ = 0 condition coincides with the result reported in
Fig. 7. In this case, it may be observed that as d̂ is varied from the centered layout, the
admissibility range is reduced consistently due to the simultaneous effects of reducing the380

extension of the upper boundary and shifting up the lower one. The described behavior

has also a major consequence on the practical design of vane layouts with
_
r v =

_
hv

2 and
_

d = 0. This particular vane geometry is located on the lowest boundary defined in Fig.
13 and a small amount of eccentricity caused by a low quality production process would

result in a not admissible combination of the parameters
(
ĥv, r̂v, d̂

)
.385

The definition of the available combinations for the triple
(
ĥv, r̂v, d̂

)
allows us to

evaluate the influence of the vane tip eccentricity on the kinematic motion of the vane
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Figure 11: Surface defining the boundaries of the admissible domain for the combination of vane tip
radius r̂v , vane thickness ĥv and vane tip eccentricity d̂.

-0.5 -0.25 0 0.25 0.5
d̂

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r̂ v
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Figure 12: Isolines obtained by projecting the boundaries of the admissible domain on the d̂r̂v − plane.

itself. In this framework, the vane displacement is compared with respect to cam ring
profile r̂s both in the case of positive eccentricity (Fig. 14) and negative eccentricity (Fig.

15). By considering a generic vane with ĥv = 0.3 and r̂v = 0.88, the former compares the390

case d̂ = 0 with the case d̂ = −0.038, which represent the limit value for d̂ > 0 according
to Fig. 12. Similarly, Fig. 15 reports the comparison between the case d̂ = 0 with the
case d̂ = 0.038 for the same combination of ĥv and r̂v. As it can be noted, negative
values of d̂ produce two main effects: the first outcome is a delay in the timing of the
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Figure 14: Effect of the negative tip eccentricity on the vane kinematic motion; results refer to a vane
geometry with ĥv = 0.3 and r̂v = 0.88.

R-F-D law which tends to increase itself linearly with the eccentricity, while the second395

effect is a downward shift of the R-F-D law that becomes appreciable during both dwell
phases (Fig. 14.a). This latter effect is obviously detected also in the case of positive
values of d (Fig. 15.a), since positive and negative eccentricities are analogous layouts
with respect to the dwell phase. On the other hand, the d > 0 condition causes an
opposite consequence on the timing of the vane motion, since both rise and fall phases400

are advanced with respect to cam ring profile.
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Figure 15: Effect of the positive tip eccentricity on the vane kinematic motion; results refer to a vane
geometry with ĥv = 0.3 and r̂v = 0.88.

The influence on the timing of the vane motion is further enlightened by focusing the
attention on velocity (Fig. 14.b), acceleration (Fig. 14.c) and jerk (Fig. 14.d) related to
the vane displacement profiles defined in the previous paragraph. Moreover, the results
referring to the second and third derivatives demonstrate that the adoption of a not-zero405

eccentricity layout produces a negligible effect on the shape of the vane displacement. As
a matter of fact, concentrating on the charts in Fig. 14, it is possible to note a certain
variation of the maximum and minimum values reached by velocity, acceleration and jerk
for the three vane geometries, however, the magnitude of such a variation is extremely
slight. The described behavior is observed also for positive values of the tip eccentricity,410

as clarified by Fig. 15 from b to d.
The proposed analysis demonstrates that the vane kinematic motion in balanced vane

pumps is mainly controlled by the tip radius and the tip center eccentricity, as long as
the cam ring profile is defined. The tip radius is mainly responsible for the shape of the
vane motion, while the tip center eccentricity has a major influence on its timing. In415

addition, these two design parameters are linked to each other through the vane thickness
that does not have a direct influence on the vane motion, but it defines the width of the
admissible region in which the couple (r̂v, d̂) can be chosen.

3.3. Cam ring profile influence

The previous Subsections have been used to explain how, given the cam ring profile,420

the mathematical laws obtained in Section 2 may be used to determine the admissible
values for the main vane design parameters and how they affect the vane kinematic
characteristics. In the present Subsection, on the contrary, the attention is concentrated
on the cam ring profile and the way it influences the admissible vane geometry and its
motion.425
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(
ĥv , r̂v

)
related to different mathematical laws defining

rise and fall phases of the cam ring profile, in the case d̂ = 0.

In this framework, the study is firstly focused on the mathematical laws defining
rise and fall phases of the RFD law. As already demonstrated by Fig. 6, both rise
and fall phases are responsible for defining the maximum allowable tip radius given the
vane thickness and the tip eccentricity, since during the dwell phases, the maximum tip
radius coincides with the cam ring radius. Once the central role played by rise and fall430

sections is clarified, the aim is now to point out how the profile of rise and fall phases
affect the available range of the vane geometry. With this purpose, Fig. 16 reports the
admissibility intervals for the combination of r̂v and ĥv in the case d̂ = 0 related to four
cam ring profiles, which share the same design parameters defined in Tab. 1 although
characterized by different mathematical laws performing the rise and fall phases. As it can435

be observed, moving from the most gradual law, i.e. the cubic one, to the sharpest one,
i.e. the 7th order polynomial, the maximum allowable tip radius is reduced progressively.
On the other hand, the lower boundary constituted by r̂minv remains unchanged, since

it is exclusively defined by vane parameters ĥv and d̂. The same would apply in the
case where the cam ring profile utilizes two different laws to perform the rise and fall440

phases: the sharpest one would define the admissibility region since it represents the
most restrictive condition.

A similar trend is detected also in the case where, given a fixed mathematical law,
the angular extension of the rise (and/or fall) phase is gradually reduced. An example of
this behavior is depicted in Fig. 17, in which r̂maxv is calculated with respect to the cam445

ring profile adopted in Subsection 3.1, that is modified by progressively anticipating the
inception of the upper dwell phase. The explanation of this trend has to be detected in
Eq. 29, which states that the maximum allowable tip radius depends on both the cam
ring profile and its first derivative. Hence, as the rise and fall phases are made sharper,
limit value r̂maxv decreases accordingly.450

This latter analysis can be further deepened by including the tip eccentricity as a
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v for different rise phase extensions, in the case d̂ = 0.

third variable. Within this framework, Fig. 18.a depicts the isolines of the vane geometry

admissible domain on the d̂r̂v − plane related to the cam ring profile with γP = 7π/30.
As described in the previous paragraph, this cam ring profile has an asymmetric shape
since, the angular sector pertaining the rise phase is considerably shorter than the one455

pertaining the fall phase. As shown in Fig. 18.a, the geometrical asymmetry of the cam
ring profile produces an asymmetric vane geometry admissible domain, which is bent
towards positive values of the vane eccentricity. The described behavior may be better
recognized by focusing the attention on the locus of the maximum allowable tip radius,
i.e. the set of points constituting the upper vertices of the quadrilaterals in Fig. 18.a.460

Such points are not located along the d̂ = 0 axis as in the case of symmetric cam ring
profile (as shown in Fig. 12), but they lay on a curved line that stays within the posi-

tive quarter of the d̂r̂v − plane. The phenomenon is observed also in Fig. 18.b and 18.c,

depicting the isolines of the same vane geometry admissible domain on the ĥv r̂v − plane.
A practical explanation for the described behavior may be obtained by analyzing the465

variation of β along a complete course. The pressure angle approaches negative values
during the rise phase and positive one during the fall phase. Since in the analyzed cam
ring the sharpest motion is performed on the rise phase, angle β reaches higher values (in
magnitude) during the rise phase rather than during the fall phase. Therefore, by con-

sidering that the d̂ > 0 layout guarantees |βmin| > βmax, the positive eccentricity allows470

the mechanism to perform the motion with higher values of the tip radius in compari-
son to the negative eccentricity layout. As a matter of fact, the tip eccentricity may be
considered as a tuning parameter in presence of cam ring profiles with a sharp rise (or
fall) phase. In this framework, the adoption of a limited amount of tip eccentricity would
provide the chance to adopt vane geometries with greater tip radius.475

The last parameter which is now investigated is the adoption of a precompression
zone. As reported also in [7, 16, 21], the upper dwell interval in balanced vane pumps
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Figure 18: Vane geometry admissible domain for a cam ring profile with 5th order polynomial laws,

ê =
√

1 + 1/2π and γR = π/10, γP = 7π/30, γF = 3π/5 and γD = 9π/10. The domain is reported

with respect to the d̂r̂v − plane in (a) and with respect to the r̂vĥv − plane in (b) and (c).

may be replaced by a slight precompression zone constituted by a linearly decreasing
profile inserted between rise and fall phase. This design solution is typically adopted
to reduce the risk of discharging air bubbles into the delivery side and, concurrently, to480

produce a limited increase of the oil pressure within the displaced pocket. The magnitude
of the precompression zone is defined by the precompression ratio ξ, which is defined as:

ξ =
r̂s(γP )− r̂s(γF )

γP − γF
(36)

In order to evaluate the influence of this feature, the cam ring adopted in Subsection
3.1 is taken as reference benchmark and compared with three similar layouts that differs
from the reference one for the presence of a precompression zone with a progressively485

increasing precompression ratio, from ξ = 0.1 to ξ = 0.3. Figure 19 reports the described
cam ring profiles.

With the purpose to clarify the effect produced by this common design solution,
attention can be firstly focused on Fig. 20 showing the evolution of pressure angle β
along a complete course for the four cam ring profiles, in the case d̂ = 0 and r̂v = 0.1655.490

As expected, within the precompression zone, pressure angle β is steadily higher than
zero, due to the linear profile of the cam ring. A more interesting aspect is the behavior
of the pressure angle during rise and fall phases: since the former is made sharper while
the latter is made duller, β is also made asymmetric. In particular, it shows a progressive
decrease of the minimum value reached during the rise phase despite its variation along495

the fall phase tends to be slightly flattened towards zero. It is worth clarifying that
the choice of the tip radius value is based exclusively on the necessity to guarantee the
admissibility of the vane geometry and the adoption of other values would not change
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in Fig. 19.

the detected behavior.
From a practical perspective, since the effect on β is limited, the adoption of a pre-500

compression zone in the case d̂ = 0 does not produce a consistent effect on the vane
kinematics and its geometry admissibility. On the other hand, by considering that this
design choice affects the asymmetry of the vane motion, it is worth focusing the atten-
tion on its influence regarding the admissible domain related to not-centered tip vanes.
Within this context, Fig. 21 reports the isolines on the ĥv r̂v − plane referring to the505
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Figure 21: Isolines on ĥv r̂v − plane obtained for the cam ring profile with ξ = 0.3 in Fig. 19.

vane geometry admissible domain calculated with respect to case ξ = 0.3. As previously
observed by evaluating different rise phase extensions, the asymmetry of the vane motion
is translated into an asymmetry of the admissible domain, however, in this case the locus
of the maximum allowable tip radius does not bend but it remains located on the d̂ = 0
axis. On behalf of this result, it appears to be clear that this design solution does not510

interfere with the global behavior of the vane kinematics and the choice to neglect it in
the previous analyses does not compromise the generality of the results.

4. Concluding remarks

The present work describes the kinematics of the vane-cam ring mechanism in bal-
anced vane pumps, by taking into account the adoption of centered and not-centered515

tip vanes. The analysis is performed analytically, with the purpose to define the vane
kinematic motion in reference to the main geometrical parameters of the vane, which are
constituted by tip radius, vane thickness and tip eccentricity. The proposed methodol-
ogy is able to localize the contact point in reference to the angular position of the vane,
describe the vane displacement and compute the pressure angle between cam ring and520

vane tip. In addition, the kinematic laws are coupled with the vane practical constraints
in order to analytically determine the admissibility of the vane geometry. Dedicated
formulae have been derived for both centered and not-centered tip vanes.

In order to deepen the understanding of the vane geometry and its kinematic motion,
a parametric study has been performed by considering both cam ring profile and vane525

geometry in their non-dimensional form, which is obtained with respect to the minimum
value of the cam ring radius. As a first step, the vane geometry allowable domain is
calculated and later both vane motion and pressure angle are evaluated with respect to
a number of vane design layouts. The results clarify that the vane kinematic motion in
balanced vane pumps is mainly controlled by the tip radius and the tip center eccentricity,530
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as long as the cam ring profile is defined. The tip radius is mainly responsible for the
shape of the vane motion, while the tip center eccentricity has a major influence on its
timing. In addition, these two design parameters are linked to each other through the
vane thickness that does not have a direct influence on the vane motion, but it defines

the width of the admissible region in which the couple
(
r̂v, d̂

)
can be chosen.535

The last part of the parametric study is devoted to detect the influence of the cam ring
shape on the vane kinematics. Within this framework, the most common mathematical
laws adopted to perform rise and fall phases are taken into account, as well as different
angular extensions and various precompression layouts. The analysis demonstrates that
the size of the vane admissible domain tends to be decreased by the sharpness of the rise540

and fall phases. Moreover, the potential asymmetry of the vane motion imposed by the
cam ring profile translates itself into an asymmetry of the admissible domain. A similar
phenomenon is slightly produced also by the adoption of precompression schemes.
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