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Abstract

The gear fault diagnosis on multi-stage gearboxes by vibration analysis is a challenging task due to the
complexity of the vibration signal. The localization of the gear fault occurring in a wheel located in the
intermediate shaft can be particularly complex due to the superposition of the vibration signature of the
synchronous wheels. Indeed, the gear fault detection is commonly restricted to the identification of the
stage containing the faulty gear rather than the faulty gear itself. In this contest, the paper advances a
methodology which combines the Empirical Mode Decomposition and the Time Synchronous Average in
order to separate the vibration signals of the synchronous gears mounted on the same shaft. The physical
meaningful modes are selected by means of a criterion based on the Pearson’s coefficients and the fault
detection is performed by dedicated condition indicators. The proposed method is validated taking into
account simulated vibrations signals and real ones.

Keywords: Vibration analysis, Signal Processing, Empirical Mode Decomposition, Gearbox diagnosis,
Localized gear fault

1. Introduction

Multi-stage gearboxes are employed in a wide range of mechanical systems and represent crucial com-
ponents for the correct functioning of the entire machine. Since they are often subjected to faults due to
manufacturing errors or heavy working conditions, the gear fault identification is of prime importance in
order to reduce the maintenance costs as well as to restrict machine downtimes. In this context, the exact5

knowledge of the fault position by means of non-destructive techniques simplifies the maintenance process
avoiding burdensome visual inspections.

Vibration-based diagnosis represents an effective approach for the gear fault diagnosis [1]. In the last
decades, many researches have been focused on the development and testing of signal processing techniques
for the identification of localized gear faults. The success of the fault identification strongly depends on the10

employed signal processing techniques, the system typology under investigation and the working condition.
In fact, the state of the art about the identification of localized gear faults covers a wide range of different
approaches such as: the cyclostationary theory [2, 3, 4], which takes advantage of the hidden periods
embodied in the vibration signals; the Kurtogram [5] for the selection of the frequency band associated to
the maximum Spectral Kurtosis; time-frequency signal representations like Continuous Wavelet Transform15

[6]; the blind deconvolution algorithms [7, 8], which estimate the excitation source due to the presence of
the fault from the noisy observation; condition indicators based on the Time Synchronous Average [9].
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Unfortunately, the aforementioned approaches allow to identify the rotation period of the shaft syn-
chronous with the faulty gear rather than the faulty gear itself. Hence, the exact identification of the faulty
gear is not a trivial task if two or more gears are installed in the same shaft (which is very common in multi-20

stage gearboxes). As the authors are aware, no works can be found in the specialized literature dealing with
such a tricky problem. Hence, encouraged by this lack, the present research is focused on the investigation
of this issue having both industrial and academic interest.

In this work, the signal separation is based on the EMD (Empirical Mode Decomposition) which rep-
resents a fascinating approach in the field of time-frequency signal processing techniques. The EMD was25

introduced for the first time by Huang et al. [10] and it is a self-adaptive time-frequency analysis technique.
The EMD decomposes the original signal into a set of oscillatory modes (called also Intrinsic Mode Func-
tions) on the basis of the local time scales of the signal rather than on a pre-determined kernel, as in the
case of the Continuous Wavelet Transform. The EMD is effective for the analysis of signals that exhibit
non-stationary and non-linear behavior. Since the EMD is fully data-driven and adapt for the analysis of30

non-stationary signals, is particularly suitable for the goal of this paper. Many efforts have been made in
order to improve the effectiveness of the EMD algorithm, restricting its intrinsic drawbacks [11, 12]. The
EEMD (Ensemble Empirical Mode Decomposition) [13], the CEEMD (Complementary Ensemble Empirical
Mode Decomposition) [14] and the CEEMDAN (Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise) [15] are among the most popular improved EMD methods proposed in the literature.35

EMD has been successfully used in a number of different research fields (speech recognition, chemistry,
biology, medicine, etc.) but only in the last decade EMD has been exploited also for the identification of
the gear faults, as gear cracks [16, 17], broken teeth [18] or wear [19]. In this context, Lin and Chen [20]
exploited the EEMD for the extraction of multiple fault information from the vibration signals measured on
gearboxes, a diagnostic method for wind turbine planetary gearboxes based on the EEMD has been proposed40

by Feng et al. [21] and the CEEMD combined with Permutation Entropy has been used for the identification
and the severity recognition of gear faults by Zhao et al. [22]. On the other hand, no researches can be
found in the literature about the gear fault diagnostic by means of CEEMDAN, even if its effectiveness has
been demonstrated in other applications as the bearing fault identification [23, 24]. A complete literature
review about the use of EMD for rotating machine diagnostics can be found in [25].45

On this basis, the proposed work aims at developing a EMD-based methodology for the identification
of the faulty wheel in multi-stage gearboxes, in the case of synchronous wheels mounted on intermediate
shafts. Specifically, this method allows for the precise detection of the faulty gear rather than the faulty
stage. In fact, the faulty gear detection is a limitation of the traditional signal processing techniques when a
fault occurs in an intermediate stage. As mentioned before, this research try to fill the gap in the specialized50

literature by facing this challenging case, being also of particular concern in many industrial applications.
In this regard, care has been taken on the validation of the algorithm as well as on the reduction of the
user interactions. For this purpose, a selection criterion of the oscillatory modes estimated by a EMD-based
algorithm has been advanced, in order to separate the Time Synchronous Average of the vibration signal
into two representative vibration signals of the investigated wheels. Different EMD algorithms are taken55

into account (EMD, EEMD and CEEMDAN) in order to verify how the signal separation is influenced.
The localized fault identification has been quantified by means of dedicated statistical indicators that reflect
the gear condition. The method is validated taking into account both simulated signals and real vibration
signals.

The paper is structured as follows: Section 2 outlines the theoretical background; Section 3 introduces60

the problem statement and the description of the method; the methodology has been tested using simulated
signals in Section 4; Section 5 focuses on the validation by means of real vibration signals; final remarks are
drawn in Section 6.

2. Theoretical background

In this section, the main signal processing tools necessary for the comprehension of the proposed method-65

ology are concisely introduced. Only the fundamental concepts are described avoiding unnecessary theoret-
ical explanations.
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2.1. The Time Synchronous Average

The vibration signals acquired on gearboxes can be considered as wide-sense cyclostationary signals [26].
The first-order cyclostationary part is particularly significant for the gear fault identification and the Time70

Synchronous Average (TSA) is a common estimator of such a cyclostationary quantity [27, 3]. In general, the
TSA can be considered as the ensemble average of the vibration signal synchronized with a certain rotating
component having rotation period T . Commonly, the TSA is typically performed into the angle domain
rather than the time domain. In fact, the cyclostationarity on mechanical systems follows the periodicity
imposed by the kinematics of the system, which is locked in the angle variable. Thus, many mechanical75

systems exhibit cyclostationarity with respect to rotation rather than to time.
Let x(θ) be the vibration signal synchronized with rotation θ of a certain rotating mechanical component

taken as reference. Considering a periodicity of Θ = 2π and an integer number N of revolutions, the length
of x(θ) is NΘ. Thus, the time synchronous average, xTSA(θ), of x(θ) can be defined as:

xTSA(θ) = 1
N

N−1∑
n=0

x(θ + nΘ) with 0 ≤ θ < 2π . (1)

The change of variable from time to angle implies that the frequency variable will change accordingly. The80

new frequency variable is called ’order’ and it is defined as the ratio between cycles and machine speed.
Taking into account a proper number of averages, the main result of the TSA is the strong attenuation of all
the not periodic components with respect to the reference and the improvement of the SNR (Signal-to-Noise
Ratio). Furthermore, the angle domain TSA can strongly reduce the effects of the speed variation that mask
the effects due to possible faults. Hence, this signal processing technique is particularly effective with noisy85

signals that embody a number of components having different periods, as the multi-stage gearboxes.

2.2. The Empirical Mode Decomposition

The EMD is a self-adaptive signal decomposition technique that separates the signal in several oscillatory
components called IMF (Intrinsic Mode Function) or just modes. Each IMF has to meet two properties: i)
the zero-crossing points and the extrema have to be equal or differ by one; ii) at any point the mean value90

of the envelope evaluated by the local maxima and by the local minima have to be zero [10]. By virtue of
these properties, the last component extracted by the EMD is a monotonic signal, called residue. As the
name suggests, there is still a lack of a general theory about EMD. This pitfall has been investigated by
some authors [28, 29] in the attempt to formulate a theoretical foundation of the method, but is still an
open question.95

For the sake of brevity, the essential steps of the EMD algorithm are described in Figure 1, but a more
comprehensive explanation about this algorithm can be found in [10]. The envelope process and the sifting
process are the key points of the algorithm in Figure 1. The sifting process is a recursive procedure which
ensures that the estimated modes can satisfy the characteristic properties of the IMF; the envelope process
instead, is the evaluation of envelopes of maxima and minima of the signal.100

The main drawbacks of the EMD are the mode mixing and the end effect. The mode mixing concerns
the combination of signals with several widely different scale, while the end effect is the signal distortion at
the extremity of the signal itself. These shortcomings can undermine the physical meaning of the estimated
IMFs. In order to enhance the results of the EMD, several improved versions of the EMD algorithm have
been developed in the last 20 years [13, 14, 15].105

2.3. The Ensemble Empirical Mode Decomposition

The EEMD (Ensemble Empirical Mode Decomposition) [30] is an improved version of the EMD and
its algorithm is summarized in Figure 2. Unlike the EMD, which could estimate IMFs affected by severe
mode mixing, the EEMD calculates the so-called true modes or IMF ∗ and represents a more reliable
decomposition of the signal.110

Departing from original signal x(t), a new set of N signals (where N represents the number of trials or
realizations) is created by adding different zero-mean white noise w(t) of finite variance σ. Then, the EMD
is performed for each signal xn obtaining N mode sets composed by K modes each. At the end, the true

3



Figure 1: Flow chart of the EMD algorithm.

IMF set composed by a number K of true modes IMF ∗ is evaluated by ensemble averaging each kth IMF
set previously obtained.115

Differently from the EMD, the EEMD depends on two arbitrary parameters: the number of trials and
the variance of the added white noise. The relationship between these parameters is:

ε =
σ√
N

(2)

where N is the number of trials, σ is the variance of the added noise and ε is the error standard deviation
defined as the difference between the original signal and the corresponding IMFs. The proper selection
of these parameters is needed in order to obtain negligibly errors. Commonly [10, 31], a few hundreds of120

averages and σ ≈ 0.02 are usually enough in order to obtain satisfactory results. However, the selection of σ
depends on the application since high values of σ are suitable for data dominated by low-frequency signals
and vice versa [10].

2.4. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) represents125

a step further with respect to EEMD and it has been proposed for the first time by Torres et al. [15].
As shown in Figure 2, the EEMD calculates the true modes averaging a certain number of noisy IMF sets
evaluated independently each other and each IMFn,k is determined considering the residue of corresponding
previous mode IMFn,k−1.

On the contrary, the CEEMDAN algorithm (Figure 3) does not estimate the true modes in a single step130

as in the EEMD but such true modes are calculated sequentially. Specifically, for the estimation of each
true mode, the CEEMDAN algorithm takes into account the contribution of the residue evaluated from the
previous true mode. Therefore, the CEEMDAN guarantees the exact correspondence between the original
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Figure 2: Flow chart of the EEMD algorithm with N trials and K modes per trial.

signal and the set of decomposed signals, which is not ensured by the EEMD [32]:

x(t) =
K∑

n=k

IMFk
∗(t) + r(t). (3)

Referring to Figure 3, at each iteration, the kth true mode is estimated from the previous residue calculated135

by the k − 1th mode perturbed by the white noise. Otherwise, in this algorithm the added white noise for
the estimation of the kth IMF actually is the kth mode obtained performing the EMD on the white noise. A
more exhaustive explanation of the CEEMDAN algorithm can be found in [32, 33]. The main advantages of
this method are the exact reconstruction of the signal and the possibility to change the noise level at each
stage.140

2.5. Gear fault identification by condition indicators

The presence of gear faults leads to changes in the vibration signature measured on the gearboxes. A
number of researches can be found in the literature about the development of parameters for the quan-
tification of the vibration signature modification [4, 9]. These parameters are generally called Condition
Indicators (CIs).145

In this study, the following standard CIs have been considered: kurtosis, Crest Factor (CF) and FM0.
The kurtosis is the standardized moment of a probability distribution, the CF is the ratio between the peak
value and the RMS (Root Mean Square) value and the FM0 is the ratio between the peak-to-peak value
and the sum of the gear mesh harmonics. These parameters are particularly effective for the identification
of local changes in the vibration signature, as in the case of localized gear faults.150

Furthermore, two new CIs are proposed based on the vibration signal RMS values evaluated for each
tooth: Crest Pitch Factor (CPF) and the Normalized Skewness Variance Product (NSVP). In other words,
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Figure 3: Flow chart of the CEEMDAN algorithm.

the angle domain vibration signal referred to a single revolution (namely x(θ)) is split into a number of parts
equal to the number of teeth; then, the RMS value is estimated for each part. Let RMSp

i be the RMS
value of the ith tooth, RMSp

i is defined as follows:155

RMSp
i = RMS

[
x
(
θp +

z

2π
(i− 1)

)]
with 0 ≤ θp <

z

2π
(4)

where θp is the angular pitch, z is the number of teeth and RMS is the Root Mean Square operator. The
whole set of RMSp

i is:

{RMSp} =



RMSp
1

...

RMSp
i

...
RMSp

z


(5)

For a gear having localized faults, a local deviation from the mean value of RMSp is expected. The first
CI, called CPF, is defined as the ratio of the maximum value of RMSp with respect to the RMSp ensemble
mean value:160

CPF =
max[RMSp]

E[RMSp]
(6)

6



where E is the ensemble mean operator. Now, let us consider the difference among adjacent RMSi
p values:

{RMSpd} =



RMSp
2 −RMSp

1

...

RMSp
i −RMSp

i−1

...
RMSp

z −RMSp
z−1


(7)

Intuitively, RMSpd values should be close to zero for healthy gears since the variation between two consec-
utive RMS pitch values is slight. On the other hand, RMSpd exhibits non-zero values when local changes
of the vibration signature occur, since the vibration signature of a healthy meshing tooth is different from a
faulty one. On the basis of these considerations, the second proposed CI, called NSVP, it is defined as the165

product between skewness and variance of the RMSpd normalized by the peak-to-peak value of RMSpd:

NSV P =
var[RMSpd]skew[RMSpd]

pp[RMSpd]
(8)

where var is the variance operator, skew is the skewness operator and pp is the peak-to-peak value.

3. Problem statement and proposed method

In theory, the vibration signal of a gearbox operating at steady-state condition appears as a composition
of harmonics having as fundamental frequencies the meshing frequencies. The localized gear faults can170

appear in the vibration signals as impulsive components and local modulation of amplitude and/or phase
[34]. These local components are visible on the spectrum as side-bands centred on the meshing frequencies.
The pure impulsive component depends on the period of the occurrence (the shaft period) and on the
Impulse Response Function of the system, thus it depends on parameters that are not strictly related to
gear II or gear III. The local modulation of amplitude and phase is a function of the gear mesh frequency of175

the faulty wheel. Thus, considering two gears with different (and not multiple) number of teeth, the analysis
of the local modulation period due to the localized defect should lead to the identification of the faulty gear.
Indeed, the modulation depends on the gear mesh frequency that is different for the considered gears.

When the TSA is performed according to a certain shaft period, it is possible to set apart only the
tones that are synchronous with the shaft of interest. However, the TSA cannot separate those gearmesh180

harmonics belonging to two or more gears are rotating in the same shaft (that is a very common case in
multi-stage gearbox). Hence, in order to identify the faulty gear, the basic idea of this work is to exploit the
local change of the meshing vibration due to the amplitude and phase modulation rather than the impulsive
component. A signal separation method based on EMD algorithm is described hereafter in order to overcome
this problem, which is fairly common in practical applications with a significant implication concerning the185

reduction of maintenance costs and time.
Let us consider the two-stage gearbox shown in Figure 4, composed by four spur gears (namely I, II,

III and IV) operating at steady-state conditions. Furthermore, let us suppose the presence of a localized
fault on wheel II. Thus, taking advantage from the EMD-based decomposition, two representative vibration
signatures characterizing the meshing vibration of gear II and gear III, respectively, can be built taking190

into account the physically meaningful IMFs. The physically meaningful IMFs are intended as those IMFs
that describe the gearmesh vibration signature of the gear of interest. Therefore, the representing signal
of the gear will be the sum of these modes (if they are more than one). Figure 5 describes the proposed
methodology (summarized in 4 fundamental steps) for the generic two-stage gearbox in Figure 4.

Under the assumption that the gear fault on the intermediate shaft is evident on the TSA, the first step195

involves the low-pass filtering since several high frequency signal components unrelated with the gear mesh
vibration signature can be persist also after the TSA. In addition, the proposed signal processing procedure
focuses on the local modulation of amplitude and phase, hence a low-pass filter is desirable in order to cut
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Figure 4: Schematic of a two-stage gearbox.

step 1

step 2

step 3

step 4

EMD Decomposition

Figure 5: Flow-chart of the proposed methodology.

off the high frequency signal components that should belong to the impulsive events. Therefore, the signal
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is conditioned with a low-pass filter with a cut-off order (the signal belongs to the angle domain) equal to 3200

times the gear mesh order of the greater gear. Bearing in mind that the filtering process could reduce also
some significant components, it is anyway reasonable to assume that the gear mesh vibration signature is
properly described taking into account the first 3 meshing gear harmonics (and their side-bands).

The second step consists in the decomposition of the signal and the estimation of the regular signals
of gears II and III. EMD, EEMD and CEEMDAN have been considered, in order to investigate the ef-205

fects on the use of different EMD algorithms for the signal decomposition. In this work, 500 trials and
a fixed white noise standard deviation of 0.2 have been adopted, as suggested in [32, 30]. Further-
more, it has to be remarked that the procedure has been developed in Matlab environment exploiting
the EMD algorithms available at: http://perso.ens-lyon.fr/patrick.flandrin/emd.html and http:

//bioingenieria.edu.ar/grupos/ldnlys/metorres/re_inter.htm. Instead, the regular signal is defined210

as the sum of the gear mesh harmonics from the TSA signal. In this application the fundamental gear mesh
order and the first two harmonics are taken into account. The meaning of the estimation of the regular
signals will be clarified hereafter.

The third step is the core of the proposed methodology. A major issue on the use of the Empirical Mode
Decomposition is the physical interpretation of the IMFs. In fact, there are not established procedures215

for the identification of the meaningful modes for gear applications. Otherwise, the aim of this work is to
generate from the calculated IMF set, two signals representing the gear mesh vibration signals of gear II
and gear III, distinctly. Therefore, it is not just important to identify the physically meaningful modes but
also to determine if the mode describes the gear mesh vibration signature of gear II, gear III or neither of
these. The selection criterion of the physically meaningful modes developed in this work is based on the220

PCC (Pearson’s Correlation Coefficient) between the regular signals and the IMFs. The PCC is an indicator
of the linear correlation between two variables (signals) and conceptually is similar to the normalized cross-
correlation between two signals with zero lag [35]. PCC value c evaluated for discrete dataset x and y of n
samples (e.g. the discrete signals in the angle domain), is defined as follows:

c =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1

(xi − x)
2

n∑
i=1

(yi − y)
2

(9)

where x and y are the mean value of x and y respectively. The PCC can take values between -1 and225

1, where positive values mean a direct correlation while negative ones mean inverse correlation. For our
purpose, PCC ≥ 0.7 means a strong linear correlation, 0.3 ≤ PCC < 0.7 means moderate correlation,
0.1 ≤ PCC < 0.3 means weak correlation and PCC = 0 means no correlation. In this work, the PCC has
been exploited as the merit index for the mode selection in order to allocate each IMF to gear II, gear III
or neither of these. Referring to Figure 5, the assignment process regards the mode selection procedure for230

building the representative signals of gear II and gear III, namely M II(θ) and M III(θ), respectively. The
selection criterion that evaluates the physical significance of the modes is based on these properties:

1. if PCC ≥ 0.3 (which means at least moderate correlation), the mode is assigned to the representative
signal set;

2. if no IMF satisfies the previous properties, the mode having the maximum value of PCC is represen-235

tative of the gear.

Therefore, referring to Figure 5, the representative vibration signal of gear II, M II(θ), is composed by all
the modes (called mII

j (θ)) satisfying one of these properties and the same occurs for M III(θ). The PCCs
are evaluated by the regular signal (e.g. an ideal healthy mesh gear vibration) and the IMFs. Since the
modes are estimated from the faulty gear vibration signal, a moderate correlation with the regular signal240

is expected. Thus, property 1 aims to include all the modes showing a moderate correlation with the
regular signal having, however, a significant relationship with the gear vibration signature from the physical
standpoint. The second property is introduced in order to include at least one IMF also if property 1 is not
met.
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Lastly, in the fourth step the estimation of M II(θ) and M III(θ) of gear II and gear III, respectively, are245

carried out by means of the sum of the selected modes mII
j (θ) and mIII

j (θ) evaluated in the third step. After

a visual inspection of the representative signals, the objective comparison between M II(θ) and M III(θ) is
achieved by means of different CIs. For this purpose, in order to identify localized gear faults, several CIs
can be used for the evaluation of the vibration signal peakiness, which is correlated with the severity of the
localized fault. In this study, the following standard CIs have been considered: kurtosis and Crest Factor250

(CF) [36, 9]. Furthermore, the effectiveness of the proposed CIs, i.e. CPF and NSVP, has been tested for
the simulated vibration signals and the real case studies.

4. Application to simulated vibration signals

In this section, the first subsection regards the mathematical formulation of the meshing vibration signal
model with localized fault in the angle domain; in the second subsection, the effectiveness of the proposed255

methodology will be verified by means of the simulated signals.

4.1. Signal model formulation

Several works [34, 37, 38] regarding the time domain vibration signal modeling of gear faults can be
found in the literature. Since the proposed method departs from an angle domain vibration signal (SA), an
angle domain model of the meshing vibration signal of a spur gear with z teeth is proposed hereafter. In260

healthy gearboxes, meshing gear vibration x with respect to angle θ is mainly composed by harmonics with
fundamental order corresponding to the number of teeth of the gear of interest. For a complete revolution,
x(θ) can be expressed as follows:

x(θ) =
N∑

n=1

Xn cos (nzθ + φn) (10)

where N is the number of harmonics, Xn is the amplitude of the nth harmonics, φn is the phase of the nth

harmonics and z is the number of teeth of the gear.265

Let us consider the two-stage healthy gearbox shown in Figure 4. In a complete revolution, the angle
domain meshing vibration x(θ) related to the intermediate shaft may be expressed as:

x(θ) =

N∑
n=1

XII,n cos(nzIIθ + φII,n) +

N∑
n=1

XIII,n cos(nzIIIθ + φIII,n) (11)

where N is the number of harmonics, XII,n is the amplitude of the nth harmonics of gear II, φII,n is the
phase of the nth harmonics of gear II, zII is the number of teeth of gear II, XIII,n is the amplitude of the
nth harmonics of gear III, φIII,n is the phase of the nth harmonics of gear III and zIII is the number of270

teeth of gear III. Equation 11 states that the meshing vibration signal x(θ) is composed by the meshing
vibration related to gear II and the gearmesh vibration related to gear III since both gears II and III rotate
synchronously.

The presence of a localized gear fault causes a change in the vibration signal model that involves a local
amplitude modulation, a local phase modulation and an impulsive component. Hence assuming a localized275

faults in gear II, Equation 11 can be rewritten as:

xsim,II(θ) = xII(θ) + xIII(θ) + δ(θ) =

N∑
n=1

XII,n [1 + aII,n(θ)] cos [nzIIθ + φII,n + bn(θ)] +

N∑
n=1

XIII,n cos(nzIIIθ + φIII,n) + δ(θ)

10



where aII,n is the local amplitude modulation function due to localized fault in gear II, bII,n is the local
phase modulation function due to localized fault in gear II and δ is the impulsive component due to localized
fault in gear II. The local amplitude function aII,n and phase modulation function bII,n used in Equation
12 are described as a Gaussian shape window centred at angle θ0 as follows:280

an(θ) = Ane
− (θ−θ0)

σ2a (12)

bn(θ) = Bne
− (θ−θ0)

σ2
b (13)

where An and Bn are the amplitude of the local modulation and σ is the window width. In addition, δ(θ)
(Equation 12) is the damped impulse response that takes into account the impulsive component due to the
engagement of the faulted tooth. This component is defined as a train of Dirac impulses having unitary
amplitude convoluted by an arbitrary impulse response function (in the form of a 3th FIR filter):285

δ(θ) = s(θ) ∗ h (14)

where s is the train of unitary impulses corresponding to the fault occurrence and h is the impulse response
function. Note that Equation 14 is valid only in steady-state conditions. In fact, this formulation keeps its
physical meaning only when the frequency domain is equivalent to the order domain up to a proportional
constant (the fundamental rotation frequency). Hence, this is true only if the rotation frequency of the
system is, to a good approximation, constant.290

Analogously, the gear mesh vibration model can be written in the case of a localized fault in gear III:

xsim,III(θ) = xII(θ) + xIII(θ) + d(θ) + δ(θ) =

N∑
n=1

XII,n cos (nzIIθ + φII,n) + (15)

N∑
n=1

XIII,n [1 + aIII,n(θ)] cos [nzIIIθ + φIII,n + bn(θ)] + δ(θ)

Referring to the gearbox depicted in Figure 4, Equations 12 and 15 represent the gearmesh vibration models
used for the preliminary verification of the methodology.

4.2. Results and discussion

Two different simulated signals called xsim,II(θ) and xsim,III(θ) have been considered: the first simulated295

signal is described in Equation 12 and refers to the case of a localized defect in gear II; the second one is
described in Equation 15 and refers to the case of a localized defect in gear III. The parameters used for
the Matlab implementation of xsim,II(θ) and xsim,III(θ) are reported in detail in Table 1, while Figure 6
shows the simulated signals. In the first case the localized fault has been simulated on the 45th tooth of
gear II whereas in the second case the localized fault has been simulated on the 6th tooth of gear III, which300

correspond to an angle rotation of about 174 deg and 180 deg, respectively.
As mentioned in Section 4.1, the overall simulated signal is a superposition of the vibration signature in

the angle domain of the two gears, where the healthy gear is represented by pure tones and the faulty gear is
composed by pure tones having local amplitude and phase modulation with the contribution of an impulsive
component. De facto, such signals represent a synthesized version of the TSA computed with respect to305

the intermediate shaft and, according to the properties of the TSA, the contribution of the background noise
has been neglected. Considering the proposed diagnostic protocol, Step 1 can be skipped with this vibration
signal model since the starting signal is already the TSA of the signal.

The method has been performed using EMD, EEMD and CEEMDAN in order to investigate the effect
of different EMD algorithms on the effectiveness of the signal decomposition. In agreement with the settings310

suggested in the literature, 500 averages and white noise standard deviation of 0.02 has been used for the
EEMD and CEEMDAN. The results of the signal decomposition of xsim,II(θ) and xsim,III(θ) is reported

11



Table 1: Simulated signal parameters.

xsim,II(θ) xsim,III(θ)
z 93 12
N 3 3
X [6.000 3.639 2.207] [6.000 3.639 2.207]
A [1.075 3.668 -4.518] [1.075 3.668 -4.518]
B [0.862 0.319 -1.308] [0.862 0.319 -1.308]
σa 0.011 0.087
σb 0.011 0.087
θ0 174.179 180.000
h [1.000 -0.300 0.910] [1.000 -0.300 0.910]
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Figure 6: Simulated signals in the angle domain: (d) xsim,II and (a-c) its components, (h) xsim,III and (e-g) its components.

in Figures 7 and 8, respectively. The residue signal, which is a monotonic function, is not displayed since it
is not useful for the goal of this work. It should be noted that EMD returns a limited number of modes (5
excluding the residue, i.e. the monotonic mode) whereas the total number of tones present on the simulated315

signal is 6 since it is equal to the total number of gearmesh harmonics accounted. This behavior can be
interpreted as poor quality of the signal decomposition using EMD with respect to EEMD and CEEMDAN.

For the sake of completeness, the estimated PCC values are collected in Figure 9 where the square
symbol refers to cIIi and the star symbol refers to cIIIi . In each diagram, the gray horizontal line refers to
the threshold corresponding to PCC = 3. According to the proposed criterion, the representative signals of320

gear II and gear III are showed in Figures 10 and 11.
The visual inspection of the representative signals shown in Figure 10 highlights that all the considered

EMD algorithms has led to satisfying results. In this case, as expected, representative signal M II related
to the 93 teeth gear exhibits a localized signal distortion at about 170 deg due to the simulated defect
(in agreement to the input data in Table 1) whereas the waveform M III does not show irregularities. It325

should be remarked that M III estimated by the EMD (Figure 10(d)) is less regular than the others just
in correspondence to the angle where M II has the local amplitude/phase modulation. Table 2 collects the
statistical indicators estimated by M II and M III . All the indicators return a positive deviation between
the faulty gear and the healthy one, with the only exception of the kurtosis when the EMD is performed;
this behavior is in agreement with the observations previously made by the visual inspection of the signal.330

Similar remarks can be mentioned by observing Figure 11. Indeed, M III shows a sudden change of
the signal amplitude at about 180 deg that corresponds to the position of the simulated fault (see Table
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Figure 7: IMF sets of xsim,II obtained by using EMD, EEMD and CEEMDAN.

Table 2: CIs for the simulated signal with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 2.395 4.017 1.854 0.310

Gear III (healthy) 2.742 2.673 1.083 0.0796
Gear II vs Gear III [%] -12.671 50.269 71.244 291.452

EEMD
Gear II (faulty) 2.484 4.494 1.872 0.173

Gear III (healthy) 2.165 2.014 1.036 0.022
Gear II vs Gear III [%] 14.713 123.180 80.722 667.777

CEEMDAN
Gear II (faulty) 2.340 4.284 1.857 0.205

Gear III (healthy) 2.177 1.992 1.027 0.016
Gear II vs Gear III [%] 7.487 115.058 80.777 1156.891

1). Again, the waveform of M II does not exhibits any abrupt change, although the EMD returns a quiet
irregular waveform with respect to the other EMD algorithms. In fact, the indicators collected in Table 3
highlights that negative percentage differences are present only for the EMD, as expected. However, the335

method performed using the EEMD and the CEEMDAN has allowed to clearly identify the faulty gear both
by visual inspection and by comparing condition indicators.

Finally, the validation of the method by simulated signals has pointed out the following aspects:

• the signal decomposition by means of the EMD is the worst one among the other EMD algorithms;
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Figure 8: IMF sets of xsim,III obtained by using EMD, EEMD and CEEMDAN.

Table 3: CIs for the simulated signal with localized fault in gear III.

kurtosis CF CPF NSVP

EMD
Gear II (healthy) 2.167 2.989 1.625 0.288
Gear III (faulty) 3.980 4.146 1.579 0.261

Gear III vs Gear II [%] 83.697 38.733 -2.756 -9.628

EEMD
Gear II (healthy) 2.062 2.569 1.329 0.007
Gear III (faulty) 2.855 3.578 1.562 0.334

Gear III vs Gear II [%] 38.482 39.266 17.488 4958.513

CEEMDAN
Gear II (healthy) 2.039 2.357 1.309 0.013
Gear III (faulty) 2.647 3.428 1.469 0.351

Gear III vs Gear II [%] 29.847 45.404 12.228 2528.605

• the faulty gear has been correctly identified in both the simulated case;340

• NSVP is the most sensitive indicator.

5. Application to real vibration signals in the case of localized gear faults

In the current section, the proposed methodology has been performed in 2 different cases studies, dis-
cussing the main results. Subsection 1 concerns the investigation of the method using a dedicated gear test
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Figure 9: PCC values (a-c) in the case of the simulated signal with localized fault in gear II and (d-e) in the case of the
simulated signal with localized fault in gear III.
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Figure 10: Representative signals for (a-c) gear II and (d-f) gear III in the case of the simulated signal with localized fault in
gear II.

bench whereas subsection 2 regards a more complex transmission mounted on a test rig. The main results345

have been discussed, focusing on the effectiveness of the proposed methodology performed using actual
vibration signals.

5.1. Case 1

The first case study is a two stage gearbox mounted on a dedicated test rig shown in Figure 12a located
at the Engineering Department of the University of Ferrara. Detailed information about this test rig can350

be found in [39]. The investigated gearbox is composed by two stages of helical gears: the first one having
18 and 71 teeth whereas the second one 12 and 55 teeth. Hence, referring to the gearbox scheme in Figure
4, gear II and gear III have 71 teeth and 12 teeth, respectively. The localized fault, i.e. gear tooth spall,
has been artificially seeded on the 71 teeth gear, as shown in Figure 12b. The test has been carried out in
steady-state condition at 3600 rpm and nominal load of 48.8Nm.355

The vibration signals in the radial direction have been collected by means of B&K piezoelectric accelerom-
eter type 4943 placed on the bearing support of the first stage pinion with sampling frequency 12.4 kHz for
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Figure 11: Representative signals for (a-c) gear II and (d-f) gear III in the case of the simulated signal with localized fault in
gear III.
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Figure 12: (a) Experimental setup of Case 1 and (b) particular of the spalled tooth.
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Figure 13: (a) Time Synchronous Average related to the intermediate shaft of Case 1 (the dashed circle highlights the impulsive
signal component due to the damaged tooth engagement) and (b) the related spectrogram (300 samples of window length and
75% overlap).

a total time length of 4 s while the input shaft speed has been measured by a tachometer sensor.
Figure 13 collects the TSA of the measured vibration signal as well as its spectrogram. The TSA has

been performed in the angular domain taking into account 4260 points per revolution. The localized fault360

is easy to recognize on both the diagrams since it appears as a sudden increase of the signal amplitude in a
slight rotation range. Thus, even if the presence of the gear tooth spall is obvious, these approaches are not
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Figure 14: IMF sets of Case 1 obtained by using EMD, EEMD and CEEMDAN.

able to identify which gear own the fault.
As done before, three different EMD algorithms have been considered in order to verify the sensitivity of

the final results with respect to the adopted EMD method. The signal decomposition has been performed365

using the same settings reported in Section 4.2 and the results are collected in Figure 14. According to the
PCC values collected in Figure 15, the representative signals of gear II and gear III have been computed,
as reported in Figure 16. From the visual inspection of the representative signals in Figure 16 is not hard
to identify the faulty gear. Indeed, the waveform related to the 71 teeth wheel exhibit a large amplitude
increase at 170 deg that is the effect of the engagement of the faulty tooth. However, Figure 16(d,e) shows370

a sudden change of the signal amplitude at about 170 deg that corresponds exactly to the angle position of
the defect in gear II (clearly visible in Figure 16(a-c) and in the TSA in Figure 13(a)). The diagram related
to the CEEMDAN in Figure 14(e) actually displays a local change of amplitude too. However it should be
noted that such a change occurs at about 250 deg, which is not in agreement of the fault position shown on
the TSA of the signal.375

Unfortunately, the visual inspection of the signal can be open to different interpretations, thus the fault
identification is determined by the comparison of condition indicators. Table 4 highlights a significant
difference between gear II and gear III, with a minimum percentage difference of 93.872. The proposed CIs
(i.e. CPF and NSVP) are the most sensitive to the presence of an impulsive component in the vibration
signature as demonstrated by the larger percentage difference with respect to the other traditional CIs.380

Finally, in this first experimental case the proposed method is effective on the identification of the faulty
gear. Moreover, CEEMDAN is the EMD algorithm that returns the best result taking into account the CIs
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Figure 15: PCC values of Case 1 estimated taking into account (a) EMD, (b) EEMD and (c) CEEMDAN.
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Figure 16: Representative signals of (a-c) gear II and (d-f) gear III for Case 1.

Table 4: CIs for the vibration signal of Case 1, with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 10.220 8.785 4.437 1.395

Gear III (healthy) 3.785 8.021 2.288 0.251
Gear II vs Gear III [%] 170.043 142.209 93.872 457.089

EEMD
Gear II (faulty) 9.945 7.806 4.444 1.205

Gear III (healthy) 2.962 2.931 1.942 0.309
Gear II vs Gear III [%] 235.745 166.309 128.859 290.713

CEEMDAN
Gear II (faulty) 8.031 7.177 4.332 1.139

Gear III (healthy) 3.141 3.036 2.141 0.112
Gear II vs Gear III [%] 155.666 136.382 102.324 917.173

values as well as the waveform of the representative signals.

5.2. Case 2

The second case study concerns a more complex gearbox driven by an asynchronous motor. Figure 17385

shows the experimental setup: the time domain vibration signal in the radial direction has been acquired
by a mono-axial piezoelectric accelerometer (PCB 353B18) with a sample frequency of 25.600 kHz, while
the tachometer signal has been simultaneously collected using a tachometer probe with zebra tape. The
transmission exhibits an abnormal loudness due to a localized gear fault on the two-stage gearbox just after
the input cardan shaft (see Figure 17(b)). The steady-state operational test has been carried out at 600rpm390
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Figure 17: Experimental setup of Case 1: (a) transmission system on the test bench, (b) schematic of the transmission, (c)
accelerometer and (d) tacho probe with zebra tape.
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Figure 18: (a) Time Synchronous Average related to the intermediate shaft of Case 2 (the dashed circle highlights the impulsive
signal component due to the damaged tooth engagement) and (b) the related spectrogram (225 samples of window length and
75% overlap).

at the input cardan shaft. Considering the gearbox layout in Figure 4, gear II has 92 teeth whereas gear III
has 10 teeth.

Gear II presents a bump on a tooth flank caused by the handling during the surface hardening process.
Such a faulty tooth flank engages only in the reverse motion and it has been verified by visual inspection.
Furthermore, such a natural defect is clearly visible in the TSA signal performed on the intermediate shaft395

using 3680 samples per revolution, as reported in Figure 18(a). The presence of the fault is clear also on
the spectrogram as well in Figure 18(b). As in Case 1, these signal processing techniques are not able to
identify if the defect is related to the gear of 92 or 10 teeth.

Again, this experimental case study has been investigated by using the same modus operandi of case
1. For the sake of completeness, signal decomposition results and the PCC values for the estimation of the400
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Figure 19: IMF sets of Case 2 obtained by using EMD, EEMD and CEEMDAN.

representative signals are reported in Figure 19 and Figure 20, respectively. By going directly to the visual
inspection of the representative signals (Figure 21), it can be noted that in this case the different EMD
algorithms have a significant impact on the final results of the methods. From the physical standpoint, the
representative signal related to gear II (see Figure 21(a-c)) correctly reflects the presence of the fault at
about 170 deg due to the localized increase of the signal amplitude. However, this behavior is also present405

on the representative signal related to gear III computed with the EMD and the EEMD (see Figure 21(d-e)).
On the other hand, the representative signals estimated with the CEEMDAN are easy to interpret since
the signal related to gear III (Figure 21(f)) does not contain any remarkable local change of amplitude that
can be attributed to a localized gear fault. Therefore, the only EMD algorithm that allows a clear visual
interpretation of the signals is the CEEMDAN.410

The remarks gathered by the visual inspection of the signal can be confirmed by analyzing the CIs
collected in Table 5. In fact, the higher percentage differences between the faulty gear and the healthy one
are achieved considering the CEEMDAN. Furthermore, it should be note that the results obtained with the
EEMD are not satisfying since the percentage difference are low for the CF and CPF while the kurtosis
completely fail on the identification of the faulty gear.415

Although this experimental case has been more difficult to handle than the first one, the methodology
has provided a correct result when the CEEMDAN is performed. The use of several CIs allow to define an
objective criterion in order to define which gear is faulty, reducing the error due to the user interpretation.
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Figure 20: PCC values of Case 2 estimated taking into account (a) EMD, (b) EEMD and (c) CEEMDAN.
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Figure 21: Representative signals of (a-c) gear II and (d-f) gear III for Case 2.

6. Conclusions

Commonly, the gear fault detection is restricted to the identification of the stage containing the faulty420

gear rather than the faulty gear itself. However, the exact knowledge of the faulty gear is of prime importance
in industrial applications. The goal is to propose a methodology being able to overcome the limit of tradi-
tional signal processing techniques that detect just the stage of the faulty gear. For this purpose, a EMD-
based methodology has been presented for the local gear fault diagnosis, proposing also two new condition
indicators based on the RMS values estimated on the angular pitch rather than the entire vibration signal.425

In order to test the reliability and the robustness of the methodology, simulated signals and two different
real case studies have been analyzed by means of three different EMD algorithms. The first experimental
case address a two-stage gearbox having an artificial gear tooth fault whereas the second one concerns a
transmission system with a natural defect. The methodology successfully identifies the faulty gear in both
the experimental tests, especially when the CEEMDAN is performed. On the basis of this results, the430

CEEMDAN is the most effective signal decomposition technique, since it returns the clearest results from
both the qualitative and quantitative standpoints. Moreover, the proposed CIs - especially the NSVP - are
very sensitive to the presence of a localized change of the vibration signature, simplifying the detection of
the faulty gear.

On these grounds, the presented method can be considered reliable on the identification of a faulty435

gear when the fault occurs in a shaft with multiple gears. Eventually, this diagnosis method is particularly
suitable for industrial application since it is completely automatic.
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Table 5: CIs for the vibration signal of Case 2, with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 48.803 10.910 13.704 0.085

Gear III (healthy) 12.182 4.979 4.317 0.089
Gear II vs Gear III [%] 300.604 119.140 217.457 -5.017

EEMD
Gear II (faulty) 6.100 5.304 3.694 0.064

Gear III (healthy) 7.526 4.072 2.805 0.010
Gear II vs Gear III [%] -18.950 30.240 31.677 541.743

CEEMDAN
Gear II (faulty) 19.974 8.444 7.079 0.476

Gear III (healthy) 2.455 2.712 1.549 0.013
Gear II vs Gear III [%] 713.512 210.441 357.026 3696.969
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