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11Abstract
12This paper presents a comparison of different short-term water demand forecasting models. The
13comparison regards six models that differ in terms of: forecasting technique, type of forecast
14(deterministic or probabilistic) and the amount of data necessary for calibration. Specifically,
15the following are compared: a neural-network based model (ANN_WDF), a pattern-based
16model (Patt_WDF), two pattern-based models relying on the moving-window technique
17(αβ_WDF and Bakk_WDF), a probabilistic Markov chain-based model (HMC_WDF) and a
18naïve benchmark model. The comparison is made by applying the models to seven real-life
19cases, making reference to the water demands observed over 2 years in district-metered areas/
20water distribution networks of different sizes serving a different number and type of users. The
21models are applied in order to forecast the hourly water demands over a 24-h time horizon. The
22comparison shows that a) models based on different techniques provide comparable, medium-
23high forecasting accuracies, but also that b) short-term water demand forecasting models based
24on moving-window techniques are generally the most robust and easier to set up and
25parameterize.

26Keywords Water demand . Short-term forecasting .Movingwindow
27

281 Introduction

29Water demand forecasting provides a valid contribution to the design and optimal management
30of water distribution systems. For example, both the design and construction of new distribution
31networks and the expansion or upgrading of existing networks require substantial investments,
32and there is thus a need to conduct preliminary assessments that take into account the long-term
33development of the area involved in terms of water demand. Similarly, the management of the
34installations and facilities serving supply and distribution networks (e.g. water treatment plants,
35pumping stations, etc.) and control of the networks themselves, as well as of the devices
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36installed in them (e.g. valves), can be optimised based on knowledge of the entity of future
37water demands over short time horizons.
38Depending on the levels of planning at which they are used, water demand forecasting
39models can be distinguished according to the forecast horizon (i.e. the time interval in which a
40forecast is made) and forecast frequency (i.e. the time step at which water demand forecasts are
41generated within the time horizon) (see Donkor et al. (2014) and Ghalehkhondabi et al. (2017)
42for a general review of water demand forecasting models). Long-term models generally
43provide demand forecasts on a yearly or monthly basis with a time horizon ranging from 1
44to 10 years and are mainly used for design purposes or for allocating resources (Babel and
45Shinde 2011). Short-term models, by contrast, forecast water demand over more limited time
46horizons, ranging from 1 month to 1 day, with a time step ranging from daily to sub-hourly and
47are mainly used for management purposes (Arandia et al. 2016; Bakker et al. 2013; Msiza et al.
482008; Shabani et al. 2018).
49In this paper we focus on short-term forecasting models. These models can be classified on
50the basis of the techniques they use to generate the forecast itself, the type of forecast provided
51(deterministic or probabilistic), and the information that needs to be gathered in order to
52develop the model prior to its application. As regards the technique used, it is possible to
53identify a first category which includes all the models based on data-driven techniques, such as
54multilinear and nonlinear regression (Adamowski et al. 2012), artificial neural networks (Jain
55et al. 2001; Anele et al. 2017), support vector machines (Msiza et al. 2008), random forests
56(Chen et al. 2017), project pursuit regression (Herrera et al. 2010) and genetic expression
57programming (Shabani et al. 2018). Within this category, the models based on artificial neural
58networks (ANN) (Romano and Kapelan 2014) take on particular relevance. They have been
59widely used in the scientific literature to develop water demand forecasting models and
60compared with other forecasting models, all similarly based on different data-driven tech-
61niques (see, for example, Herrera et al. 2010; Adamowski et al. 2012).
62The second category includes forecasting models based on the recognition of periodic
63patterns, in which various techniques of time series analysis are exploited with the aim of
64simulating the patterns that generally characterise water demands over different periods of
65time. Zhou et al. (2000, 2002) and Gato et al. (2007) use a water demand forecasting method
66that distinguishes between a base component and a seasonal component. Alvisi et al. (2007)
67provide a daily and hourly water demand forecast derived by adding a persistence component,
68modelled using regression techniques, to seasonal, weekly and daily patterns. Caiado
69(2010) exploits various techniques such as Holt-Winter, ARIMA and generalized auto-
70regressive conditional heteroskedasticity (GARCH) for pattern recognition. Finally,
71Bakker et al. (2013) and Pacchin et al. (2017) take into account, at the forecasting stage, the
72periodicities in demand determined through factors calibrated on the basis of a moving window
73of observed data.
74Considering the type of output provided, it should be noted that although the majority of
75short-term water demand forecasting models proposed in the literature are of the deterministic
76type, stochastic models have also been recently proposed. Among them, it is worth mentioning
77the Bayesian model developed by Hutton and Kapelan (2015), a cascade model aimed at
78quantifying and reducing the uncertainty of forecasting models, and the model proposed by
79Cutore et al. (2008), which consists in the application of the SCEM-UA algorithm (Vrugt et al.
802003) to calibrate the parameters of a neural network and estimate the uncertainty associated
81with the latter in order to estimate, in addition to forecasts of a deterministic type, the
82uncertainty of the model itself. The model proposed by Alvisi and Franchini (2017), also
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83adopted by Anele et al. (2018), makes use of the model conditional processor (MCP) (Todini
842008), which, by combining the performances of different forecasting models, enables an
85estimation of predictive uncertainty. Finally, the Markov chain-based model proposed by
86Gagliardi et al. (2017) provides an estimate of the probabilities that future demands will fall
87within pre-assigned ranges.
88Considering, finally, the observed data that must necessarily be available before the models
89themselves can be applied, it may be noted that water demand forecasting models need to
90undergo an initial parameter calibration process, which is carried out using a set of observed
91data (Bakker et al. 2013). The size of the dataset will vary according to the structure on which
92the models are based. For example, neural network-based models must be put through an
93initial training stage in which the network parameters are calibrated (weights and
94bias). The length of the set of observed data to be used for calibration is not fixed a
95priori, but must be sufficient to ensure that the variability of the water demands is
96taken fully into account since an ANN model does not have the capability to
97extrapolate outside the range of data employed for training (Zubaidi et al. 2018). In
98the case of models based on pattern reproduction, a calibration needs to be performed
99on the basis of observed data to enable an estimation of the factors characterising the
100periodic patterns. In order to provide a complete estimation of these factors, the
101majority of models must be calibrated using a set containing at least 1 year of observations.
102Indeed, 1 year is the minimum time window necessary in order to observe both the short term
103(i.e. daily and weekly) fluctuations of the water consumptions and the long term (i.e. seasonal)
104oscillations (Zhou et al. 2000; Alvisi et al. 2007).
105In contrast, the models based on a moving window of data (Bakker et al. 2013; Pacchin
106et al. 2017), by their very nature, do not require an ample, fixed dataset for calibration
107purposes. In fact, these models generate a parameter estimate based on the observed data in
108a moving window, typically a few weeks long, which moves forward together with the
109forecasting time. Therefore, unlike the models that require a calibration process, in which
110the parameters are estimated prior to their real-time use, in moving window-based models the
111parameters are updated at every time step.
112This paper presents a comparison of short-term water demand forecasting models whose
113features vary greatly in terms of the techniques they are based on (data-driven and pattern-
114based), the type of forecast provided (deterministic or probabilistic) and the informa-
115tion that needs to be gathered for the purpose of fine-tuning the model itself prior to
116its application. The aim is to highlight the pros and cons of the various approaches
117and thus provide useful information about the type and structure of model to be used
118to set up a short term water demand forecasting model. Specifically, the following
119models are compared: a neural network-based model, a pattern-based model, two
120models with a moving window structure, a Markov chain-based model and, finally,
121a benchmark model based on a naïve approach. These models are applied in order to
122forecast hourly water demands over a 24-h time horizon. The comparison is made by applying
123the models to seven case studies, making reference to water distribution networks or district-
124metered areas of different sizes.
125A brief description of each of the six models applied to predict hourly demands is given
126below (section 2). The seven case studies are presented in section 3, along with a
127description of their main features. The results of the application of the six models in
128the seven case studies are then analysed and discussed (section 4). The paper concludes with
129some final considerations (section 5).

A Comparison of Short-Term Water Demand Forecasting Models
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1302 Models Compared

131The short-term water demand forecasting models compared in this study are the following: two
132deterministic models requiring a preliminary calibration, one based on an artificial neural
133network (Alvisi and Franchini 2017), hereinafter identified as ANN_WDF, and one based on
134the reproduction of periodic water demand patterns (Alvisi et al. 2007), hereinafter identified
135as Patt_WDF; two models, similarly of the deterministic type, but based on the use of a
136moving window of previously observed data, specifically, the model proposed by Bakker et al.
137(2013), hereinafter identified as Bakk_WDF, and the model proposed by Pacchin et al. (2017),
138hereinafter identified as αβ_WDF; finally, a probabilistic model based on the use of the
139Markov chains (Gagliardi et al. 2017), hereinafter identified as HMC_WDF. It is specified that,
140in order to compare the latter model with the above-mentioned deterministic models, its ability
141to provide results of a probabilistic type is not exploited or assessed within the framework of
142this study; that is, the study does not consider the confidence interval it produces in relation to
143the forecast provided.
144A sixth benchmark model of the naïve type (Gagliardi et al. 2017) was also
145considered by way of comparison. A brief description of each model is provided
146below. The reader is referred to the corresponding original publications for further
147information about each of them.

1482.1 ANN_WDF Model

149The ANN_WDF model is based on the use of artificial neural networks (Alvisi and Franchini
1502017). Such networks draw inspiration from biological neural networks and their ability to
151receive and analyse incoming signals and produce output signals. The most common types of
152artificial neural networks include the multilayer perceptron (MLP), in which the neurons are
153organized in layers: the first layer (input layer) receives incoming information and, after
154appropriately weighting the information received, transfers it to one or more intermediate
155layers (hidden layers) where the information is processed by means of predefined functions
156before being delivered to the output layer (Romano and Kapelan 2014). More specifically, the
157neural network model adopted here is aimed at forecasting hourly water demands over a time
158horizon of K = 24 h; it is based on a three-layer feed-forward MLP neural network
159characterised by a single hidden layer. Every hour the network receives, as input,
160data related to the observed demands of the previous 24 h and a binary index
161identifying the type of day (weekday or weekend day) and outputs are the demand
162forecast for the next 24 h. The number of the neurons making up the hidden layer is
163set in the model calibration phase; the aim is to identify the smallest number of
164neurons that can be used without penalizing the forecasting accuracy (Hsu et al.
1651995). A log sigmoid transfer function is used in the hidden layer and a pure linear
166one in the output layer. The network parameters, weights and bias are estimated
167during network calibration using the Levemberg Marquardt algorithm (Hagan and
168Menhaj 1994). In particular, in order to prevent overfitting in the calibration phase,
169the early stopping technique is used and the calibration dataset is divided into two
170subsets containing 80% and 20% of the data, respectively; the first subset is used for
171training and the second for testing the network. In order to avoid the risk of signal saturation
172(Hsu et al. 1995), the data are normalized and scaled in such a way as to belong to the interval
173[0:1]. The normalization is performed using the mean and standard deviation of demands in the
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17424 h of the day, calculated using the calibration dataset, with a distinction being made between
175weekdays and weekend days. The outputs provided by the network then undergo a process
176of de-normalization and de-scaling.

1772.2 Patt_WDF Model

178The Patt_WDF model (Alvisi et al. 2007) is structured in such a way as to provide a
179forecast of water demands for the next K = 24 h based on a reproduction of the
180periodic patterns characterising the water demand time series, namely, (a) a seasonal
181and weekly cyclical pattern of daily water demands and (b) a daily cyclical pattern of
182hourly water demands, and on the reproduction of persistence phenomena. In greater
183detail, the model is divided into two modules, a daily one and an hourly one. In the
184first module, a forecast is made of the mean daily water demand Qd;for

m of the Julian
185day (or days) m (with m = 1,2,..,365) in which the 24 h of the forecast fall, taking
186into account the seasonal and weekly cyclical patterns and short-term persistence,
187using the following formula:

Qd;for
m ¼ Qd;F

m þΔd
i;s þ δdm ð1Þ

188189where Qd;F
m represents the seasonal component modelled by means of a Fourier

190series,Δd
i;s is a correction factor that takes into account the weekly periodicities, i

191being the day of the week (with i = 1,2,..,7, Monday, Tuesday,.., Sunday) and s the season (with
192s = 1,2,3,4, winter, spring, summer, autumn) corresponding to the Julian day m and δdm a
193correction factor that takes into account the short-term daily persistence represented by means
194of an autoregressive model AR(1) (Box et al., 1994).
195In the hourly module an estimate is made of the average hourly water demand

196Qh;for
tþk for k hours ahead of the current hour t (with k = 1,2,..,K), obtained as the

197sum of the mean daily water demand estimated in the daily module, Qd;for
m , the daily

198periodicity component, represented by the hourly correction factor Δh
j;i;s, j being the

199hour of the day (with j = 1,2,..,24), i the day of the week and s the season corresponding to the
200forecasted hour t + k, and an error εt + k, which takes into account the short-term hourly
201persistence modelled by means of a regression process, taking into account the errors observed
202one and 24 h before the current forecast time t:

Qh;for
tþk ¼ Qd;for

m þΔh
j;i;s þ εtþk ð2Þ

203204205All parameters of the model (seasonal component Qd;F
m , correction factor that takes

206into account the weekly periodicity Δd
i;s, hourly correction factor Δh

j;i;s, coefficients of

207the AR(1) models and of the regression, which represent the persistence components)
208are estimated in the calibration phase using a dataset containing the observed demands
209relating to a period of at least a year, and subsequently applied to the validation set.
210At least 1 year of observed data is necessary to fully capture the seasonal periodic
211behaviour of water consumptions modelled by means of a Fourier series (seasonal
212component Qd;F

m in Eq. 1) (Zhou et al. 2000) and to properly characterize the weekly
213(see Eq. 1) and hourly factors (see Eq. 2) which, as well, depend on the season s
214(Alvisi et al. 2007).

A Comparison of Short-Term Water Demand Forecasting Models
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2152.3 Bakk_WDF Model

216In its original version, the Bakk_WDF model is designed to be used to forecast the average
217water demand over a time horizon of 48 h with a 15-min time step (Bakker et al.
2182013). However, in this study it was decided to use it to forecast hourly water
219demands over a time horizon of K = 24 h, as in the case of the other models, first
220of all so that a fair comparison could be made and, moreover, because the observed data
221consisted of historical hourly series.
222The model is based on a procedure that can be divided into three steps: in step 1 the average
223water demand for the next 24 h is determined; in step 2 the average water demand for each step
224of the forecast horizon is estimated; and in step 3 the entity of the hourly water
225demand referred to as “extra sprinkle water demand” is estimated, where applicable;
226the latter relates to a particular use of potable water (i.e. for gardening) in the evening
227hours of some days of the year.
228More specifically, in step 1 the average water demand for the next 24 h after the forecasting

229time t (Qd;for;corr
t ) is forecast based on the mean of the hourly demands observed in the previous

23048 h, duly corrected:

Qd;for;corr
t ¼ C1⋅ ∑

t−1

g¼t−24
Qh;obs;corr

g

 !

þ C2⋅ ∑
t−25

g¼t−48
Qh;obs;corr

g

 !

ð3Þ

231232where C1 and C2 are two constants and Qh;obs;corr
g are the hourly demands observed in the

233previous 48 h duly corrected by means of a specific factor typical of the day of the week (see
234Bakker et al. 2013).
235In step 2 the average hourly water demands Qh;for;corr

tþk are determined for the generic lead

236time k (with k = 1,2,..,K) based on the daily characterization, given by the coefficient f di , and

237the hourly characterization, given by the coefficient f hi; jþk i being the day of the week and j the
238hour of the day:

Qh;for;corr
tþk ¼ Qd;for;corr

t ⋅ f di ⋅ f
h
i; jþk ð4Þ

239240241In step 3 the extra sprinkle water demand Qsprink;for
m is determined in the hour m in time frame

242between 18:00 and 0:00 h; once the days for which it is necessary to calculate this
243supplementary demand have been identified, the procedure is carried out in the same
244manner as in steps 1-2 for the standard water demand, but in this case using a characteristic

245coefficient f sprinkm .
246The total hourly water demand for every lead time k (with k = 1,2,..,K) of the
247horizon K = 24 h, is:

Qh;for;tot
tþk ¼ Qh;for;corr

tþk þ Qsprink;for
m ð5Þ

248249250In this study, as suggested in the parameter sensitivity analysis conducted by Bakker et al.
251(2013), it was chosen to adopt a time window of 5 weeks of observed data to determine the

252coefficient f di and a window of 10 weeks for f hi; j and f sprinkm .

253Similarly, as regards the values of the constants C1 and C2 used in the water demand
254forecasting procedure, it was chosen to use the ones indicated by Bakker et al. (2013), 0.8 and
2550.2 respectively.

E. Pacchin et al.
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2562.4 αβ_WDF Model

257αβ_WDF is a model that provides a water demand forecast for the next K = 24 h based
258exclusively on the observed demands within a narrow interval preceding the time the forecast
259was made Pacchin et al. (2017). In fact, the model is based on a moving time window of
260observed data, within which it is possible to identify the characteristic patterns of the days
261making up the week; the window is characterised by a length of NWweeks and moves together
262with the forecasting time t. The forecasting procedure is made up of two steps: in the first step,
263an estimate is made of the average water demand over the forecast horizon, consisting of K =
26424 h; in the second step, based on the forecast made in the first step, the water demand of each
265of the 24 h of the forecast horizon is estimated by means of suitable hourly coefficients. More
266precisely, where t is the current hour in which the forecast is made and V the vector of NW
267hours corresponding to the same hour j of the day and the same type i of day of the week as the
268one in which t falls, i.e. V = {v1; v2; … ; vNW} = {t − 1 ⋅ 24; t − 7 ⋅ 24 ⋅ 2; … ; t − 7 ⋅ 24 ⋅NW}, in

269the first step the average water demand Qd;for
t over the K = 24 h after the time t is estimated by

270means of the following relation:

Qd;for
t ¼ αt⋅Q

d;obs

t−24 ð6Þ

271272where Qd;obs
t−24 is the average water demand observed in the 24 h preceding the hour t and αt is a

273coefficient having a specific value for the 24-h horizon that begins at the time t:

αt ¼
1

NW
⋅ ∑
vnw¼v1

vNW Q
d;obs

vnw

Q
d;obs

vnw−24

ð7Þ

274275where Qd;obs
vnw is the average water demand observed in the 24 h following the hour vnw (with

276nw = 1, 2,…, NW) and Qd;obs
vnw−24 is the average water demand observed in the 24 h preceding the

277hour vnw (i.e. da 24∙7∙nw-24 a 24∙7∙nw).
278Once the average water demand Qd;for

t of the K = 24 h has been estimated, in the second

279step the hourly water demand Qh;for
tþk of the hour t + k is estimated by means of the

280following relation:

Qh;for
tþk ¼ Bt;k ⋅Qd;for

t ð8Þ

281282where βt, k is the coefficient characteristic of the lead time k (within the time horizon
283of K = 24 h) that starts at the time t:

βt;k ¼
1

NW
⋅ ∑
vnw¼v1

vNW Qh;obs
vnwþk

Q
d;obs

vnw

ð9Þ

284285where Qh;obs
vnwþk is the hourly water demand in the k-th hour after the hour vnw (with

286nw = 1, 2,…, NW). It should be noted that at every forecasting time t, 24 values of
287the coefficient βt,k are calculated, one for every lead time k.
288From an operational standpoint, the αβ_WDF model is applied using a moving window
289with a length of NW= 4 weeks so that the seasonal fluctuations in consumption can be
290characterised (Pacchin et al. 2017).

A Comparison of Short-Term Water Demand Forecasting Models
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2912.5 HMC_WDF Model

292The homogeneous Markov model is based on the application of the statistical concept of
293homogeneous Markov chains to water demand forecasting (Gagliardi et al. 2017). In this
294model, the hourly water demand is identified as the variable of a discretized Markov process,
295in which it is possible to estimate, from a probabilistic viewpoint, the future states of
296the process once the current state is known and the tendency to transition into
297different pre-identified states at subsequent points in time. In general, depending on
298whether its tendency to transition from one state to another is time dependent or not,
299the process may be identified as non-homogeneous or homogeneous; it is therefore
300possible to formulate two different types of Markov models (non-homogeneous
301Markov chain – NHMC and homogeneous Markov chain – HMC model); in partic-
302ular, it is possible to demonstrate that the HMC_WDF model provides greater
303forecasting accuracy (Gagliardi et al. 2017) and it was thus decided to apply it in
304this case. The periodicities that generally influence water demands (i.e. seasonal,
305weekly and daily) must be removed from the data processed by the HMC_WDF
306model; this is achieved by subjecting the original data to a de-seasonalization and
307normalization process. In the first stage, the daily demand of the Julian day m of the
308year Qd;F

m , modelled using a Fourier series, is subtracted from every hourly demand

309Qh
t of the original series:

Qh;des
t ¼ Qh

t −Q
d;F
m ð10Þ

310311312In the second stage, the demands are normalized on the basis of the mean values μ and
313standard deviation σ of the hourly observed data entered in the calibration phase
314(Gagliardi et al. 2017). More specifically, the mean values and standard deviations
315are defined by distinguishing each of the 24 h of the day and distinguishing
316weekdays (Mon-Fri) from weekend days (Sat-Sun) within the different seasons (since
317the daily pattern may vary in the different seasons, especially in the case of areas
318frequented by tourists). Once the data have been normalized, forecasting is performed
319by identifying a number NC of classes in the domain of variability of consumption.
320At this point it is possible to estimate the NC probabilities that the water demand in
321the instant following the current one will belong to each class, contained in the

322vector pfortþ1:

pfortþ1 ¼ pobst % ∏̂ ð11Þ

323324where pobst is the probability vector representing the probabilities of the water
325demand belonging to the different classes at the current time, based on real observed

326data, and ∏̂ is the transition matrix (time independent), which contains all the probabilities of
327demand transitioning from one class to another in consecutive instants, estimated during the
328calibration phase. It is possible to extend the forecast to lead times k greater than 1 by taking into
329account, at each instant in time, the forecast obtained at the preceding instant and iteratively
330applying Eq. 12:

pfortþk ¼ pfortþk−1 % ∏̂conk > 1 ð12Þ
331332
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333On the basis of this probabilistic forecast, it is possible to obtain an expected value of the

334demandsQfor
tþk by computing a weighted average of the representative values of each class (e.g.

335the mean value of each class) contained in the vector u = [u1,u2,…,uNC] and using, as weights,
336the estimated probabilities:

Qfor
tþk ¼ ∑

NC

nc¼1
unc⋅pfornc;tþk ð13Þ

337338339For the purpose of comparing the forecasting models considered in the present study, use was
340made only of the information obtained from the model, i.e. the information provided
341by Eq. 13.
342Finally, it should be stressed that this model requires a parameterization stage in which the
343various parameters are estimated: the factors necessary for deseasonalization and normaliza-

344tion of the data and the transition matrix ∏̂.
345In practice, the HMC_WDF model is applied assuming a number of classes NC equal to 4.

3462.6 Naïve Model

347The naïve model has a decidedly simpler structure than all of the other models analysed and
348applied in this study. The naïve model adopted as the benchmark is defined in the literature as
349the ‘mean’ model (Gelažanskas and Gamage 2015). Indeed, in this case the forecast is based
350on the mean values μ= [μ1, μ2,…, μ24] of the water demands associated with each of the 24 h
351of the day calculated on the basis of the calibration dataset. The water demand forecast for a
352generic hour j of the day is assumed to be equal to the corresponding mean demand μj. It may
353be deduced that the forecasting accuracy of the model is always the same, irrespective of the
354lead time.

3553 Case Studies

356The seven real-life cases (CS) considered relate to water distribution networks and district-
357metered areas in northern Italy varying both in size and in the number of users. Two years of
358observed data, recorded on an hourly basis, are available for each case considered. The years
359are identified as y1 and y2. Table 1 shows information regarding the number and type of users
360and the average water demand in the 2 years of monitoring for each CS.
361The first six case studies refer to residential/industrial districts, whereas the seventh refers to
362a seaside resort characterised by considerable variability in the number of users over the course
363of the year. Furthermore, it is worth noting that in case studies 1, 2, 3 and 6 (CS1, CS2, CS3

t1:1 Table 1 Average demand (L/s) and number and type of users for each case study

t1:2 Case study (CS) 1 2 3 4 5 6 7

t1:3 Number of users 120,000 20,000 9000 7000 7000 2500 300-3500
t1:4 Type of users Res/Ind Res/Ind Res/Ind Res Res Res Res/Tour
t1:5 Average demand y1 [L/s] 952.4 180.0 101.0 56.0 54.2 24.9 36.2
t1:6 Average demand y2 [L/s] 966.8 177.5 100.0 67.9 56.8 24.7 29.3

Res residential users, Ind industrial users, Tour touristic users

A Comparison of Short-Term Water Demand Forecasting Models
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364and CS 6 respectively) the demands did not undergo substantial variations from the year y1 to
365the year y2. In case study 4 (CS4) the average water demand rose by 21.3% from y1 to y2; in
366case study 5 (CS5) the average water demand increases of about 5.0% whereas in case study 7
367(CS7) a significant decrease in demand, about −19%, was observed between y1 (36.2 L/s) and
368y2 (29.3 L/s).
369In the case of models requiring calibration (ANN_WDF, Patt_WDF, HMC_WDF and
370naïve), the first year of data (y1) was used for calibration purposes and the second year (y2)
371for validation, whereas the models Bakk_WDF and αβ_WDF, whose parameters are calcu-
372lated at every forecasting step over a window of previously observed data, were applied
373directly to the sequence of the 2 years of observed data.
374The performance of the models applied in the seven case studies was assessed for different
375lengths of forecast time horizon k in terms of mean absolute error (MAE%) and root mean
376square error (RMSE), defined as:

MAE% ¼ 1
nd

∑
nd

i¼1
j ei
μobs

j⋅100 ð14Þ
377378379

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nd

∑
nd

i¼1
e2i

s

ð15Þ

380381where nd is the number of data in the period considered (for example a year), e =Qobs - Qfor is
382the error, Qobs is the value of the observed average hourly water demand, Qfor is the forecasted
383average hourly water demand and μobs is the mean of the observed values. The performances
384of all the models were assessed considering the results for the year y1 separately from those for
385the year y2.

3864 Analysis and Discussion of Results

387Figure 1 shows the trend in the MAE% associated with different lead times, for every model
388analysed, for the 2 years considered and for every case study. It may be observed, first of all,
389that all of the models provide better accuracy than the naïve model as regards both y1 and y2.
390When attention is focused on the differences found in every CS between y1 and y2, it may be
391observed that in y1 all of the models provide comparable levels of accuracy; in particular the
392mean percentage values range between 2% and 5% for CS 1-2-3-5-6, between 3.5% and 8%
393for CS4 and, finally, between 10% and 30% for CS7. It is worth pointing out immediately that
394in the latter case study the mean percentage errors are distinctly higher than in the other case
395studies, irrespective of the model. This finding may be explained by the fact that this CS makes
396reference to a seaside resort, in which the users and water demands are subject to high and
397sudden variations; therefore, all of the models provide less accurate forecasts. With regard to
398the year y2, the models tend to show a performance similar to that observed for the year y1,
399with a few differences. In general, the mean percentage error calculated for the models
400Patt_WDF, ANN_WDF and HMC_WDF increased; in fact, these are models requiring a
401calibration based on data observed over a long period and thus tend to provide greater accuracy
402for the year of calibration (y1) compared to the year of validation (y2). The models based on
403the moving-window technique (αβ_WDF and Bakk_WDF), by contrast, tend to maintain the
404same forecasting accuracy in both years.
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405The difference in behaviour between these two groups of models can also be noted in
406another respect. The models requiring long-term calibration tend to perform slightly better in
407the case of short time horizons, while their performance declines slightly and remains stable in

Fig. 1 Values of MAE% for every time horizon (k = 1,2,..24) in the 2 years considered (y1 and y2), for every
case study analyzed (CS1,CS2,..CS7)
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408the case of long time horizons. In the moving-window models, by contrast, the accuracy shows
409to be more consistent, irrespective of the time horizon.
410Again with reference to Fig. 1, a significant increase may be noted in the error associated
411with the HMC_WDF model in CS4 and CS5 in the year y2; as highlighted previously, these
412cases are characterised by a considerable difference in average demands in the years y1 and y2;
413it may be deduced, therefore, that the HMC_WDF model is significantly influenced by the
414variability in consumption. This problem is reflected to a less marked degree in the errors of
415the Patt_WDF and ANN_WDF models, which resulted in a decree in accuracy in the year y2.
416The considerations set forth thus far are supported by the results shown in Table 2, which
417shows, for each model and case study, the difference between the MAE%, averaged over the
418time horizon, for the years y1 and y2. In general, negative values indicate a worsening in
419performance from y1 to y2, whereas positive values indicate an improvement.
420It is possible to note that all models requiring long-term calibration (Patt_WDF,
421ANN_WDF, HMC_WDF and naïve) showed a negative difference in the MAE% in every
422CS, whereas in the case of the models based on the moving-window technique (αβ_WDF and
423Bakk_WDF), the difference in the MAE% is negative for CS1-3-4-7 and positive for the
424remaining case studies. Looking at the values contained in Table 2, considered in absolute
425terms, it may be noted that the largest difference in performance between y1 and y2 corre-
426sponds to the naïve and HMC_WDF models, with values equal to 11.73% (CS7) and 11.18%
427(CS4), respectively; the difference is lower for the Patt_WDF and ANN_WDF models, which
428show maximum differences (in absolute terms) equal to 6.68% (CS7) and 3.09% (CS7),
429respectively. Finally, the maximum differences in the MAE% shown for the 2 years by the
430models Bakk_WDF and αβ_WDF are smaller (in absolute terms), equal to 1.4% (CS7) and
4310.5% (CS7), respectively.
432Summarising, it may be affirmed that, on average, the model that delivered the best
433forecasting performance for the year y1 is Patt_WDF, though the differences compared to
434all the other models were minimal. In the year y2, a greater variability in forecasting accuracy
435was observed: in CS 1-2-3-6, the αβ_WDF, Bakk_WDF, Patt_WDF and ANN_WDF models
436provided excellent demand forecasts, in CS4 the model that performed best was αβ_WDF, in
437CS5 the αβ_WDF and Bakk_WDF models provided the highest accuracy and, finally, in CS7
438the αβ_WDF, Patt_WDF and ANN_WDF models showed the best performance. Thus the
439same forecasting accuracy can be achieved using both data-driven and pattern-based tech-
440niques. On the other hand it is worth observing that the naïve model is undoubtedly the least
441refined of the models considered and represents the simplest method for making a forecast.
442Not coincidentally, compared to this model all of the other models produce an improvement in
443forecasting for both years, y1 and y2. The performance of the naïve model decreases

t2:1 Table 2 Difference between the MAE%, averaged over the time horizon, of the years y1 and y2 for every CS
and every model applied

MAE%y1−MAE%y2

CS1 CS2 CS3 CS4 CS5 CS6 CS7

t2:3 ANN_WDF −1.15 −0.18 −0.33 −1.09 −1.04 −0.11 −3.09
t2:4 Patt_WDF −1.47 −0.69 −0.96 −3.47 −1.51 −0.68 −6.68
t2:5 Bakk_WDF −0.19 0.28 −0.06 −0.25 0.59 0.16 −1.42
t2:6 αβ_WDF −0.27 0.26 −0.02 −0.42 0.44 0.22 −0.52
t2:7 HMC_WDF −1.97 −1.15 −2.05 −11.18 −4.39 −1.23 −3.34
t2:8 Naïve_WDF −2.07 −1.22 −1.72 −10.50 −2.60 −2.08 −11.73
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444drastically in the event of a strong variability in demand during the year, whereas the decrease
445is attenuated in the case of greater uniformity; this finding is consistent with the fact
446that the average value is more closely representative in relation to the range of
447possible values.
448The same conclusions can be drawn from an analysis of the coefficient RMSE, illustrated in
449Fig. 2, bearing in mind that it is influenced by network size and the number of users in the CS
450considered; thus, the modest values of the RMSE associated with CS5 and CS 6 are also tied to
451the smaller size of the corresponding networks.
452The results shown in Fig. 3 confirm what has been said thus far and enable some additional
453considerations to be made regarding the accuracy and precision provided by the models in the
454different case studies. The figure shows the cumulative sampling distributions of the errors e
455for a fixed time horizon (in this case 1 h). In particular, where the error is defined as the
456difference between the observed and forecasted demands, a positive error corresponds to an
457underestimate of the demand forecast by the model, whereas a negative error corresponds to an
458overestimate.
459It may be observed that a lower variability between the minimum and maximum errors,
460associated with a steep slope of the cumulative distribution curve, indicates a good precision of
461the forecast, whereas a greater symmetry of the cumulative probability curve relative to the
462point e = 0 (that is, when the curve tends to pass and become symmetrically distributed relative
463to the point (e = 0, F = 0.5)) indicates that the model is accurate, that is, it tends neither to
464overestimate nor to underestimate consumption. In particular, it may be observed, for example
465from the graphs corresponding to CS4, that with respect to the year y1 all models are
466characterised by a similar accuracy (F(0) ≈ 0.5) and precision, with the exception of the
467naïve model, which tends to underestimate demand and is characterised by a greater scattering
468of errors. Indeed, the t-test (Benjamin and Cornell 1970) highlights that for the naïve
469model the hypothesis of mean of the error equal to 0 has to be rejected at the 5%
470significant level, whereas it is accepted for all the other model. On the other hand, it
471may be noted from the graph representing y2 that the αβ_WDF and Bakk_WDF
472models maintain a high degree of accuracy, whereas the Patt_WDF and ANN_WDF
473models show less accuracy and a tendency to underestimate demand (F(0) < 0.25);
474finally, the HMC_WDF and naïve models greatly underestimate the demand for the
475year y2, and thus forecast with less precision and accuracy. Indeed, for the year y2
476the hypothesis of mean of the error equal to 0 has to be rejected at the 5% significant level for
477the Patt_WDF, ANN_WDF, HMC_WDF and naïve models, whereas it is accepted only for the
478αβ_WDF and Bakk_WDF models.
479Analogous considerations also apply for the remaining case studies, as all the models show
480similar performances for the year y1, whereas if the focus is shifted to the year y2, it may be
481observed that the accuracy and precision of the αβ_WDF and Bakk_WDF models remains
482substantially unchanged, whereas Patt_WDF, ANN_WDF and HMC_WDF model show a
483decrease in accuracy. Thus, summing up, models based on the moving-window technique
484show to deliver a high, more stable accuracy with respect to the 2 years of application whereas
485the models requiring calibration on the basis of a long series of data undergo a decrease in
486accuracy from the year of calibration to the year of validation. This decrease is more or less
487marked depending on the difference between the 2 years in terms of average yearly
488water demand and results in an under/overestimation of demands in the year y2
489depending on whether the average observed demand in the year y2 is higher/lower than the
490observed demand in the year y1.
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4915 Conclusions

492This paper presents a comparison between different hourly water demand forecasting models
493for a 24-h time horizon, already present in the literature providing useful information about the

Fig. 2 Values of RMSE for every time horizon (k = 1,2,..24) in the 2 years considered (y1 and y2), for every case
study analyzed (CS1,CS2,..CS7)
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494pro and cons of the different type and structure of the models. The comparison regarded seven
495real-life cases of water distribution networks and district-metered areas of different sizes and
496with a different number and type of users. Data regarding the average hourly water demands in
497two different years were used.
498The models applied differ from one another in terms of their characteristics, including the
499type of structure, whether they are data-driven or pattern based, use a deterministic or

Fig. 3 CumulativeQ1 sampling distribution of errors in the 2 years considered (y1 and y2) for each case study
analyzed (CS1, CS2,..CS7), with a fixed time horizon of 1 h
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500probabilistic approach and require or do not require the use of a long dataset for their
501calibration.
502The analysis of the results has shown that models based on different forecasting techniques
503deliver high accuracies, and their performances are comparable, when the year of calibration is
504considered. Indeed the same forecasting accuracy can be achieved using both data-driven and
505pattern-based techniques.
506A more marked difference may be noted between the models requiring calibration on the
507basis of a long series of data and those based on the moving-window technique. Indeed, it may
508be observed that, in every case study analysed, the former undergo a decrease in accuracy from
509the year of calibration to the year of validation. In contrast, models based on the moving-
510window technique show to deliver a high, more stable accuracy irrespective to the year
511considered by virtue of their structure, which provides for parameters to be set in a
512very short moving window. The variability of water demands during the year also
513impacts all of the other models, though to a lesser extent. In fact, the case study
514regarding a distribution network characterised by high variability in the number of
515users over the course of the year showed a general decrease in forecasting reliability,
516though this was attenuated in the case of models based on the moving-window
517technique, since their parameters are continuously updated and they can thus better capture
518variations in demand, albeit with a slight time lag.
519
520Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
521institutional affiliations.
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