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Foreword

This monograph aims at presenting novel ideas, concepts and results in robust
fault-tolerant control. Rapid developments in control technology have an impact on
all the areas of the control discipline: there emerge new theories, advanced control
solutions, new industrial processes, computer methods and implementations, new
applications, new philosophies, and, inescapably, new challenges. Much of this
development work is presented in the form of industrial reports, feasibility study
papers and reports on advanced collaborative projects. Therefore, this monograph
offers an opportunity for researchers, practitioners and students to gain access to an
extended and clear exposition of new investigations in all the aspects of robust
fault-tolerant control, intended for a rapid dissemination of the results and acces-
sible to a wider readership.

As many technological systems are becoming increasingly complex, more
widespread and integrated, the effects of system faults can potentially be devas-
tating to the infrastructure of any modem society. Feedback control is just one
important component of the total system supervision. Fault-tolerant control
describes another set of components having extensive commercial, industrial and
societal implications; it is imperative, however, that we are able to make use
of them in a robust and inexpensive manner. The model-based approach is the usual
solution of the practical fault-tolerant control design but, as the author Krzysztof
Patan has highlighted in this monograph, the methodologies based on neural net-
works can also be successfully exploited. The search for reliable, robust and
inexpensive fault-tolerant control methods has been ongoing since the early 1980s.
Since 1991, the SAFEPROCESS Steering Committee, created by the International
Federation of Automatic Control (IFAC), is in operation promoting research,
developments and applications in the field of fault-tolerant control. The last decade
has seen the formalisation of several theoretical approaches accompanied by some
attempts to standardise the nomenclature in the field.

There are not many research publications within this important research area:
one can point to certain monographs that can be said to provide interesting con-
tributions to fault-tolerant control describing, however, the topic from slightly
different points of view. To these, we can now add this monograph by Krzysztof
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Patan. The key features of this text include a useful survey material, a description of
new approaches (utilising data-driven and neural-network-based methodologies), as
well as a number of experimental studies helpful in understanding the advantages
and the drawbacks of the suggested strategies and tools. Different groups of readers,
from industrial engineers wishing to gain insight into the applications potential of
new fault-tolerant control methods relying on artificial intelligence tools, to the
academic control community looking for new problems to tackle will find much to
learn from this monograph.

Ferrara, Italy Silvio Simani
October 2018



Preface

Indisputably, what is known as the robust and the fault-tolerant approaches have
become important and essential subclasses of modern control theory. Nowadays,
control systems designed for industrial plants have to meet the high requirements
for the operation safety, stability and control performance. The notion of system
robustness is made more concrete by means of the following two important notions.
Robust stability means that the system remains stable for every plant belonging to
the uncertainty set, whereas robust performance means that the performance
specifications are satisfied for every plant belonging to the uncertainty set.
Arguably, both of these are some of the most desirable features of the designed
control systems. Robustness, however, is a problem that is hard to solve in the
context of nonlinear systems. While robust control strategies allow a system to cope
with model uncertainty, fault-tolerant control allows the system to cope with
possible faulty situations occurring in industrial plants. The main objective of
fault-tolerant control is to continue the plant operation, possibly at a reduced per-
formance, and to preserve stability conditions in the presence of unexpected
changes of system work caused by faults. There are, however, many problems
encountered when designing fault-tolerant control for nonlinear systems.

Solutions of both robust control and fault-tolerant control problems can be
obtained through the use of artificial neural networks. Neural networks can be
effectively applied to deal with uncertainty modelling for the robust control pur-
poses as well as to design the fault diagnosis units required by fault-tolerant control.
The book proposes a number of strategies based on neural networks for nonlinear
systems, e.g. model predictive control, control reconfiguration approaches and
iterative learning control. Each proposed control strategy is accompanied by an
example showing its applicability.

The material included in the monograph results from research that has been
carried out by the author at the Institute of Control and Computation Engineering
(the University of Zielona Goéra, Poland) for the last eight years in the area of the
modelling of nonlinear dynamic processes as well as control of industrial processes.
Some of the presented results were developed with the partial support of the
Ministry of Science and Higher Education in Poland under the grants N N514

ix
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678440 Predictive fault tolerant control for nonlinear systems (2011-2014),
2014/15/B/ST7/03208 Improvement of the control performance using iterative
learning (2015-2018) and 2017/27/B/ST7/01874 Learning-based methods for
high-performance robust control (2018-2021).

The monograph is divided into seven chapters. Chapter 1 introduces the subject
matter. Chapter 2 is a survey of artificial neural networks that have possible
applications to modelling and control. Some space is also devoted to the important
problems of model training and the development of robust models. Chapter 3
describes the notion of control systems synthesis, focusing on the role of neural
networks in that context. We also highlight the notions of robust and fault-tolerant
control. Chapter 4 presents the model of predictive control based on neural net-
works. Fault tolerance as well as robustness of the proposed nonlinear predictive
schemes are also discussed there. Chapter 5 presents the fault accommodation and
control reconfiguration approach where neural networks are used in the following
ways: (1) to process modelling; (2) to design what is known as a nonlinear observer
and (3) to aid in uncertainty modelling. Chapter 6 discusses a number of methods
that make use of neural networks in the context of iterative learning control with an
emphasis on the problems of convergence and stability. Finally, Chap. 7 presents
our contribution to the area of control in the context of industrial processes.

At this point, I would like to express my sincere thanks to all the colleagues from
the Institute of Control and Computation Engineering at the University of Zielona
Gora for many stimulating discussions and a friendly atmosphere, which was a big
factor in my success in writing up this monograph. In particular, I would like to
thank my former Ph.D. student Andrzej Czajkowski for his contribution to Chap. 5,
my brother Maciek for his contribution to Chap. 6, and Wojtek Paszke who pointed
my attention to the area of iterative learning control. Finally, I would like to express
my gratitude to Dr. Adam Trybus for proofreading the text and providing linguistic
advice.

Zielona Gora, Poland Krzysztof Patan
September 2018
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System input and estimated system input
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Activation function and vector-valued activation function
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0 Partial derivative
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