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Abstract 15 

In this study, a laboratory experiment–based testing program was conducted on a large-scale high-16 

strength Prestressed Concrete I (PCI) beam with a parabolic unbonded tendon, capable of 17 

simulating a typical prestressed bridge member. Specifically, the simply supported PCI beam was 18 

subjected to free transverse vibrations with different prestress forces to demonstrate that its 19 

fundamental frequency was unaffected by such force. A reference model, describing the behavior of 20 

the PCI beam as a combination of two substructures interconnected, i.e., a compressed concrete 21 

Euler–Bernoulli beam and a tensioned parabolic cable, predicts no change in fundamental 22 

frequency with increasing prestress force when variation of the concrete’s initial elastic modulus 23 

over time is taken into account. The large-scale experimental results confirmed that fundamental 24 

frequency is not an appropriate parameter for prestress loss prediction in concrete bridge beams 25 

with parabolic unbonded tendons. Accordingly, subsequent studies will be conducted for improving 26 

a static nondestructive testing method for such detection in concrete bridges. 27 
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1. Introduction 1 

The natural frequency of prestressed concrete beams is a crucial parameter in defining the 2 

dynamic behavior of a bridge. Whether the dynamic response of prestressed beams is affected by 3 

applied prestress force has been discussed extensively (e.g., in the literature review by Noble et al. 4 

[1, 2]). Several studies [3–10] have assumed that prestress force in the tendon is equivalent to 5 

external axial force on each beam end. Consequently, the natural frequencies of prestressed 6 

members tend to decrease with increasing compressive force, which is termed the “compression-7 

softening” effect. This effect occurs in externally axially loaded Euler–Bernoulli beams prone to 8 

buckling failure [6–12]. An experimental study also demonstrated this behavior in prestressed 9 

concrete beams with parabolic tendons [13]. Nonetheless, several dynamic tests have reported an 10 

increase in natural frequencies with increasing prestress force [14–18] as occurs in tension members 11 

within the elastic range [11, 12, 19–21], thus contradicting the “compression-softening” theory. 12 

Toyota et al. [22] observed the same behavior in a post-tensioned concrete beam with a bonded or 13 

unbonded tendon. More specifically, Saiidi et al. [15] noted that an increase in prestress force 14 

seemed to influence microcrack closure and thus increase the stiffness and natural frequencies of 15 

concrete beams [23–25]. Moreover, Noh et al. [26] suggested that the natural frequency of concrete 16 

members with parabolic unbonded tendons was also increased by other parameters, such as the 17 

beam camber, cable geometric stiffness, and stiffness effect of the beam–tendon system. By contrast, 18 

Bonopera et al. [9] proved experimentally that the fundamental frequency of concrete bridge 19 

members with straight tendons is unaffected by prestress force. Similarly, Hamed and Frostig [27] 20 

suggested, based on numerical results, that the natural frequencies of concrete beams with parabolic 21 

tendons remain unchanged by prestressing. They claimed that prestress force in the tendon modified 22 

its original line of action during member vibration, thereby preserving force eccentricity with 23 

respect to the beam axis. Accordingly, prestress force did not cause Euler buckling. Vice versa, an 24 

external compressive force retained its original line of action, varying the force eccentricity with 25 

respect to the beam axis during vibrational displacement. Given the discrepancies in these findings, 26 

it remains unclear which might represent a reference model for properly evaluating the dynamic 27 
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behavior of prestressed concrete bridge beams with parabolic unbonded tendons. The 1 

aforementioned studies also lack experimental data on the relationship between prestress force and 2 

fundamental frequency in large-scale prestressed concrete members, because their experiments 3 

were conducted only on small-scale beams whose slenderness and stiffness rendered them 4 

unsuitable for simulating concrete bridge beams. Moreover, the mass of load cells and especially 5 

stressing jacks, at boundary ends, can influence the dynamic response of small-scale members [15–6 

16, 28]. Dynamic testing on large-scale beams minimizes the effect of these masses, as verified by 7 

the numerical simulations of Bonopera et al. [9]. Proper information on the dynamic behavior of 8 

concrete members is also required for studying prestress loss phenomena [8–9, 29]. 9 

For these reasons, a large-scale simply supported Prestressed Concrete I (PCI) beam made of 10 

high-strength concrete with a parabolic unbonded tendon was used in this study. The beam was 11 

subjected to free transverse vibrations with different prestress forces on specific days, therefore 12 

simulating different concrete curing conditions. A set of servo velocity seismometers were installed 13 

along the PCI beam’s span to measure the fundamental frequency. The model proposed by Song 14 

[30], describing the behavior of the simply supported PCI beam as a combination of two 15 

substructures interconnected, i.e., a compressed concrete Euler–Bernoulli beam and a tensioned 16 

parabolic cable, was the reference solution. The elastic modulus was obtained daily through 17 

compression tests on concrete cylinders. The results indicated that experimental fundamental 18 

frequencies could be simulated using the aforementioned solution, thus demonstrating that the beam 19 

mechanical model’s assumption was accurate. Numerical examples are presented to illustrate the 20 

difference between fundamental frequencies determined by the model proposed by Song [30] and 21 

other models mentioned in the literature. The fundamental frequency of a concrete bridge beam 22 

with a parabolic unbonded tendon is unaffected by prestress force because small second-order 23 

effects were usually induced in these prestressed members. Furthermore, the frequency remained 24 

relatively constant over time, with variation of the initial concrete elastic modulus caused by the 25 

early curing process. The large-scale experimental results also confirmed that fundamental 26 



 4 

frequency is not an appropriate parameter for determining prestress loss in concrete members, as 1 

suggested in the literature [9, 15, 25]. In this regard, a static Non-Destructive Testing (NDT) 2 

method [8] based on the “compression-softening” theory seems more reliable than dynamic 3 

methods of prestress loss prediction in concrete beams with straight unbonded tendons. 4 

Consequently, future studies are planned for improving the aforementioned static method for such 5 

detection in concrete bridges. 6 

 7 

2. Large-scale laboratory testing program 8 

2.1 PCI beam with a parabolic unbonded tendon and related test layout 9 

A large-scale PCI beam of width b = 450 mm and height h = 900 mm was adopted (Fig. 1). The 10 

beam was longitudinally reinforced with rebars and transversally with stirrups, in accordance with 11 

the Building Code Requirements for Structural Concrete [31], corresponding to a unit weight of 12 

steel ρs of approximately 1.23 kN/m
3
. Two pinned-end supports were placed at the beam ends to 13 

reproduce the most common boundary conditions of prestressed concrete bridge beams, resulting in 14 

a clear span of L = 14.5 m (Fig. 1). The parabolic unbonded tendon had a small eccentricity e1 of 15 

120.5 mm (e1 / h = 0.13) at the beam ends and a large eccentricity e2 of 270 mm (e2 / h = 0.30) at 16 

the midspan with respect to the centroid of the cross-section. Its deflected shape was f = e2 – e1 = 17 

149.5 mm, whereas the corresponding ratio was f / L = 0.01. Specifically, the tendon was composed 18 

of 15 seven-wire strand steel cables that were 15.2 mm in diameter and inserted into 15 plastic ducts 19 

embedded along the concrete beam’s length (Fig. 1). The plastic ducts were not injected. The 20 

ultimate yield strength and elastic modulus of the steel cables were σuy = 1860 MPa and Etendon = 21 

200 GPa, respectively. The cross-sectional second moment of the area of the PCI beam’s section 22 

(concrete only) Iconcr was 2.509 × 10
10

 mm
4
, and the corresponding cross-sectional area Atot was 23 

2.982 × 10
5
 mm

2
. The slenderness ratio was 50, and the beam had a rectangular cross-section equal 24 

to b × h, that is, 450 × 900 mm
2
, for a length of 650 mm from the pinned-end supports. The cross-25 

sectional area of the parabolic tendon Atot,tendon was 2.085 × 10
3
 mm

2
, whereas its effective length 26 

was Ltendon = [ 1 + 8/3 × (f / L)
2
 ] × L = 14.504 m [30]. All geometric dimensions were verified by 27 
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measuring systems with 0.01-mm tolerance (laser rangefinder and caliper) after the member was 1 

positioned on the supports. The elastic modulus of the high-strength concrete was evaluated through 2 

compression tests on cylinders after 28 days of curing and during the experimental period (Section 3 

2.3). 4 

 5 
Fig. 1. Large-scale PCI beam with a parabolic unbonded tendon. 6 
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The PCI beam was inserted into a test rig (Fig. 2(a)). At one beam end, a hydraulic oil jack of 8 

4000 kN force capacity was used to apply different prestress forces by pulling the parabolic tendon 9 

outward. A 4000 kN load cell with an accuracy of 2 mV/V was placed at either end to measure the 10 

assigned prestress forces N0x1 and N0x2 (Fig. 3(a)). Three prestress forces N0x,aver were applied in 11 

values of approximately 1658, 1829, and 1952 kN to prevent cracking phenomena and induce small 12 

second-order effects as typical for concrete bridge beams [9, 32], equaling to 3.5%, 3.8%, and 4.1% 13 

of the PCI beam’s buckling load NcrE, respectively. A difference of approximately 170 kN between 14 

the prestress forces N0x,aver was initially planned. The laboratory’s indoor safety conditions involved 15 

the higher prestress force N0x,aver of 1952 kN. Thus, the maximum tensile strength in the tendon was 16 

of approximately 50% of the ultimate yield strength of the cables [9, 32]. The different prestress 17 

forces N0x1 and N0x2 measured at the beam ends were caused by friction losses along the tendon (Fig. 18 

1). The measurement systems included four servo velocity seismometers and four Linear Variable 19 

Differential Transformers (LVDTs) deployed along the PCI beam’s length (Fig. 4). The 20 

arrangement of these devices is described as follows: 21 

Servo velocity seismometer: Four VSE–15D high-precision servo velocity seismometers, 22 

manufactured by Tokyo Sokushin Co., Ltd., were chosen for the experiments (Fig. 3(b)). The 23 

seismometers had a sensitivity of 5 mV/g and were lightweight (270 g). One seismometer, 24 

labeled A5, was placed vertically on the top of the PCI beam at a point corresponding to the 25 
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midspan cross-section (i = 5) to collect acceleration data with respect to the strong axis (Fig. 4). 1 

Two seismometers, labeled A0 and A10, were placed at the beam ends (i = 0 and 10). One 2 

reference seismometer, labeled Af, was additionally fixed to the floor close to the beam end at i 3 

= 10 to record possible abnormalities of the sensing system. All sensors were connected to a 4 

signal conditioner and, subsequently, to a data logger located on a desk close to the test rig (Fig. 5 

5(c)). The test layout in Fig. 4 shows their positions (in red). 6 

LVDT: Two LVDTs with a tolerance of 0.002 mm, manufactured by Tokyo Sokki Kenkyujo 7 

Co., Ltd., were positioned on the opposite sides of the midspan cross-section at i = 5 (Fig. 4). 8 

Steel plates were used to position each LVDT probe at the level of the beam axis (Fig. 2(b)). 9 

Additionally, two reference LVDTs, labeled L0 and L10, were fixed at the beam ends i = 0 and 10 

10, respectively, forming a reference line between the boundary conditions for the 11 

measurement system. All LVDTs were connected to a data logger positioned on a desk close to 12 

the test rig to acquire signals. The test layout in Fig. 4 shows their positions (in blue). 13 

  
(a) (b) 

Fig. 2. (a) Indoor test rig. (b) Transverse steel beam and one LVDT at the PCI beam’s midspan. 14 

 15 

  

(a) (b) 

Fig. 3. (a) Load cell, steel transition part, and circular plate at one PCI beam end. (b) One servo velocity seismometer 16 

placed on the top of the PCI beam. 17 
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 1 
Fig. 4. Test layout with locations of instrumented sections with velocity seismometer and LVDT sensing systems. Units 2 

in meters. 3 
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2.2 Free vibration tests 5 

Free vibration tests were performed following the application of prestress forces N0x,aver. Three 6 

test cases with N0x,aver equal to 1658, 1829, and 1952 kN were examined. All the servo velocity 7 

seismometers acquired acceleration data using a sampling rate of 200 Hz and a block size of 32,768 8 

samples (Fig. 5(c)). Vibration measurements were performed three times for each imposed prestress 9 

force N0x,aver for a total of nine experiments. Specifically, free transverse vibrations were induced by 10 

breaking a steel rebar of 10 mm in diameter anchored close to the PCI beam’s midspan (Fig. 5(a)). 11 

The rebar’s ultimate strength fsk of 540 MPa was achieved using a hydraulic oil jack of 100 kN 12 

force capacity, pulling each rebar up until rupture (Fig. 5(a)). The hydraulic oil jack was driven by a 13 

hydraulic pump of 96.53-MPa in maximum pressure capacity positioned to the floor (Fig. 5(b)). 14 

The large-scale PCI beam was thus vertically excited by a release force Fd of approximately 42.4 15 

kN (Fig. 4), and its dynamic response was measured along its strong axis. The PCI beam did not 16 

develop any cracks during testing. The applied prestress forces N0x1 and N0x2 were recorded every 17 

second for exactly 200 seconds by a data acquisition unit using a different data logger. The cables 18 

under tensile forces were always in contact with the surrounding plastic ducts during testing. 19 

   
(a) (b) (c) 

Fig. 5. (a) Arrangement of the hydraulic oil jack on one steel rebar anchored close to the PCI beam’s midspan. (b) 20 

Arrangement of the hydraulic pump on the floor before activation. (c) Data acquisition setup. 21 



 8 

2.3 Elastic modulus evaluation of the high-strength concrete 1 

2.3.1 Time-dependent concrete’s elastic modulus through compression tests 2 

A set of 100 mm × 200 mm concrete cylinders were cast to measure the time-dependent elastic 3 

modulus of the high-strength concrete through compression tests. In the field, the prestress force is 4 

applied to increase the stiffness of concrete bridge beams and, thereby, their natural frequencies, as 5 

shown by the results presented by Saiidi et al. [15]. The PCI beam and all cylindrical specimens 6 

were maintained outdoor the laboratory spaces and under the same curing environmental conditions. 7 

The elastic modulus E for each cylinder was estimated by the following Eq. (1) in accordance with 8 

the ASTM Standards C 469/C 469M–14 [33]: 9 

 2 1

2
0.00005

fvtE E
σ σ

ε
−= =

−
, (1) 10 

where σ1 and σ2 are the stress levels corresponding to a longitudinal strain of 0.00005 and the 40% 11 

of the ultimate longitudinal compressive stress, respectively. ε2 is the longitudinal strain produced 12 

by σ2. The aforementioned three values were determined based on graphs depicting longitudinal 13 

compressive stress versus longitudinal strain for the individual cylinders, where elastic modulus E 14 

was the secant value. One compressometer equipped with two LVDT sensors was used as the strain 15 

measurement system. Moreover, the universal testing machine was set at a loading rate of 16 

approximately 1 mm/min. 17 

By considering the small second-order effects induced in the PCI beam (Section 2.2), the initial 18 

elastic modulus Efvt was determined by Eq. (1) for each cylinder where, conversely, σ2 was the 19 

existing maximum stress in the PCI beam during testing and corresponded to the curing day under 20 

observation, as proposed by Bonopera et al. [9]. Similarly, σ1 was the stress corresponding to a 21 

longitudinal strain of 0.00005, whereas ε2 was the longitudinal strain produced by the maximum 22 

stress σ2. A more realistic investigation of the PCI beam’s elastic modulus was thus obtained. A 23 

Finite Element (FE) second-order analysis in STRAUS7 environment [34], that assumed nine beam 24 

elements and flexural rigidity’s variation along the PCI beam based on the parabolic tendon’s 25 
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position (Fig. 1), was used to compute the stress σ2 during each vibration test by externally applying 1 

the corresponding prestress force N0x,aver. 2 

Table 1. Measured unit weight ρc, characteristic strength fck, stresses σ2, and elastic moduli E and Efvt of the high-3 

strength concrete. 4 

    Eq. (1) with σ2 = 0.4 fck Eq. (1) with maximum stress σ2 [9] 

Days of 

concrete 

curing 

Cyl. 
ρc 

(kN/m
3
) 

fck 

(MPa) 

σ2 

(MPa) 

E 

(MPa) 

Eaver 

(MPa) 

Eref 

(MPa) 

Var. 

(%) 

σ2 

(MPa) 

Efvt 

(MPa) 

Efvt,aver 

(MPa) 

Efvt,ref 

(MPa) 

Var. 

(%) 

28 A – 85 34 37458 – – 

28 B – 94 38 34752 – – 

28 C – 93 37 37365 – – 

28 D – 83 33 36384 

36490 – – 

– – 

– – – 

66 1 23.68 105 42 39693 9 – 

66 2 24.14 91 36 34528 
37111 +1.7 

9 40837 
40837 +11.9 

69 1 24.11 106 42 37294 9 41316 

69 2 24.35 104 42 37387 
37341 +2.3 

9 40595 
40956 +12.2 

70 1 24.39 103 41 37931 10 43682 

70 2 24.89 96 38 37828 
37880 

37444 

+3.8 
10 40927 

42305 

41366 

+15.9 

 5 

The measured elastic moduli at 28 days and during the experimental period (Section 2.2) are 6 

listed in Table 1 [dataset] [35]. The average elastic moduli Eaver and Efvt,aver were calculated on each 7 

required day by testing two cylinders. Vice versa, four specimens were tested at 28 days of curing. 8 

The elastic modulus Eaver exhibited progressive increments of 1.7%, 2.3%, and 3.8% with respect to 9 

the value obtained at 28 days. Conversely, the elastic modulus Efvt,aver registered progressive 10 

increments of 11.9%, 12.2%, and 15.9%, respectively. Thus, the average reference elastic moduli 11 

were of Eref = 37,444 MPa and Efvt,ref = 41,366 MPa. The higher values for Efvt,aver were caused by 12 

the lower values of stresses σ2 assumed in Eq. (1), as reported in Table 1 [dataset] [35]. The ratio 13 

Eref / Efvt,ref = 37,444 / 41,366 = 0.91 agreed with the ratio for the secant and dynamic elastic 14 

modulus of reinforced concrete beams, where the dynamic modulus was determined through 15 

transverse vibrations on a set of concrete beam specimens [36]. The mean characteristic strength fck 16 

was of 96 MPa for the compression tests at 66, 69, and 70 days of curing, as detailed in Table 1 17 
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[dataset] [35]. The concrete’s unit weight, ρc = 24.26 kN/m
3
, was obtained by the average of the 1 

cylinders’ weights shown in Table 1 [dataset] [35]. 2 

 3 

2.3.2 Three-point bending tests 4 

Before the free vibration measurements (Section 2.2), three-point bending tests were performed 5 

at 66 days of concrete curing to measure the first-order displacement v at the PCI beam’s midspan (i 6 

= 5) using two LVDTs labeled L5 in Fig. 4. The recorded average measurement deleted the small 7 

rotations along the PCI member’s axis. A point load F of 12.5 kN by a transverse steel beam was 8 

applied at the PCI beam’s midspan (Fig. 2(b)) when the member was axially unloaded (N0x,aver = 0). 9 

The beam was thus preserved without second-order effects. The point load F was pulled both up 10 

and down using two hydraulic oil jacks of 1000 kN in force capacity, fixed to the floor, and two 11 

additional hydraulic oil jacks of same force capacity fastened to the top of the transverse beam (Fig. 12 

2(b)). The applied force F = 12.5 kN was obtained as the sum of the measurements of the two load 13 

cells of 1000 kN in force capacity and 2 mV/V in accuracy, located between the upper oil jacks and 14 

two steel plates (Fig. 2(b)). This test was repeated thrice. The midspan displacement measurements 15 

v and the load F were recorded for exactly 200 seconds by a data acquisition unit. The average 16 

measurement v by the two LVDTs, corresponding to the three repetitions, was of 0.82 mm. 17 

Therefore, Estatic,test = FL
3
/48vItot,concr = 37,998 MPa. With respect to the elastic moduli obtained 18 

through compression tests (Table 1), the maximum errors were equal to Δ1 = (Estatic,test – Eaver) / Eaver 19 

= (37,998 – 37,111) / 37111 = 2.4% and Δ2 = (Estatic,test – Efvt,aver) / Efvt,aver = (37,998 – 40,837) / 20 

40,837 = –7.0%. The displacements measured by the two reference LVDTs, located at the PCI 21 

beam ends (L0 and L10 in Fig. 4), were lower than 0.1 mm in all three repetitions. The PCI beam’s 22 

supports shown in Fig. 6(a) and 6(b) did not generally allow significant friction phenomena. Given 23 

a coefficient of friction µ of 0.1 [37], corresponding to the contact between steel and concrete (Fig. 24 

6(a) and 6(b)), the bending moment at the PCI beam’s supports caused by eccentric friction forces 25 

Mµ = µ × { [ (ρs + ρc) × L ] / 2 } × h / 2 = 8.32 kNm did not affect the midspan displacement v and 26 

the frequencies obtained by the vibration tests (Section 3.3). 27 
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(a) (b) 

Fig. 6. (a) Roller support. (b) Hinge support of the PCI beam. 1 

 2 

3. Prestress force effect on fundamental frequency 3 

3.1 Analytical model proposed by Young and Budynas [38] 4 

A simply supported Euler–Bernoulli beam of length L = 14.5 m was used as a reference model 5 

for the free vibrations of the PCI beam (Fig. 7). The end constraints of a prestressed concrete bridge 6 

beam can be assumed as pinned-end supports [9, 32]. Based on the second-order theory, the 7 

prismatic concrete member was subjected to the horizontal prestress force N0x,aver measured during 8 

each test combination (Section 2.2). Specifically, the prestress force N0x,aver was concentrically 9 

assigned to the PCI beam ends without accounting for the geometric eccentricities of the parabolic 10 

tendon e1 and e2 (Fig. 7). Thus, the prestress force N0x,aver was assumed to be an externally applied 11 

compressive axial force. The deflection shape of the PCI beam’s fundamental frequency fI, in 12 

accordance with the first- and second-order theory, is labeled as vI mode in Fig. 7. 13 

 14 

Fig. 7. Reference model for the PCI beam with first mode shape vI mode. The dashed line represents the PCI beam 15 

configuration without any vibrations. 16 

 17 

Based on the “compression-softening” theory and disregarding the distributed load caused by 18 

the parabolic tendon under tensile force, the fundamental frequency fI of an externally axially 19 

loaded simply supported beam (Fig. 7) is as follows [38]: 20 
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tot,5 5 0 ,aver

4

tot crE

1
2

x

I

E I g N
f

m L N

π −= − , (2) 1 

 2 

where the PCI beam’s weight per unit length is mtot = (ρs + ρc) × Atot = 7.601 kN/m. The elastic 3 

modulus on each test day, labeled as E and dependent on the concrete curing, must be assumed in 4 

the calculations as the values Eaver or Efvt,aver (Table 1). The cross-sectional second moment of the 5 

area of the midspan composite section (concrete and tendon) Itot,5–5 was equal to 2.733 × 10
10

 mm
4
, 6 

in accordance with the design. Moreover, the PCI beam’s Euler buckling load is given by the 7 

formula NcrE = π
2
EItot,5–5/L

2
, where the elastic modulus E assumes the values Eaver or Efvt,aver for each 8 

test day (Table 2). The gravitational acceleration g was 9.81 m/s
2
. Disregarding the term containing 9 

the compressive axial force N0x,aver, the fundamental frequency fI reduces to 10 

 

1 2

tot,5 5

4

tot2
I

E I g
f

m L

π − 
=   

 
. (3) 11 

 12 

The dynamic cross-sectional second moment of the area II,dyn of a concrete bridge beam with 13 

parabolic unbonded tendon can be obtained using the corresponding frequency fI into the first-order 14 

Euler–Bernoulli beam model (Eq. (3)) [38]. Therefore, the dynamic cross-sectional second moment 15 

of the area II,dyn of the PCI beam reduces to 16 

 

2 4

tot

, 2

,aver

4
I

I dyn

fvt

f m L
I

E gπ
= . (4) 17 

 18 

3.2 Analytical model proposed by Song [30] 19 

The model proposed by Song [30] aims to describe the dynamic behavior of steel bridge beams 20 

with parabolic unbonded tendons and pinned-end supports. In particular, the dynamic behavior of 21 

the prestressed beam is described by two substructures, which are interconnected through 22 

equilibrium and compatibility requirements. In this study, the two reference substructures for the 23 

free vibrations of the PCI beam consist of a compressed concrete beam of length L = 14.5 m and a 24 

tensioned cable of effective length Ltendon = 14.504 m (Fig. 8). The behavior of the concrete beam 25 



 13 

follows the Euler–Bernoulli’s assumptions, and the substructures undergo moderate deformations, 1 

i.e., large displacements and moderate rotations in order to address the effect of the prestress force 2 

N0x,aver on the dynamic behavior of the member. The effect of the longitudinal vibrations and the 3 

rotary inertia are negligible. The PCI beam was subjected to the horizontal prestress force N0x,aver 4 

measured during each test case (Section 2.2). Specifically, the prestress force N0x,aver was assumed 5 

as an internally applied tensile force (Fig. 8). 6 

 
Substructure layout Stress resultants 

Fig. 8. Substructure layout and internal stress resultants for the PCI beam: (a) prestressed beam, (b) concrete beam, and 7 

(c) tensioned steel cable. 8 

 9 

By assuming that the concrete beam and the prestressed parabolic tendon interact with the 10 

distributed load g(x) under the support of the tendon-held without tangential force (Fig. 8), and 11 

disregarding its self-weight, the Galerkin’s method was applied to the natural vibration equation of 12 

the prestressed member. After some manipulations, the fundamental frequency fI of an internally 13 

axially loaded simply supported prestressed beam (Fig. 8(a)) is as follows [30]: 14 

 

5 2

tot,5 5

4

tot

32

2
I

E I f L
f

m L

π λ
π

− +
= , (5) 15 



 14 

where the PCI beam’s elastic modulus E, dependent on the concrete curing, assumes the values Eaver 1 

or Efvt,aver for each test day (Table 2). Vice versa, the term ʎ containing the tensile axial force N0x,aver 2 

is given by the following formula [30]: 3 

 

3
tendon tot,tendon 0 ,aver 0 ,aver 1

tot3 2

tendon tot,5 5 tot,5 5

8 216 2
( )

x x
E A N f N e Lf L

m
L L E I L E I

λ
π π π− −

 
= − − + + 

  
. (6) 4 

 5 

3.3 Measurements from free vibration tests 6 

Acceleration time histories at the PCI beam’s midspan cross-section with the corresponding 7 

Fast Fourier Transforms (FFTs), determined by a block size of 32,768 samples for the three 8 

prestress forces N0x,aver, are displayed in Figs. 9, 10, and 11. The Peak Picking Method was adopted. 9 

Natural frequencies were located at each peak of the FFTs (Figs. 9(b), 10(b) and 11(b)). Same 10 

procedure was used by considering a block size of 16,384 samples. Eighteen of which were totally 11 

collected since each vibration test was repeated thrice for every prestress force N0x,aver. 12 
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(a) (b) 

Fig. 9. (a) Acceleration time history for instrumented section A5 when N0x,aver = 1658 kN. (b) FFT for a block size of 13 

32,768 samples. 14 
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(a) (b) 

Fig. 10. (a) Acceleration time history for instrumented section A5 when N0x,aver = 1829 kN. (b) FFT for a block size of 16 

32,768 samples. 17 
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(a) (b) 

Fig. 11. (a) Acceleration time history for instrumented section A5 when N0x,aver = 1952 kN. (b) FFT for a block size of 1 

32,768 samples. 2 

 3 

The average fundamental frequencies fI,exp, obtained by a block size of 16,384 samples in the 4 

FFTs of the three test repetitions, were respectively of 9.20, 9.24 and 9.28 Hz, whereas those 5 

obtained by a block size of 32,768 samples were of 9.23, 9.27 and 9.30 Hz. Notably, velocity 6 

seismometer A5 on the top of the PCI beam provided identical frequencies fI,exp in all repetitions. 7 

Second- and third-mode frequencies are shown by Peak Picking Method in Figs. 9(b), 10(b), and 8 

11(b). Maximum variation coefficients of 0.1% and 2.2% were respectively obtained in the second- 9 

and third-mode frequency evaluations by considering a block size of 16,384 samples in the three 10 

repetitions. Maximum variation coefficients of 0.15% and 2.0% were instead achieved by taking 11 

into account 32,768 samples. The position of the velocity seismometer A5 at the PCI beam’s 12 

midspan probably affected the accuracy of the measurements of second-mode frequency. 13 

Conversely, proper measurements of third-mode frequency required free vibrations by applying a 14 

release force Fd greater than 42.4 kN (Fig. 4). The average measurements of prestress forces N0x1 15 

and N0x2 for each test case are reported in Table 2 [dataset] [35]. The experimental fundamental 16 

frequency fI,exp increased from 9.20 to 9.28 Hz by considering a block size of 16,384 samples in the 17 

FFTs, despite the increase of 17.7% in the average prestress force N0x,aver. The slight increment was 18 

confirmed by assuming a block size of 32,768 samples, i.e., increasing the accuracy of the 19 

frequency identifications in the FFTs (200 Hz / 32,768 = 0.006 Hz). Specifically, the fundamental 20 

frequency fI,exp increased from 9.23 to 9.30 Hz (Figs. 9(b), 10(b) and 11(b)). Conversely, the elastic 21 

modulus Eaver increased with time (37,880 / 37,111 = 1.02), corresponding to an increase of 1.1% of 22 



 16 

the square root of Eaver with time. Similarly, the increase of elastic modulus Efvt,aver with time was 1 

42,305 / 40,837 = 1.04. Therefore, the increase of fundamental frequency is seemingly related to the 2 

increasing square root of the concrete’s elastic modulus with time. This has confirmed the 3 

theoretical results presented by Hamed and Frostig [27], where the natural frequencies of concrete 4 

beams with parabolic unbonded tendons were unaffected by prestress force. Additional 5 

identification methods have confirmed the estimations provided by Peak Picking Method. Other 6 

studies [39, 40] also agree with the aforementioned results reported in Table 2 [dataset] [35]. 7 

 8 

3.4 Comparison between analytical and experimental fundamental frequencies 9 

Table 2 [dataset] [35] compares the mean values for the experimental fundamental frequency 10 

fI,exp of the PCI beam, obtained using a block size of 32,768 samples in the FFTs, with the 11 

corresponding analytical values fI determined by Eqs. (2), (3) and (5). Elastic moduli Eaver and 12 

Efvt,aver were respectively assumed in the three equations. Percentage errors were then obtained by 13 

the expression (fI – fI,exp) / fI,exp. 14 

Table 2. Comparison between analytical and experimental fundamental frequencies obtained by 32,768 samples in the 15 

FFTs. 16 

 fI  with Eaver fI  with Efvt,aver 

N0x1 N0x2 N0x,aver 

fI,exp 

(32,768 

samples) 

Eaver 

fI 

Eq. (2) 

[38] 

fI 

Eq. (3) 

[38] 

fI 

Eq. (5) 

[30] 

Efvt,aver 

fI 

Eq. (2) 

[38] 

fI 

Eq. (3) 

[38] 

fI 

Eq. (5) 

[30] 

II,dyn 

Eq. (4) 

[38] 

fI 

STRAUS7 

[34] 

Days of 

concrete 

curing 

(kN) (kN) (kN) (Hz) (MPa) (Hz) (Hz) (Hz) (MPa) (Hz) (Hz) (Hz) (mm4) (Hz) 

9.23 8.40 8.55 8.57 8.83 8.97 8.99 2.7455×10
10

 9.07 
66 1711 1604 1658 

– 
37111 

-9.0% -7.4% -7.2% 
40837 

-4.3% -2.8% -2.6% – -1.7% 

9.27 8.40 8.57 8.60 8.82 8.98 9.00 2.7454×10
10

 9.09 
69 1887 1770 1829 

– 
37341 

-9.4% -7.6% -7.2% 
40956 

-4.9% -3.1% -2.9% – -1.9% 

9.30 8.46 8.64 8.66 8.96 9.13 9.15 2.745×10
10

 9.24 
70 2021 1883 1952 

– 
37880 

-9.0% -7.1% -6.9% 
42305 

-3.7% -1.8% -1.6% – -0.6% 

 17 

The model proposed by Song (Eq. (5)) [30] properly represented the dynamic behavior of the 18 

PCI beam with a parabolic unbonded tendon. An average error of −2.4% was gained by considering 19 

the elastic modulus Efvt,aver. By assuming a characteristic concrete strength fck of 96 MPa (Section 20 
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2.3.1), the serviceability limit state in the PCI beam was satisfied up to a prestress force Nx,SLS,max of 1 

4300 kN, corresponding to 9.0% of NcrE = π
2
Eref Itot,5–5/L

2
 = 48,029 kN. Thus, the maximum applied 2 

prestress force during free vibration tests, N0x,aver = 1952 kN, was 4.1% of NcrE. The average error of 3 

−7.1% in Table 2 [dataset] [35] was reasonable using the secant elastic modulus Eaver, confirming 4 

that the elastic modulus Efvt,aver of PCI beams differs from the secant Eaver during vibrations and 5 

when small second-order effects are applied [9, 36]. Table 2 also shows that the errors slightly 6 

increased by assuming the model proposed by Young and Budynas [38]. In fact, an average error of 7 

−2.6% was obtained by the first-order beam model (Eq. (3)) and considering the elastic modulus 8 

Efvt,aver, even though the second-order effects in the PCI beam were between 3.5% and 4.1% of NcrE. 9 

Notably, the second-order beam model (Eq. (2)) exhibited a constant course of frequency fI because 10 

the decrease predicted by the “compression-softening” model was cancelled out by the increase of 11 

elastic moduli Eaver and Efvt,aver with time. 12 

A FE first-order analysis in STRAUS7 environment [34], assuming a discretization of the PCI 13 

beam in nine beam elements, indicated that the frequency fI does not significantly vary with respect 14 

to the model proposed by Song (Eq. (5)). Furthermore, an average error of −1.4% was gained by the 15 

comparison with the mean experimental frequencies fI,exp in Table 2. More specifically, the initial 16 

elastic moduli Efvt,aver and the values of cross-sectional second moment of the area II,dyn for each test 17 

day, obtained by Eq. (4) and considering the corresponding frequency fI (Eq. (5)), were accounted 18 

for (Table 2). Notably, the values of dynamic cross-sectional second moment of the area II,dyn of the 19 

PCI beam (Table 2) increased by an average value of 0.5% when compared with the original cross-20 

sectional second moment of the area Itot,5–5 (the midspan cross-section). Conversely, the values II,dyn 21 

did not vary, i.e., from 2.7455×10
10

 to 2.745×10
10

 mm
4
, despite the increase of 17.7% in prestress 22 

force N0x,aver (Table 2). This deduces that the stiffness effect in concrete bridge beams with 23 

parabolic unbonded tendons is null because of the softening effect caused by the increase in 24 

compressive (prestress) force. 25 
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An additional FE first-order analysis in STRAUS7 [34] was finally used to examine the 1 

eccentric mass of 1.05 kN composed of load cell, steel transition part, and steel plate (Fig. 3(a)) at 2 

the PCI beam ends, for a corresponding value equal to 1.9% of its weight. Similarly to the 3 

numerical simulations reported in Bonopera et al. [9], the fundamental frequency did not vary with 4 

respect to that obtained by the refence model, i.e., Eq. (5). When the mass of load cells and/or 5 

stressing jacks are greater than the weight of the tested specimens, as occurred in the experiments of 6 

Noble et al. [1], fundamental frequencies are affected by a maximum error of approximately 6%. 7 

 8 

4. Conclusions 9 

A testing program was conducted on a large-scale PCI beam made of high-strength concrete to 10 

study the variation of fundamental frequency in concrete bridge beams with parabolic unbonded 11 

tendons, where second-order effects are lower than 10% of NcrE. A small range of second-order 12 

effects, i.e., lower than 4.5% of NcrE, were induced to prevent cracking phenomena during testing. 13 

This work supplements the limited laboratory tests on large-scale prestressed concrete beams 14 

because of the difficult task of performing such experiments with and without prestress force. 15 

Within the limitations of the research and the results obtained, the following conclusions are drawn 16 

regarding concrete bridge beams with parabolic unbonded tendons: 17 

1. The initial concrete elastic modulus Efvt,aver should be considered when simulating free 18 

vibrations in a numerical analysis, because the maximum stress due to vibrations is much 19 

lower than the 40% of fck, as proposed by Bonopera et al. [9]. Notably, the initial elastic 20 

modulus Efvt,aver could be obtainable by the ratio Eref / Efvt,ref = 0.91, where the secant 21 

modulus Eref can be determined by compression tests (Eq. (1)). 22 

2. The fundamental frequency is unaffected by prestress force. A small variation in frequency 23 

of 0.8% was recorded despite the increment of prestress force of 17.7%. This was 24 

theoretically demonstrated by Hamed and Frostig [27], and confirmed by the large-scale 25 

experiments presented. 26 
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3. The fundamental frequency is sensitive to variations in the square root of the concrete’s 1 

elastic modulus during the early curing process, as observed for concrete bridge beams with 2 

straight unbonded tendons in Bonopera et al. [9]. A small increment in frequency of 0.8% 3 

(Point 2) was registered in relation to the variation of secant and initial elastic moduli Eaver 4 

and Efvt,aver of 2.1% and 3.6%, respectively. 5 

4. The relationship between prestress force and fundamental frequency is well approximated 6 

by the model proposed by Song [30] that describes the behavior of a bridge beam as a 7 

combination of two substructures interconnected, i.e., a compressed beam and a tensioned 8 

parabolic cable. An average error of −2.4% was determined by comparing the analytical and 9 

the experimental frequencies (Table 2 [dataset] [35]). 10 

5. The tensioned parabolic tendon increases slightly the concrete beam’s stiffness (and natural 11 

frequency) without prestress force but, vice versa, the corresponding non-increase in 12 

stiffness (and natural frequency) with increasing prestress force is caused by the 13 

combination of stiffening and softening effects. In the PCI beam, the slight increment of 14 

experimental frequency (Point 2) was caused by variation in the square root of the 15 

concrete’s elastic modulus. The increase of PCI beam’s stiffness based on the tendon 16 

eccentricity may also have affected this trend [25, 42]. 17 

6. Conversely, the prominent increase of natural frequencies (and stiffness) with increasing 18 

prestress force, as reported in [14–18], may be caused by microcrack closure under the high 19 

prestress forces [23–25]. In fact, second-order effects greater than 10% of NcrE were induced 20 

in the concrete beam specimens. 21 

7. Another study [41] attempted to use natural frequencies as indicators predicting prestress 22 

loss in a concrete bridge, where second-order effects were of approximately 6.6% with 23 

respect to the first-order theory. Nonetheless, frequency has been confirmed to be an 24 

unsuitable indicator for prestress loss detection, as declared by Saiidi et al. [15], Jaiswal [25], 25 



 20 

and Bonopera et al. [9]. In fact, because of the reasons above mentioned, frequency remains 1 

relatively constant when changes in prestress force are induced. 2 

8. Consequently, further studies are intended for improving a static NDT method [8] for 3 

predicting prestress losses in concrete bridges. 4 
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