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ABSTRACT 

Interface displacements, surface tractions and stresses of a flexible beam bonded to an elastic 

orthotropic half-plane are analysed by means of a Finite Element-Boundary Integral Equation (FE-

BIE) method. Numerical results are obtained by using locking-free shear deformable beams and 

piecewise constant interfacial reactions. Making use of the generalised Green's function for the half-

plane, the mechanical behaviour of fully bonded or detached beams subjected to force, couple or 

thermal load is investigated. The special cases of a beam in bilateral frictionless contact with the 

half-plane and a beam having a vanishing bending rigidity (thin film) are considered also. In 

particular, the maximum bending moment of beams subjected to a vertical point force are compared 

with some closed-form solutions of the contact problem of a rigid indenter and with the solution of 

an infinite Euler-Bernoulli beam in bilateral frictionless contact with an isotropic substrate. 
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1 INTRODUCTION 

The contact problem of bars, beams and plates bonded to an elastic support is an important issue 

that has generated much interest in recent years. It has been widely dealt with in areas of aerospace, 

electronic, marine, transportation and infrastructure. In the framework of civil engineering, this 

topic has been dealt with in order to study soil-structure interaction problems or to investigate the 

effect induced by some reinforcements to increase the load-bearing capacity of existing structural 

elements. The latter application has been considered in Fiber-Reinforced Polymer (FRP) 

strengthening of concrete, steel or timber structures [1, 2, 3]. 

The contact problem involved in the indentation of an elastic half-plane has been treated by 

many authors under the assumptions of frictionless or fully adhesive contact, see [4, 5, 6] and 

references cited therein. The solution of a line force acting onto an elastic half-space was usually 

the main tool to study the contact problem. In particular, limiting to orthotropic or transversely 

isotropic half-plane under normal and tangential loadings acting onto the half-plane boundary, 

references have to be made to [7-13]. 

Early studies concerning thin films welded to an elastic substrate adopted series approximation 

method to solve singular integral equations including proper Green's function, see [14, 15, 16] and 

references cited therein. Series approximation method was also used to study the bending problem 

of Euler-Bernoulli beams resting on an isotropic half-plane, under the assumptions of frictionless 

[17] or fully adhesive contact [18]. The influence of shear deformation was considered in [16, 19]. 

In particular, in [16] the bilateral frictionless contact between a transversely loaded Timoshenko 

beam and an elastic isotropic layer is analysed, whereas the unilateral frictionless contact between a 

shear deformable beam and an elastic layer supported by a rigid base is considered in [19]. 

The mechanical behaviour of single or multi-layered systems subjected to different loading 

conditions can be straightforwardly assessed by means of the Finite Element Method (FEM) due to 

its potential and versatility. Nonetheless, FEM undergoes important limitations when applied to 



film-substrate systems [20]. Indeed, owing to the thinness of the layers typically involved in many 

thin film-based devices and coated systems, a refined mesh must be used, thus leading to a 

computer-time consuming. A proper grid refinement is needed in the neighbourhood of geometric 

discontinuities also in order to capture properly stress and strain localizations, whose knowledge is 

an important issue for many engineering tasks, ranging from the mechanical behaviour of MEMS 

and NEMS [21], to the analysis of the punch problem of coated systems prone to crack formations 

[22, 23]. Moreover, in order to simulate the half-plane, FE meshes should be extended to a region 

significantly greater than the contact area, with detrimental effect on the time needed to carry out 

the numerical simulations. Finally, it should be remarked that, by modelling the covers through 

beam elements and the underlying half-plane by means of classical two-dimensional FEs, the 

angular continuity between the cover and the substrate cannot be imposed exactly as the connection 

between the elements occurs at discrete points. 

Boundary Element Method (BEM) is a particularly advantageous tool for reproducing the 

response of an elastic half-plane because only the substrate boundary has to be discretized, see [24] 

and references cited therein. However, substrate tractions are usually considered as nodal reactions 

in the FE model of the foundation beam and the rotation continuity between beam and substrate is 

neglected. Alternatively, BE technique can be used to evaluate the mechanical behaviour of coated 

systems involving thin layers, as long as the nearly-singular integrals existing in the BE 

formulations are handled correctly [25, 26]. Nonetheless, beam model can be computationally more 

efficient than thin layer. 

Otherwise, the behaviour of the soil can be approximated by incorporating a proper model for 

the substrate. As an example, Cheung and Zienkiewicz [27], and Cheung and Nag [28] performed a 

numerical model in which the deflection of the foundation and, in turn, the corresponding flexibility 

matrix, involve the fundamental Boussinesq's solution for the elastic half-plane, thus simulating 

accurately the interaction between loaded beams and plates in contact with an elastic support. 

However, based on such an approach, the continuity of the slope between the beam and the half-



plane boundary cannot be imposed. Indeed, the connection among the beam and the substrate 

elements is realized by means of a finite number of pinned-clamped rigid links acting at equally 

spaced points, thus enforcing the continuity of the transversal deflection only. Moreover, the 

inversion of the substrate flexibility matrix is needed, thus consuming high computer-time. 

In the present paper, a static analysis of beams in plane strain or plane stress condition bonded to 

a homogeneous, linearly elastic and orthotropic half-plane, with a plane of elastic symmetry parallel 

to the boundary, is performed by using a coupled Finite Element-Boundary Integral Equation (FE-

BIE) model. The proposed approach involves the Green's function for the half-plane, thus providing 

a proper relation between the displacement and the interfacial stress fields at the substrate boundary, 

whereas a standard displacement-based formulation is used for the beam. The mechanical response 

of the half-plane is represented through a weakly singular integral equation, which solution is given 

analytically, thus avoiding singular and hyper-singular integrals typically involved in the classical 

BEM formulation. The independent unknowns of the problem are the displacement and the stress 

fields at the interface. It is worth noting that only the beam in contact with the substrate boundary 

has to be discretized. Unlike the numerical analyses available in the literature (e.g. [27, 28]), the 

proposed approach enforces the angular continuity between the foundation beam and the half-plane 

boundary at the node locations. Conversely to the classical FEM-BEM formulations, only 

symmetric soil matrices are involved in the proposed method, thus avoiding the computational cost 

due to the lack of symmetry of the BEM coefficient matrix. Note also that, differently to the 

standard FEM approaches in which a refined mesh requires a stiffness matrix with dimensions that 

are several times the square of the number of FEs used for the foundation beam, in the present 

model the resolving matrix has dimensions proportional to the number of the foundation beam FEs. 

This makes it possible to obtain very accurate solutions with low computational cost, as shown in 

[29], where a static analysis of both Euler-Bernoulli and Timoshenko beams bonded to an isotropic 

half-plane has been performed founding an excellent convergence rate as compared with those of 

other standard numerical methods. 



Once the unknowns have been determined, the internal forces on the beam are determined 

through usual post-processing analysis. Recently, the static analysis of Timoshenko beams in 

frictionless [30] or fully adhesive contact [29] with an isotropic half-plane has been performed 

based on a similar mixed formulation (an analogous study concerning bars and thin coatings can be 

found in [31]). Furthermore, the FE-BIE coupling method has been also used to study the buckling 

of Euler-Bernoulli [32] and Timoshenko [33] beams in bilateral frictionless contact with an elastic 

support. The proposed approach can be straightforwardly extended to investigate the buckling of 

homogeneous or graded layers welded to an elastic substrate, with particular reference to the 

instability analysis of thermal barrier coatings, by following the approach adopted in [32, 33]. 

However, for such elements, wrinkle instabilities can occur, particularly in stiff coatings bonded to 

compliant substrates under compressive loads [34]. Therefore, a proper mesh refinement of the 

coating is mandatory in order to capture properly the wrinkle wavelength. 

Numerical examples of FRP laminate bonded to wood substrate and concrete foundation resting 

on soil are treated by assuming beam or membrane theory for the stiffener and, concerning the 

contact condition, perfect adhesion or bilateral frictionless contact. Beams with different bending 

rigidity, loaded by a vertical point force at the midspan are considered in plane strain state firstly. 

The maximum value achieved by the bending moment is investigated and compared with analytic 

solution present in the literature. Moreover, a detached and fully bonded beam subjected to a 

vertical point force at one end are analysed. Afterwards, beams subjected to horizontal force or 

thermal variation under plane stress assumption are investigated. It is shown that the shear force at 

the beam ends can be significantly affected by shear deformation according to the Timoshenko 

beam theory. Finally, a shallow foundation loaded by a moment at the midspan is studied as a 

Timoshenko beam in perfect adhesion as well as in bilateral frictionless contact with an elastic soil. 

 



2 VARIATIONAL FORMULATION 

A shear deformable beam with length L, height h and width b, bonded to an orthotropic semi-

infinite substrate in a generalized plane stress or plane strain state is considered here. Reference is 

made to a Cartesian coordinate system (O; x, z) having the x axis coincident with the centroidal axis 

of the beam and the z axis is downward directed (Fig. 1). Distributed horizontal and vertical 

external loads px(x), pz(x), couple m(x) as well as thermal variation ∆T(x) act along the beam. The 

beam is supposed in perfect adhesion with the half-plane. According to this assumption, both 

interfacial shear and normal tractions, rx(x) and rz(x), will occur within the contact region. 

Here, a mixed variational principle is used to study the beam-substrate system, including the 

Green's function for the orthotropic half-plane. The total potential energy of the system Π is given 

by adding the total potential energy of the beam Πbeam to that of the substrate Πsoil, i.e., Π = Πbeam + 

Πsoil. As limit cases, an inextensible thin coating with a vanishing bending rigidity bonded to a half-

plane and a beam in bilateral frictionless contact with a half-plane are considered in some detail. 

 

2.1 Total potential energy for the foundation beam 

Assuming positive cross-section rotations ϕ in counter-clockwise direction, the horizontal and 

vertical components of the displacement field of the Timoshenko beam can be written as 

),()()()()( 0, xux,zu,zxxux,zu zbzbxbx =ϕ+=  (1a,b) 

where ubx,0 is the axial displacement of the centroidal beam axis and uz is the vertical displacement 

of both the beam and the half-plane boundary. The horizontal displacement of the lower side of the 

beam in contact with the half-plane boundary is given by ux(x) = ubx,0(x) + ϕ(x) h/2. The 

corresponding axial and shear strains are 

,0, ϕ+′=γϕ′+′=ε zbbxb u,zu  (2a,b) 



where prime represents differentiation with respect to variable x. Plane state assumption yields the 

following stress-strain relations: 

σb = E0 εb,      τb = Gb γb,  (3a,b) 

where E0 = Ex,b or E0 = Ex,b/(1−νxy,bνyx,b) for generalised plane stress or plane strain state 

respectively, Ex,b is the Young's modulus of the beam along the x-axis, νij,b is the Poisson's 

coefficient of the beam associated with the pair directions i, j = x, y, z, Gb is the shear modulus Gxz,b 

of the beam. 

The elastic strain energy of the beam, Ubeam, can be written as the sum of the axial strain energy 

Ubeam,a and the bending-transverse shear strain energy Ubeam,b. By using the strain components (2) 

and the stress-strain relations (3), the elastic strain energies Ubeam,a and Ubeam,b can be written as: 
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where Ab = bh, Db = E0 bh
3/12 are the area and the flexural rigidity of the beam cross section, 

respectively, α0 is the coefficient of thermal expansion of the beam, kb is the shear correction factor 

[35, 36] 
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for a plane stress or a plane strain state, respectively. 

Finally, the total potential energy of the beam, Πbeam, is assessed by adding the axial part Πbeam,a 

to the bending component Πbeam,b, which are obtained from the strain energy contributions and the 

potential energy of the external loads, resulting in 
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2.2 Total potential energy for the orthotropic substrate 

According to Voigt compact notation [6], the stress-strain relationship of a linearly elastic 

material can be expressed by the Hooke's law ε = S σ, where the compliance matrix S can be 

written making reference to the canonical base (O; x, z). As known, for an orthotropic body 

exhibiting three perpendicular planes of elastic symmetry xz, yz, and xz in a plane state, the strain-

stress relationship reduces to 
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where the elastic compliance constants involved in Eq. (7) can be written as  
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for plane stress state, Eq. (8), or plane strain state, Eq. (9), respectively, where Ei denotes the 

Young's modulus along the directions i = x, z, Gij and νij are the shear modulus and Poisson's 

coefficient, respectively, associated with the pair directions i, j = x, y, z. In particular, due to this 

special kind of material symmetry, νij/Ei = νji/Ej.  

In the following, three combinations of the elastic compliance constants are used  
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In particular, in plane stress state, making use of Eq. (8), Eq. (10) reduces to 
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while in plane strain state, by substituting Eq. (9) into Eq. (10), the constants c1, c2, c3 become 
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It is worth remarking that, for an isotropic substrate, the elastic compliance component R33 of the 

half-plane in z-direction is equal to 1/E and the substrate coefficients are c1 = 1, c2 = 2, c3 = c, where 

E = Esoil and c = 1 − νsoil or E = Esoil/(1− 2
soilν ) and c = (1− 2 νsoil)/(1 − νsoil) for a generalized plane 

stress or plane strain state, respectively, Esoil and νsoil being the Young's modulus and Poisson ratio 

of the isotropic substrate. 

The solutions to the two-dimensional problem for a homogeneous, linear elastic and orthotropic 

half-plane loaded by a point force normal or tangential to its boundary are given in [12, 13]. In 

particular, the surface displacement ui(x), with i = x, z, due to a point force Pi( x̂ ) applied to the half-

plane boundary, can be expressed in closed form as ui(x) = g(x, x̂ ) Pi( x̂ ), where the Green's 

function g(x, x̂ ) is given by the following expression: 
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being d an arbitrary length related to a rigid-body displacement. 

After some cumbersome algebraic manipulation of the results reported in [12, 13], the horizontal 

and vertical displacements of a point of the orthotropic half-plane boundary due to the combined 

action of tangential and normal tractions can be written as: 
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where x0, xL are the abscissas of the beam ends. Therefore, a combination of only four elastic 

constants characterises the displacement field (14). 

Making use of the theorem of work and energy for exterior domains [37], it can be shown that 

the total potential energy Πsoil for the half-plane equals one half of the work of external loads [30, 

31, 29], i.e., 
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Substituting Eq. (14) into Eq. (15) yields Πsoil = Πsoil,a + Πsoil,b, where 
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2.3 Total potential energy for the beam-substrate system 

The total potential energy of the beam-substrate system Π = Πbeam + Πsoil is a mixed variational 

formulation with variational functions represented by displacements ubx,0, uz and rotation ϕ, as well 



as interfacial shear and normal tractions rx and rz along the contact region. It is worth noting that 

using Green's function given by Eq. (13) reduces the domain of integration to the beam length only. 

For an isotropic substrate, the total potential energy Π reduces to that reported in [29]. 

Several particular cases derive from the proposed mixed variational formulation. For instance, a 

beam in bilateral frictionless contact with the underlying substrate involves null interfacial shear 

tractions rx along the contact region. Accordingly, the displacement field provided by Eq. (14) reads 
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and, accordingly, the total potential energy of orthotropic half-plane Πsoil becomes 
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The displacement field (17) is similar to Eq. (12) reported in [30], where a beam in bilateral 

frictionless contact with an isotropic substrate is considered, except for different values of the 

Young's modulus and the coefficient c. Therefore, an orthotropic substrate behaves like an isotropic 

soil having an equivalent Young's modulus E = 2/(c1 c2 R33) and a ratio c/E = c3 R33, with c = 

2 c3/(c1 c2). Thus, the FE-BIE methods as well as the results shown in [30] can be used. In 

particular, in the case of a rigid punch resting on an orthotropic half-plane, the normal tractions 

under the punch are the same of those found for the indentation problem of an isotropic half-plane 

[6]. However, the stress and displacement fields in the half-plane will differ from those found in the 

case of isotropy. 

A beam with a small bending rigidity may be considered as a thin coating where the normal 

tractions rz can be neglected. Then, the displacement field (14) reduces to 
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and the total potential (15) becomes  
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The displacement field (19) is similar to Eq. (13) reported in [31], where a thin coating bonded to 

an isotropic substrate is studied, except for different values of the Young's modulus and the 

coefficient c. Therefore, an orthotropic substrate behaves like an isotropic soil having an equivalent 

Young's modulus E = 2/( 3
1c c2 R33) = 2 c1/(c2 R11) and a ratio c/E = c3 R33, with c = 2 c3/(

3
1c c2). 

Therefore, the analyses made in [31] can be employed. In particular, in the case of an inextensible 

stiffener bonded to an orthotropic half-plane, the interfacial shear tractions rx are the same of those 

founded for an isotropic half-plane. 

 

3 FINITE ELEMENT MODEL 

Both the foundation beam and the substrate boundary are subdivided into FEs sharing the same 

mesh. Nevertheless, the mesh of the beam could be chosen independently from that used for the 

half-plane boundary. The generic ith FE has a length li = |xi+1 − xi,| where xi and xi+1 are the initial 

and end coordinates. Assuming a dimensionless local coordinate ξ = x/li, the displacements of the 

centroidal axis of beam can be approximated as 

u(ξ) = Na(ξ) uxi,             [v(ξ), ϕ(ξ)]T  = Nb(ξ) qzi, (21a,b)  



where uxi = [ux,i, ux,i+1]
T and qzi = [uz,i, φi, uz,i+1, φi+1]

T are the vectors of nodal displacements, while 

Na(ξ) = [Na,1, Na,2] is the vector collecting the linear Lagrangian functions, N a,1 = 1 − ξ and Na,2 = ξ, 

whereas Nb(ξ) is the matrix of the “modified” Hermitian shape functions [29, 30, 38, 39]:  
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being φi = 12Db/(kb Gb Ab
2

il ) dimensionless coefficients accounting for the shear deformation 

according to the Timoshenko beam theory. As shown in [40], the finite element interpolation 

functions (22) gives exact nodal displacements as they derive from the exact solution of the 

homogeneous governing equations for a Timoshenko beam. Moreover, Eqs. (22) reduce to the 

classical Hermitian polynomials (and to their derivatives) when shear deformations are negligible, 

so resulting in locking-free FEs [40, 41]. 

The tractions may be approximated as 

rx(ξ)= [ρ(ξ)]T
 rxi,            rz(ξ)= [ρ(ξ)]T

 rzi,  (23a,b) 

where rxi, rzi denote nodal interfacial shear and normal tractions, respectively, and vector ρ collects 

constant shape functions, i.e., only piecewise constant functions are used to interpolate rx and rz and 

ρ(ξ) is assumed to be unitary along the generic FE. 

Substituting Eqs. (21) and (23) into the total potential energy of the beam-substrate system Π  

and assembling over all elements, the potential energy turns out to be  
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where Ka, Kb are the beam stiffness matrices and fx, fz denote the external load vectors, whose 

components for the ith FE can be written in the usual form: 
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The components of matrices Hxx, Hzz, Hxz appearing in Eq. (22) descend by the potential energy of 

the substrate tractions appearing in Eqs. (6a, b) and play a key role as they enforce the compatibility 

of displacements and rotations between the beam and the substrate. The following expressions hold 

for the generic FE: 
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Note that expressions (27) coincide with Eqs. (25) reported in [29].  



Note also that matrices Gxx, Gzz, Gxz, Gzx are fully populated since they account for the nonlocal 

relation between beam displacements and surface tractions. These matrices can be grouped in the 

following substrate matrix 
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The components of the matrix G are given by: 
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where the contribution due to the arbitrary length d has been omitted since rigid-body displacements 

can be imposed in post-processing analysis. For instance, both the horizontal and vertical 

displacements at one beam end or at the beam midspan can be set to zero.  The integral in Eq. (29a) 

is weakly singular, i.e. it always exists and it is finite. Substituting piecewise constant functions (23) 

in Eq. (29a), analytical integration yields 
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with G(x) = x2/2 ln|x|, whereas the components of matrix xzG
~

, Eq. (29b), are the following  
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For an isotropic half-plane, matrix (28) reduces to Eq. (42c) reported in [29]. 

Requiring the stationarity of the potential energy (24), the following system of equations 

governing the response of the beam-substrate system is obtained: 
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For the sake of completeness, classical results referred to a prismatic beam subjected to 

distributions of loads px(x), pz(x), couple m(x) as well as thermal variation ∆T are recalled. The 

system of equations (32) concerning a prismatic beam bonded to an orthotropic half-plane can be 

written in dimensionless form as 
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and, after some manipulations, as 
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with λ0 = L/rg and the radius of gyration rg = h/ 12 . Making use of Eqs. (21a,b) and (25a, b), the 

stiffness matrices of the ith FE read 
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The vectors of the external load of the ith FE, Eqs, (26a, b), due to uniform load distributions px(x), 

pz(x), m(x) and thermal variation ∆T, are decomposed into the axial and shear-bending components 

as follows 
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Making use of the Eqs, (27a, b, c), the elements of matrix H for the generic FE have the 

following components 
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To sum, a representation of the matrix (35b) is shown in Fig. 2, where the beam is subdivided 

into two elements (b1, b2) bonded to two substrate elements (s1, s2) and subjected to pointwise loads 

Px, Pz, C at the beam midspan. 



Owing to positive definiteness and symmetry of matrix in eq (32), system (32) can be solved 

through a standard algorithm. However, interesting insights may be obtained by the formal 

solutions of Eq. (32) that reduces to the following equations 
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According to references [29, 30, 42, 43], the parameter αL governs the static response of the beam-

substrate system. Low values of αL characterize short beams stiffer than soil, whereas high values 

of αL correspond to slender beams on a relatively stiff soil. Nonetheless, differently from the 

isotropic case, the three combinations of the elastic compliance constants (10) play a crucial role in 

the static response. It is worth noting that the elastic response of a thin coating bonded to an elastic 

substrate is characterized by the parameter βL = bL/(R33E0Ab), yielding the relationship (αL)3 = (βL) 

2
0λ  [29, 31, 44]. 

 

4 NUMERICAL EXAMPLES 

Unless otherwise specified, a number of 512 equal beam FEs have been used. Each beam FE 

includes one substrate element. The solution of the system, Eq (32), provides the displacements 

along the centroidal beam axis and the interfacial tractions. The plotted values of horizontal 

interface displacement are obtained by Eq. (1a) with z = h/2. The axial force N, shear force V and 

bending moment M along the beam have been calculated through post-processing analysis, 

multiplying the local stiffness matrix of the beam by the displacement vector obtained by the 

solution of system (32). 



Firstly, a Timoshenko beam loaded by a vertical force acting at the midspan is investigated in 

perfect adhesion or bilateral frictionless contact. Secondly, two examples of practical meaning are 

considered: a concrete foundation subjected to uniform vertical pressure pz, resting on two different 

orthotropic soils, and a peel test of a Glass Fibre Reinforced Polymer (GFRP) wholly bonded or 

partially detached to a Balsa orthotropic substrate. Subsequently, a Timoshenko beam subjected to 

horizontal force is analysed. In particular, a shear test of GFRP reinforcement bonded to a wood 

substrate in perfect adhesion, with or without bending rigidity, and an aluminium reinforcement 

subjected to an uniform thermal variation, resting on different single wood substrate are considered. 

Finally, a study of a concrete foundation in perfect adhesion and in bilateral frictionless contact 

subjected to couple at the midspan is performed. In this case the horizontal displacement ubx,0 of the 

centroidal beam axis has also been reported.  

The mechanical properties used in these examples have been found in the literature, i.e. wood 

and plywood [45], rock [46, 47], clay [48, 49] and sand [50, 51]. Elastic modulus and Poisson's 

coefficients are reported in Table 1 and 2 for beams (B1, B2, B3) and substrates (S1, S2, S3, S4, S5, 

S6), respectively. Then, the coefficients of the substrate c1, c2, c3 have been determined according to 

Eqs. (11) or (12). 

 

4.1 Beam loaded by vertical force or pressure  

Plane strain state is assumed for beams loaded by a vertical force Pz at the midspan or by a uniform 

pressure pz and, unless specified, downward directed. Perfect adhesion and bilateral frictionless 

contact are considered, focusing on the behaviour of the internal shear force at the beam ends and 

the maximum bending moment. A GFRP reinforcement bonded to an orthotropic Balsa wood half-

plane and a concrete foundation resting on an orthotropic soil are studied. 



 

4.1.1 Beam loaded by a vertical point force Pz at the midspan 

The case of GFRP Timoshenko beam, with L/h = 10, αL = 106.4 and φ = 0.001, perfectly bonded to 

an elastic orthotropic half-plane having c1 = 2.91, c2 = 2.24, c3 = 7.81, and loaded by a vertical point 

force Pz acting at the midspan is reported first. The adopted elastic modulus and Poisson's 

coefficients of the beam B1 and substrate S1 are listed Table 1 and 2, respectively. Dimensionless 

displacements and reactions along the substrate boundary are shown in Figs. 3a, b, and c, d, 

respectively. Dimensionless values of the axial force, shear force and bending moment along the 

beam are shown in Figs. 3e, f and g. The cases of a beam in perfect adhesion (solid line) and in 

bilateral frictionless contact (dashed line) are reported. 

The horizontal displacement ux corresponding to the frictionless condition produces a contraction 

of the half-plane surface along the whole interface. Conversely, a different behaviour occurs in the 

case of a beam in perfect adhesion, owing to the fact that ux is affected by the contribution of the 

term ϕ h/2 also. Indeed, in such a condition, Fig. 3a shows a non-monotonic trend for the horizontal 

displacement which changes its sign into a narrow central region (i.e. -0.1 < x/L < 0.1). At the beam 

ends, the horizontal displacement assumes a value 10 times lower than those found for the bilateral 

frictionless contact. The maximum value of the vertical displacement uz is achieved at the midpoint 

(x/L = 0) and, in perfect adhesion, it results 20% lower than that found for a beam in perfect contact 

with the half-plane, as shown in Fig. 3b. For a beam in perfect adhesion, the tangential reaction rx at 

x/L = 0 and at the beam ends exhibits a finite discontinuity, whereas it is equal to zero for a beam in 

bilateral frictionless contact, as reported in Fig. 3c. As expected, a singular normal reaction rz at the 

midspan is found, as shown in Fig. 3d. Note also that the peel tractions at the beam ends assume 

different sign depending upon the contact condition. This aspect was already remarked in [29, 30]. 

The axial force of the beam in perfect adhesion is shown in Fig. 3e. Shear force and bending 

moment are not significantly affected by the contact condition, as displayed in Figs. 3f and g. 



An accurate description of the shear force is obtained using the beam T1 with L/h = 40, see Fig. 

4. The comparison is made among an Euler-Bernoulli (φ = 0) and two Timoshenko beams (φ = 10-2 

and 10-5) in perfect adhesion (solid line) and in bilateral frictionless contact (dashed line) versus the 

dimensionless coordinate x/L. The orthotropic substrate S1 is considered, leading to αL = 42.5. Fig. 

4a shows that the shear force of a Timoshenko beam with small value of φ is analogous to that of an 

Euler-Bernoulli beam, except at the beam ends. The response in terms of shear force is analyzed in 

detail at the beam ends, using a logarithmically spaced mesh in the interval [0.4, 0.5 − 10−4], where 

different behaviour between Euler-Bernoulli and Timoshenko beams is found. In particular, a 

singularity of the shear force for the Euler-Bernoulli beam is observed (see Fig. 4b). Conversely, for 

beams in bilateral frictionless contact with the half-plane, the shear force does not depend 

significantly on the kind of beam adopted, and it assumes vanishing values at the beam ends.  

The maximum bending moment of concrete beams resting on an elastic medium is a key issue in 

the framework of civil engineering, with particular reference to the design of shallow foundation of 

buildings. Euler-Bernoulli (φ = 0.0) and Timoshenko (φ = 0.03) concrete foundation beams, loaded 

by a vertical point force Pz at the midspan and resting on an isotropic or orthotropic soil, are 

considered. Dimensionless maximum bending moment at x/L = 0 versus αL is reported for a beam 

in bilateral frictionless contact (Figs. 5a, b) and in perfect adhesion (Figs. 5 c, d), respectively. The 

elastic parameters c1 = 0.84, c2 = 2.15, c3 = 0.62, and E3 = 0.12 MPa are taken for the orthotropic 

soil (solid line), while the same Young's modulus is assumed (dash-dot line) for the isotropic soil. 

Table 1 and 2 show the elastic moduli and Poisson's coefficients of the adopted beam T2 and soil 

S2. 

In bilateral frictionless contact, the maximum bending moment, Mmax, of a flat rigid indenter 

loaded by a vertical force Pz, may be calculated by integrating from 0 to L/2 the moment induced by 

the pressure rz given by Sadowsky [4, 6] with respect to the midspan, namely 
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As shown in Fig. 5a, the maximum value of the bending moment for αL ≤  1 agrees well with that 

predicted by the Sadowsky solution. The magnitude of maximum bending moment decreases as αL 

increases, hence for flexible or long beams. According to Biot [42], the maximum bending moment 

of an infinite Euler-Bernoulli beam resting on isotropic substrate in bilateral frictionless contact 

reads 
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where LLa α= /23 . 

It is worth noting from Fig. 5b that the maximum bending moment provided by Eq. (43) holds 

for αL > 10. Conversely, for an infinite Timoshenko beam is not possible to obtain a constant value. 

Note also that, for αL > 5, the maximum bending moment obtained by considering the orthotropic 

half-plane results about 5% lower than that found for an isotropic half-plane. 

For the perfect adhesion condition, the maximum bending moment of a rigid flat punch loaded 

by a vertical force Pz, acting on an elastic isotropic substrate, could be obtained by integrating the 

normal and shear tractions given by Abramov [6]:  
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within the contact region 0 ≤ x < L/2 multiplied by their distance from the centroid of the rigid 

punch, as follows  

,1443.0)/0795.01522.0(d)2/(
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L
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by assuming L/h = 10, κ = 2.44, that is κ = (3 − νs)/(1 + νs) or κ = 3 − 4νs for a generalized plane 

stress or plane strain state, with the Poisson coefficient of isotropic substrate νs equal to 0.16 or 0.14 

respectively. As shown in Fig. 5c, Eq. (45) holds for both beams (Euler-Bernoulli and Timoshenko) 

bonded to an elastic isotropic or orthotropic substrate with αL ≤  1. Finally, the maximum bending 

moment of a beam bonded to a substrate in perfect adhesion is 10% lower than that found for a 

beam in bilateral frictionless contact because of the presence of tangential tractions rx. The analytic 

solution of Mmax of an infinite beam resting on a substrate in perfect adhesion is not present in the 

literature. However, the numerical solutions displayed in Fig. 5d show a decrease in the maximum 

value of the bending moment, whereas for a beam in perfect adhesion, for αL = 10 it is 

approximately 20% less than that found for the bilateral frictionless contact condition for both the 

beam theories. For a beam in the perfect adhesion with the half-plane, the Mmax obtained by 

considering the orthotropic half-plane results about 10% lower than that obtained for an isotropic 

substrate for αL > 5. 

 

4.1.2 Comparison with standard FE model 

In order to assess the numerical performance of the present model as compared with conventional 

FEs, a beam perfectly bonded to an elastic half-plane is analysed by means of standard FE model. 

Quadrilateral FEs in plane state are used to simulate the substrate, which displacements in the 

normal direction of the boundaries are restrained. As shown in Fig. 6, three different square 



substrate meshes with total width equal to 8L (FEM 8L), 16L (FEM 16L) and 32L (FEM 32L) are 

analysed (this latter is not shown in Fig. 6 because its large dimensions), being L the beam span 

length. FEM 16L and FEM 32L meshes are introduced to provide a more accurate description of the 

beam horizontal displacement, which is expected to be significant for most of the beam length, 

particularly for slender beams. Two refined square meshes, having widths equal to 4L and 2L for 

FEM 8L, to 8L and 4L for FEM 16L, and to 16L and 8L for FEM 32L, are carried out near the 

foundation beam. The case of the foundation beam subdivided into 4 beam FEs for meshes FEM 8L 

and FEM 16L is displayed in Figs. 6a, 6b, respectively. A precise solution of the soil-structure 

interaction problem can be obtained by using the adopted meshes which involve a number of FEs 

lower than that required by a uniform mesh of quadrilateral elements. 

Indicating with nel  the number of beam FEs, the number of equations associated with meshes 

FEM 8L, FEM 16L and FEM 32L is given by L)8(
eqn = 20.1 2

eln , 6L)1(
eqn = 80.4 2

eln  and L)32(
eqn = 321.6 2

eln , 

respectively (note that, for meshes FEM 8L and FEM 16L, the case for nel = 4 is depicted in Figs. 

6a, 6b), whereas the number of equations, neq, associated with the Present Analysis (PA) is given by 

(PA)
eqn  = 5 nel + 3. In order to compare the two formulations, reference is made to the GFRP 

Timoshenko beam previously investigated. For each of the numerical models compared, a series of 

mesh refinements is obtained by letting nel progressively takes the values 8, 16, 32, 64, 128, 254, 

512 and 1024. Comparison is made by taking as a base solution the numerical solution obtained 

through the PA by discretizing the beam with 4096 equal FEs. 

Fig. 7 shows the test results in terms of relative error eM = |Mmax−Mref|/|Mref| versus the number of 

equations neq, where Mmax represents the peak value of the bending moment in the beam obtained 

from the various models for a generic discretization, and Mref denotes the maximum bending 

moment corresponding to the reference solution. In particular, Mref = + 0.005796 PzL (sagging 

bending moment with tension in bottom fibres). 



As shown in Fig. 7 and Table 3, the proposed model gives more accurate results and it exhibits 

higher convergence rate with respect to conventional FE model. In particular, for a fixed number of 

equations neq, Fig. 7 shows that the present approach provides peak values of the maximum bending 

moment of the beam affected by relative errors that are much lower than those obtained by using a 

standard FE formulation. Furthermore, the proposed model is characterized by a high rate of 

convergence C λ−
eqn  as it yields an exponent λ significantly larger than those provided by standard 

FE model, as shown in Table 3 for the curves displayed in Fig. 7. 

Such results confirm that the present model is a valid tool to solve properly beam-substrate 

interaction problems by using a small number of beam FEs. In particular, it is shown a number nel = 

512 of equal beam FEs gives accurate solutions for all cases considered afterwards. 

 

4.1.3 Foundation loaded by a vertical pressure pz over length L/4 at the midspan 

In this Section, the case of a Timoshenko beam subjected to a uniform vertical load distribution pz 

acting over a length L/4 centered with respect to the midspan is analysed. Dimensionless interface 

displacements, soil reactions, axial force, shear force, and bending moment along the beam, are 

reported in Fig. 8. 

Two kinds of orthotropic soil in perfect adhesion with the beam are studied. Assuming the elastic 

modulus and Poisson's coefficient of concrete beam T2 listed in Tab.1, clay S2 or sand soil S3 in 

Tab. 2 the soil coefficients are c1 = 0.84, c2 = 2.15, c3 = 0.62 for clay soil or c1 = 1.06, c2 = 2.15, c3 = 

0.93 for sand soil. Assuming a ratio L/h = 10 for the beam, the parameter αL becomes equals 3.65 

or 4.54, respectively. 

Displacements ux and uz at the substrate boundary for perfect adhesion condition are reported in 

Fig. 8a and b respectively, for both soils. It is worth noting that for a beam resting on a relatively 

rigid soil (i.e. αL = 4.54, dashed line), the horizontal interface displacement at the beam end and the 

vertical interface displacement at x/L = 0 are 30% and 60% higher, respectively, than those 



calculated for a beam bonded to a relatively soft soil (i.e. αL = 3.65, solid line), whereas both 

substrate reactions are quite similar, as shown in Fig. 8c and 8d. Conversely, the axial force of the 

beam resting on a relatively rigid soil (Fig. 8e, dashed line) is about 15% lower than that obtained 

by considering a soft soil. However, almost the same values of the shear force and bending moment 

along the beam are found for both the orthotropic soils. The shear force obtained by considering the 

Euler-Bernoulli beam (φ = 0.0) with αL = 3.65 in perfect adhesion with the soil is also displayed in 

Fig. 8f (thin solid line). It is worth noting that going toward the beam ends, a completely different 

behaviour of the shear force is observed with respect to that found for the Timoshenko beam. In 

particular, the shear force for an Euler-Bernoulli beam takes non zero values and opposite sign with 

respect to those obtained by considering a Timoshenko beam. 

 

4.1.4 Detached beam loaded by a vertical point force Pz at one end 

A GFRP stiffener subjected to a vertical point force Pz applied at one end and upward directed, 

bonded to a Balsa orthotropic substrate in perfect adhesion, is investigated here. Elastic moduli and 

Poisson's coefficients are reported in Tab. 1 and 2, respectively, for the beam T1 and the substrate 

S1. 

Dimensionless interfacial displacements and substrate reactions are shown in Figs. 9a-d, whereas 

the axial force, shear force and bending moment are displayed in Figs. 9e-g, for a beam detached 

from the substrate between x/L = 0.3 and x/L = 0.40 (solid line) and a fully bonded beam (dashed 

line). In particular, for the detached beam, a number of 297 logarithmically spaced FEs are used, 

and the length of the beam has been subdivided in four intervals to capture straightforwardly the 

stress singularity. Thus a number of 84 logarithmically spaced points are generated in the interval 

[−0.5+10-8, −0.1]/L, 85 points in the intervals [−0.1, 0.3]/L, 65 points into [0.4, 0.45]/L, and 64 

points into [0.45, 0.5-10-8]/L. The results concerned with the detached beam are almost identical to 

those obtained for the fully bonded beam, except in the neighbourhood of the detached region. In 

particular, at the ends of the detached region both the shear and peel stresses appear to be singular. 



Moreover, as expected, zero substrate reaction and constant axial force are found within the 

detached region. 

 

4.2 Beam loaded by horizontal force or subjected to uniform thermal load ∆T 

Plane stress state is assumed for a beam bonded to an orthotropic substrate and loaded by horizontal 

force Px or subjected to uniform thermal load ∆T. Two examples of practical relevance are 

considered: a GFRP or aluminium stiffener bonded to an orthotropic wood substrate. Moreover, the 

shear force of Euler-Bernoulli and Timoshenko beams are compared along the contact length and at 

one end. 

 

4.2.1 GFRP beam loaded by a horizontal point force Px at one end 

The case of an elastic Timoshenko beam T1 loaded by a horizontal concentrated force acting at one 

end, perfectly bonded to a wood orthotropic substrate S4, is analysed and compared with a beam 

having a vanishing bending rigidity (thin film assumption) in Fig. 10. Assuming L/h = 60, the 

governing parameter for the beam is αL = 40.2 (solid line), whereas βL = 1.50 (dashed line) holds 

for the membrane assumption. 

Dimensionless interface displacements or substrate reactions for both cases are similar, except 

the normal component of the interfacial stress field, which is zero within the whole contact region 

for the case of a thin film. It is worth noting that the normal component of the displacement quickly 

grows going toward the ends of the stiffener, particularly for the case of the Timoshenko beam. 

Note also that the peel stress changes its sign in the neighbourhoods of the beam ends, similarly to 

the case of a beam loaded by a vertical pointwise force acting at the midspan (see Fig. 3d). 

Moreover, a peak value for the peel stress occurs in the neighbouring of the load section, as shown 

in Fig. 8d. Besides, the shear force and the bending moment could be found for the beam case only. 

However, the solution of the beam-substrate interaction problem where only horizontal forces act 

on the system does not appreciably depend on the parameter φ [29]. Hence, concerning this loading 



condition, the choice of Euler-Bernoulli or Timoshenko beam model leads to almost the same 

results. 

Conversely, the shear force is significantly affected by the shear deformation of the beam. This 

fact has been found by investigating a Timoshenko beam loaded by a horizontal pointwise force 

acting at one end of the beam varying the parameter φ. In particular, an Euler-Bernoulli beam (φ = 

0) and a Timoshenko beam with φ = 10-2 and 10-5 have been studied in detail. Fig. 11 shows the 

shear force along the beam and in the neighbourhood of the external force. As expected, the shear 

force of a Timoshenko beam with small φ tends to that of an Euler-Bernoulli beam. However, the 

main differences occur in the neighbourhood of the loaded section, where the shear force of the 

Euler-Bernoulli beam takes opposite sign and does not vanish at the beam ends. Conversely, the 

shear force of a Timoshenko beam at the loaded section vanishes, and going toward the inner part of 

the contact region, it increases in magnitude as the parameter φ increases. Note also that the 

maximum value achieved by the shear force of a Timoshenko beam occurs at about 0.47÷0.48 x/L, 

whereas in an Euler-Bernoulli beam it occurs in the range 0.46÷0.47 x/L. 

 

4.2.2 Stiffener subjected to uniform thermal load ∆T 

The behaviour of a beam resting on an elastic substrate and subjected to a uniform thermal variation 

∆T resembles that of a beam symmetrically loaded by two opposite axial forces applied at the beam 

ends, as shown for the bar-substrate problem [31]. The interaction between an aluminium stiffener 

and a wood substrate is investigated. The Euler-Bernoulli beam theory is assumed and two kinds of 

orthotropic half-plane are studied, as shown in Fig. 12. The elastic moduli and Poisson's coefficients 

of the beam T3 and the substrates S5 or S6 are listed in Table 1 and 2, respectively. In particular, 

two kinds of half-plane having the same Young modulus in z-direction and characterised by c1 = 

0.45, c2 = 1.95, c3 = 0.20 (S5, solid line), and c1 = 0.65, c2 = 2.90, c3 = 0.40 (S6, dashed line) are 



considered. Therefore, by taking a length-to-height ratio L/h = 10, both cases are characterized by 

the parameter αL = 60. 

Dimensionless interface displacements and substrate reactions versus x/L are plotted in Fig. 12a, 

b and c, d, respectively. The axial force, shear force and bending moment of the beam are shown in 

Fig. 12e, f and g. It is worth remarking that the substrate S5 having a high elastic stiffness in x-

direction (solid line) exhibits a horizontal component of the interfacial displacement 25% lower 

than that found for the compliant substrate S6 (dashed line). Conversely, the vertical component of 

the interfacial displacement is 60% higher with respect that exhibited by the wood substrate S6. On 

the other hand, shear and normal components of the interfacial stress field for a substrate having a 

low value of Young modulus in x-direction (namely, the substrate S6), are quite uniform along the 

beam, with relatively low peak values attained at the beam ends, see Fig. 12c, 12d. This 

circumstance holds for the axial force, shear force and bending moment also, which magnitude 

decrease by assuming the wood substrate S6. Note also that the peel tractions change sign in the 

range 0.3÷0.4 x/L for both the substrates. For comparison, in Fig. 12f the shear force of a 

Timoshenko beam (φ = 0.03) is also reported, which vanishes at the end sections, as expected. 

Similarly to the previous loading condition, also for the case of a uniform thermal variation, the 

shear force of an Euler-Bernoulli beam in the neighbourhoods of the beam ends changes its sign 

with respect that found for a Timoshenko beam.  

 

4.3 Beam loaded by a couple 

A concrete foundation loaded by a counter-clockwise couple C acting at the midspan and resting on 

an orthotropic soil is investigated in this Section. Fig. 13 shows the results of a Timoshenko beam 

T2 with L/h = 10 and φ = 0.03 in perfect adhesion (solid line) and in bilateral frictionless contact 

(dashed line) with an orthotropic soil S2 having c1 = 0.84, c2 = 2.15, c3 = 0.62. 

The horizontal component of the interfacial displacement of a Timoshenko beam perfectly 

welded to the half-plane assumes an opposite sign and values lower (in modulus) than those found 



for a beam in bilateral frictionless contact, as displayed in Fig. 13a. In the same figure is also 

plotted the displacement at the centreline ubx,0 of of a beam perfectly bonded to the substrate, thus 

confirming the relevance of the term ϕ h/2 affecting the horizontal component of the displacement 

field. The vertical component of the interfacial displacement of a beam in perfect adhesion is almost 

the same of that of a beam in bilateral frictionless contact, as shown in Fig. 13b. The same 

circumstance holds for the peel tractions except at the loaded section, where the peel tractions of a 

Timoshenko beam in perfect adhesion with the half-plane exhibit a discontinuity. As expected, the 

shear reaction and, in turn, the normal force along the beam are zero when bilateral frictionless 

contact is supposed. It is worth noting that the shear tractions of a Timoshenko beam in perfect 

adhesion with the half-plane are singular across the loaded section. The axial force, shear force and 

bending moment of the beam are shown in Fig. 13e, 13f and 13g, respectively. Note that the axial 

force attains the maximum value at about 0.3 x/L and, owing to symmetry, it vanishes at x = 0. 

Moreover, the shear force and bending moment are not significantly affected by the contact 

condition. For both the contact conditions here considered, the maximum value achieved by the 

shear force turns out to be 1.5 C/L and it occurs at x = 0. Moreover, |M(0+)| = |M(0−)| = C/2, as 

expected due to symmetry. 

 

CONCLUSIONS  

A coupled FE-BIE method for the analysis of a prismatic beam bonded to an elastic orthotropic 

half-plane is considered in plane stress and plane strain state. The mixed variational formulation is 

obtained through the theorem of work and energy for exterior domain. Unknown functions are 

represented by beam displacements and surface tractions by means of classical FE method and BIE 

approach, respectively. A generalised Green function of orthotropic half-plane, characterised by 

three substrate coefficients, has been used, thus providing the relationship between displacements 

and interface reactions. Linear shape function is selected to approximate axial displacement, 

whereas cubic and quadratic shape functions are used to interpolate transverse deflection and 



rotation, respectively. Shear and normal surface tractions are described by piecewise constant shape 

functions. 

The proposed method is utilised to study in detail the contact problem of a finite elastic 

Timoshenko beam bonded to an orthotropic half-plane in perfect adhesion as well as in bilateral 

frictionless contact. The case of a beam having a vanishing bending rigidity has been investigated 

also. In particular, when shear tractions and external horizontal forces are set to zero, the proposed 

formulation resembles a bilateral frictionless contact. The thin film problem can be properly 

handled by neglecting the beam bending rigidity. Moreover, through post-processing analysis, the 

axial force, shear force and bending moment of the beam are determined. The use of the 

Timoshenko beam theory to analyse the effects induced by the shear deformation leads to values for 

the internal shear force sensibly different than that calculated by assuming the Euler-Bernoulli 

theory.  

A variety of examples of practical relevance are presented and discussed considering a beam 

loaded by a horizontal or vertical force and a couple. In the case of a beam subjected to a vertical 

point force it is shown that the relative stiffness of beam-substrate significantly affects the 

maximum bending moment. Moreover, for such a loading condition, the peel tractions display a 

singular behaviour just across the loaded section for both the contact conditions considered in the 

analysis. The analytic solutions available in the literature for the problem of the rigid punch and the 

maximum bending moment of an infinite Euler-Bernoulli beam resting on an isotropic substrate are 

retrieved. Furthermore, the present model can be used in forthcoming studies in the framework of 

contact mechanics. As an example, peel or shear tests of GFRP or aluminium stiffeners bonded to 

wood substrate are analysed. The case of a detached or fully bonded beam has been investigated 

also, finding almost the same results, except in the region close to the detachment. Furthermore, a 

stiffener subjected to a uniform thermal variation has been studied, showing a decrease in the stress 

response for orthotropic substrates having the same elastic modulus in z-direction and lower in x-

direction. Finally, in the last application regarding the soil-foundation interaction when a 



concentrated couple acts at the beam midspan, the contact condition (i.e., perfect adhesion or 

bilateral frictionless contact) does not significantly affect the response of the system, except for the 

horizontal displacement. It must be remarked that, for a beam perfectly welded to the substrate 

subjected to a such a loading condition, the shear tractions appear to be singular whereas the peel 

stress displays a finite jump across the loaded section. 
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Figure Captions 

Fig. 1. Beam under general loads bonded to an orthotropic half-plane. 

Fig. 2. Matrix system of a beam subdivided in two beam elements b1, b2, each of which is bonded to 

a single substrate element s1, s2, respectively. External pointwise loads Px, Pz and couple C 

applied at the middle. 

Fig. 3. GFRP Timoshenko beam (L/h = 100, αL = 106.4 and φ = 0.001) loaded by a vertical force Pz 

at the midpoint and bonded to a Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 

= 2.24; c3 = 7.81) in perfect adhesion (solid line) and in bilateral frictionless contact (dashed 

line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 

Fig. 4. GFRP Euler-Bernoulli (φ = 0) and Timoshenko beams (φ = 10−2 and 10−5) with L/h = 40 

loaded by a vertical force Pz at the midpoint and bonded to Balsa orthotropic half-plane in 

plane strain state (c1 = 2.91; c2 = 2.24; c3 = 7.81) in perfect adhesion αL = 42.5 (solid line) and 

in bilateral frictionless contact for GFRP Euler-Bernoulli beam (φ = 0) (dashed line). Shear 

force V along the beam (a) and at the beam end (b). 

Fig. 5. Concrete beam loaded by a vertical force Pz at the midpoint, bonded to an orthotropic soil 

with c1 = 0.84; c2 = 2.15; c3 = 0.62; E3 = 0.12MPa (solid line) and isotropic soil (dash-dot 

line). Bending moment M at the midspan versus αL of a beam in bilateral frictionless contact 

(a, b) and in perfect adhesion (c, d) for φ = 0.0 and φ = 0.03 (thin and thick line, respectively). 

Fig. 6. Meshes adopted for the two-dimensional FE models with a beam subdivided into 4 equal 

FEs. Models with mesh dimension 8L (FEM 8L) (a) and 16L (FEM 16L) (b). 

Fig. 7. GFRP Timoshenko beam (L/h = 100, αL = 106.4, φ = 0.001) loaded by a vertical force Pz at 

the midpoint and bonded to a Balsa orthotropic half-plane in plane strain (c1 = 2.91; c2 = 2.24; 

c3 = 7.81). Relative errors of maximum bending moment eM = |Mmax−Mref|/|Mref| versus 

number of equations neq for the present analysis (PA) and for meshes FEM 8L, FEM 16L and 

FEM 32L. 



Fig. 8. Concrete beam subjected to an uniform vertical load distribution pz acting over a length L/4 

centered with respect to the midspan, resting on an orthotropic soil. Timoshenko beam (L/h = 

10, φ =0.03) bonded to two kinds of orthotropic half-planes in perfect adhesion, c1 = 0.84; c2 = 

2.15; c3 = 0.62; αL = 3.65 (solid line) and c1 = 1.06; c2 = 2.15; c3 = 0.93; αL = 4.54 (dashed 

line). Shear force V of an Euler-Bernoulli beam bonded to a half-plane with c1 = 0.84; c2 = 

2.15; c3 = 0.62; αL = 3.65 (thin solid line in f). 

Fig. 9. GFRP Timoshenko beam (L/h = 20, αL = 21.3 and φ = 0.02) loaded by a vertical force Pz 

acting at a beam end and detached between x/L=0.3 and x/L = 0.4 (solid line) and perfectly 

bonded (dashed line) to Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 = 2.24; 

c3 = 7.81). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 

Fig. 10. GFRP Timoshenko beam (L/h = 60 and φ = 0.003 with c1 = 0.70; c2 = 2.40; c3 = 0.44) 

loaded by a horizontal force Px acting at one end and bonded to a wood orthotropic half-plane 

in plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with αL = 40.2 (solid line), and thin film 

assumption with βL = 1.50 (dashed line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), 

N (e), V (f), M (g) versus x/L. 

Fig. 11. GFRP Euler-Bernoulli (φ = 0) and Timoshenko beams (φ = 10−2 and 10−5) with L/h = 60 

loaded by a horizontal force Px acting at one end and bonded to a wood orthotropic half-plane 

in plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with αL = 40.2. Shear force V along the 

beam (a) and at the beam end (b). 

Fig. 12. Aluminium stiffener subjected to an uniform thermal variation +∆T bonded to a wooden 

substrate. Euler-Bernoulli beam (L/h = 10, αL = 60) resting on two kinds of orthotropic half-

plane with c1 = 0.45; c2 = 1.95; c3 = 0.20 (solid line) and c1 = 0.65; c2 = 2.90; c3 = 0.40 (dashed 

line) in perfect adhesion. Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M 

(g) versus x/L. Shear force V of a Timoshenko beam (φ =0.03) bonded to half-plane with c1 = 

0.45; c2 = 1.95; c3 = 0.20 (thin solid line in f). 



Fig. 13. Concrete beam modeled as a Timoshenko beam (L/h = 10,  φ =0.03, αL = 3.65) loaded by a 

counter-clockwise couple C acting at the midpoint and bonded to an orthotropic soil (c1 = 

0.84; c2 = 2.15; c3 = 0.62) in perfect adhesion (solid line) and in bilateral frictionless contact 

(dashed line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus 

x/L. Horizontal displacement ubx,0 (dash-dot line in a) refers to the centreline of the beam in 

perfect adhesion. 

 

Table Captions 

Tab. 1. Elastic moduli and Poisson's coefficients of the beams. 

Tab. 2. Elastic moduli, Poisson's coefficients and ci coefficients of the half-planes. 

Tab. 3. GFRP Timoshenko beam (L/h = 100, αL = 106.4, φ = 0.001) subjected to a vertical force Pz 

at the midspan. Constant C and exponent λ of rate of convergence C λ−
eqn  of the relative error 

for maximum bending moment eM, using present analysis (PA) and two-dimensional FE 

models. 
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Fig. 1. Beam under general loads bonded to an orthotropic half-plane. 
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Fig. 2. Matrix system of a beam subdivided in two beam elements b1, b2, each of which is bonded to 
a single substrate element s1, s2, respectively. External pointwise loads Px, Pz and couple C applied 
at the middle. 
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Fig. 3. GFRP Timoshenko beam (L/h = 100, αL = 106.4 and φ = 0.001) loaded by a vertical force Pz 
at the midpoint and bonded to a Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 = 
2.24; c3 = 7.81) in perfect adhesion (solid line) and in frictionless contact (dashed line). 
Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 
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Fig. 4. GFRP Euler-Bernoulli (φ = 0) and Timoshenko beams (φ = 10−2 and 10−5) with L/h = 40 
loaded by a vertical force Pz at the midpoint and bonded to Balsa orthotropic half-plane in plane 
strain state (c1 = 2.91; c2 = 2.24; c3 = 7.81) in perfect adhesion αL = 42.5 (solid line) and in 
frictionless contact for a GFRP Euler-Bernoulli beam (φ = 0) (dashed line). Shear force V along the 
beam (a) and at the beam end (b). 
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Fig. 5. Concrete beam loaded by a vertical force Pz at the midpoint, bonded to an orthotropic soil 
with c1 = 0.84; c2 = 2.15; c3 = 0.62; E3 = 0.12MPa (solid line) and isotropic soil (dash-dot line). 
Bending moment M at the midspan versus αL of a beam in frictionless contact (a, b) and in perfect 
adhesion (c, d) for φ = 0.0 and φ = 0.03 (thin and thick line, respectively). 
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Fig. 6. Meshes adopted for the two-dimensional FE models with a beam subdivided into 4 equal 
FEs. Models with mesh dimension 8L (FEM 8L) (a) and 16L (FEM 16L) (b). 
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Fig. 7. GFRP Timoshenko beam (L/h = 100, αL = 106.4, φ = 0.001) loaded by a vertical force Pz at 
the midpoint and bonded to a Balsa orthotropic half-plane in plane strain (c1 = 2.91; c2 = 2.24; c3 = 
7.81). Relative errors of maximum bending moment eM = |Mmax−Mref|/|Mref| versus number of 
equations neq for the present analysis (PA) and for meshes FEM 8L, FEM 16L and FEM 32L. 
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Fig. 8. Concrete beam subjected to an uniform vertical load distribution pz acting over a length L/4 
centered with respect to the midspan, resting on an orthotropic soil. Timoshenko beam (L/h = 10, 
φ =0.03) bonded to two kinds of orthotropic half-planes in perfect adhesion, c1 = 0.84; c2 = 2.15; c3 

= 0.62; αL = 3.65 (solid line) and c1 = 1.06; c2 = 2.15; c3 = 0.93; αL = 4.54 (dashed line). Shear 
force V of an Euler-Bernoulli beam bonded to a half-plane with c1 = 0.84; c2 = 2.15; c3 = 0.62; αL = 
3.65 (thin solid line in f). 
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Fig. 9. GFRP Timoshenko beam (L/h = 20, αL = 21.3 and φ = 0.02) loaded by a vertical force Pz 
acting at a beam end and detached between x/L=0.3 and x/L = 0.4 (solid line) and perfectly bonded 
(dashed line) to Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 = 2.24; c3 = 7.81). 
Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 
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Fig. 10. GFRP Timoshenko beam (L/h = 60 and φ = 0.003 with c1 = 0.70; c2 = 2.40; c3 = 0.44) 
loaded by a horizontal force Px acting at one end and bonded to a wood orthotropic half-plane in 
plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with αL = 40.2 (solid line), and thin film 
assumption with βL =  1.50 (dashed line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), 
V (f), M (g) versus x/L. 
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Fig. 11. GFRP Euler-Bernoulli (φ = 0) and Timoshenko beams (φ = 10−2 and 10−5) with L/h = 60 
loaded by a horizontal force Px acting at one end and bonded to a wood orthotropic half-plane in 
plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with αL = 40.2. Shear force V along the beam (a) 
and at the beam end (b). 
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Fig. 12. Aluminium stiffener subjected to an uniform thermal variation +∆T bonded to a wooden 
substrate. Euler-Bernoulli beam (L/h = 10, αL = 60) resting on two kinds of orthotropic half-plane 
with c1 = 0.45; c2 = 1.95; c3 = 0.20 (solid line) and c1 = 0.65; c2 = 2.90; c3 = 0.40 (dashed line) in 
perfect adhesion. Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 
Shear force V of a Timoshenko beam (φ =0.03) bonded to half-plane with c1 = 0.45; c2 = 1.95; c3 = 
0.20 (thin solid line in f). 
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Fig. 13. Concrete beam modeled as a Timoshenko beam (L/h = 10,  φ =0.03, αL = 3.65) loaded by a 
counter-clockwise couple C acting at the midpoint and bonded to an orthotropic soil (c1 = 0.84; c2 = 
2.15; c3 = 0.62) in perfect adhesion (solid line) and in frictionless contact (dashed line). 
Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. Horizontal 
displacement ubx,0 (dash-dot line in a) refers to the centreline of the beam in perfect adhesion. 
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GFRP Concrete Aluminum 
Beam 

B1 B2 B3 

Ex [GPa] 40 30 70 
Ez [GPa] 10 30 70 
Gxz [GPa] 5 12 26 

νxz  0.25 0.2 0.35 

 
Tab. 1. Elastic moduli and Poisson's coefficients of the beams.  
 
 

Balsa Clay Sand Wood 
Substrate 

S1 S2 S3 S4 S5 S6 

Ex [GPa] 0.05 0.24 0.18 10 24 5 
Ez [GPa] 4 0.12 0.23 1 1 1 
Ey [GPa] 0.2 0.24 0.18 - - - 
Gxz [GPa] 0.15 0.06 0.07 1 2.7 0.3 

νxz  0.006 0.14 0.12 0.35 0.06 0.12 
νxy 0.165 0.18 0.19 - - - 
νyz 0.012 0.15 0.12 - - - 
c1 2.91 0.84 1.06 0.56 0.45 0.65 
c2 2.24 2.15 2.15 2.22 1.95 2.9 
c3 7.81 0.62 0.93 0.28 0.2 0.4 

 
Tab. 2. Elastic moduli, Poisson's coefficients and ci coefficients of the half-planes.  
 

 

GFRP – Balsa 
Pz

 
 C λ 
PA 837 1.70 
FEM 8L 252 0.72 
FEM 16L 925 0.75 
FEM 32L 3072 0.76 

 
Tab. 3.  GFRP Timoshenko beam (L/h = 100, αL = 106.4, φ = 0.001) subjected to a vertical force Pz 

at the midspan. Constant C and exponent λ of rate of convergence C λ−
eqn  of the relative error for 

maximum bending moment eM, using present analysis (PA) and two-dimensional FE models. 


