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Abstract

The authors developed a versatile ultrasound simulator. The proposed sys-
tem achieves the main features of a high-fidelity device exploiting low-cost
rapid prototyping hardware. The hand-guided ultrasound simulator probe
includes a RFID reader, a 9-DOF inertial sensor unit, consisting of an ac-
celerometer, a magnetometer and a gyroscope, and a microcontroller that
performs the real-time data acquisition, the processing and the transmission
of the estimated pose information to the visualization system, so that the
proper ultrasound view can be generated. Since the probe orientation is the
main information involved in the pose reconstruction, this work presents and
investigates several tracking methods for the probe orientation, exploiting a
sensor fusion technique to filter the noisy measurements coming from inertial
sensors. The performances of a Kalman filter, a nonlinear complementary
filter and a quaternion-based filter as inertial trackers have been tested by
means of a robot manipulator, in terms of readiness, accuracy and stability
of the estimated orientation signal. The results show that the nonlinear com-
plementary filter and the quaternion-based filter match all the application
requirements (RMSE < 3 deg, variance < 1 deg2, settling time < 0.3 s), and
they involve a lower computational time with respect to the Kalman filter.
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1. Introduction

In the last decades, lots of studies have demonstrated the importance and
the usefulness of simulation in medical training and education, in particular
in the field of emergency medicine, where operators need to practice on criti-
cal cases without endanger the patient’s health (Parks et al., 2013). A novel
valuable tool, for providing an early diagnosis on trauma, concerns the use
of Point Of Care Ultrasonography (POCUS), consisting in the acquisition
and the evaluation of a series of ultrasound (US) scans focused on particular
landmark of interest, such as the lungs or the heart (Vignon, 2012). The
standard procedures described in the Focus Assessment with Sonography for
Trauma (FAST) protocol are specifically introduced to facilitate the detec-
tion of free fluids (Gillman et al., 2009). A consequence of the larger diffusion
of US scanners is the fact that more and more emergency operators have to
be trained on their use (Oxorn and Pearlman, 2012). Moreover, US scanners
used on the field cannot be used for training, because of their cost. There-
fore, the biomedical industry has recently marketed many devices, capable
of simulating an ultrasonography scenario, with different characteristics and
features, as reported in (Blum et al., 2013). Taking into account the require-
ment of low-cost, high-fidelity and user-friendliness the authors designed a
versatile US simulator comprehensive of the main advantages of the currently
available systems, as well as novel features regarding the visualization of US
data sets, the graphical interfaces adapted for education sessions and the
extensible database. A prototype of the simulator is described in (Farsoni
et al., 2015). The crucial point for the proper behavior of the system is the
tracking of the simulator probe: i.e. the device reproducing the US trans-
ducer. Indeed, the real-time information about its current pose (understood
as the merging of position and orientation) relative to the phantom is ex-
ploited by the visualization system in order to display the appropriate US
view.

This problem can be addressed as the reconstruction of the pose of a rigid
body (the probe) relative to another rigid body (the phantom), both moving
in the Earth Reference System. Indeed, also the phantom can be voluntarily
moved, or even accidentally bumped during the simulation, causing the al-
teration of the relative reference system. The tracking issue interests many
engineering domains including robotics and aerospace as well as simulation
and virtual reality, and their applications involve different motion charac-
teristics: the body acceleration can range from the low values of a human
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hand to several time the gravity acceleration in an aircraft. The tracking
systems discussed in (Welch and Foxlin, 2002) are categorized depending on
the exploited technology: optical, image-based, mechanical, magnetic, iner-
tial, acoustic, and hybrid systems represent a wide range of opportunities
to overcome the problem, with different costs, size and performances. The
inertial sensor trackers relies on the data acquired by microelectromechanical
system (MEMS) based accelerometers, magnetometers and gyroscopes and
they meet the US simulators scope in terms of cheapness and size (Serrano
and Ayazi, 2015). However, the electronic offsets and drifts of this kind of
sensors yield significant tracking errors during the integration of linear accel-
eration and angular rate, so that a dynamic pose reconstruction exploiting
the numerical integration of acceleration (for the position) and angular rate
(for the orientation) is impossible unless introducing an external reference,
as pointed out in (Luinge and Veltink, 2005). The common solution is a
sensor fusion algorithm that combines together the information coming from
different inertial sensors.

Considering the requirements of the POCUS simulation, the reconstruc-
tion of the probe position can be solved using the RFID technology, by
discretizing the phantom body in several landmarks of interest, as described
in Section 2. The tracking of the probe orientation involves the acquisition
and filtering of noisy measurement from the accelerometer, the magnetome-
ter, and the gyroscope and represents the challenging task to overcome. The
proposed solutions, described in Section 3.2, exploit two inertial tracking sys-
tems, one fixed to the phantom and another one fixed to the probe. Both
the tracking systems estimate the orientation relative to the Earth Reference
System (ERS), so that the probe orientation relative to the phantom can be
calculated as the rotation required to align the systems.

This paper extends (Farsoni et al., 2015) by briefly presenting the up-
dated hardware and software implementation, which is described in Section
2. Furthermore, the novel contribution of the work is a complete study
concerning the inertial tracking of the probe orientation. Indeed, the usage
of the prototype induced further investigations about the proper tracking
method, since tracking errors, as well as tracking delays, strongly depend
on the algorithm that processes the sensor measurements. In Section 3,
after a brief introduction about how inertial sensors such as gyroscope, ac-
celerometer and magnetometer can produce the orientation estimation, three
sensor fusion tracking algorithms are presented. Then, Section 4 addresses
the comparative assessment of the considered algorithms. Section 5 makes
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Component Features

Microcontroller Teensy 3.1 MK20DX256 32 bit ARM Cortex-M4 proces-
sor, 64k RAM

Inertial Sensor Unit Invensense MPU-9150 3-axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer, Fast Model I2C

RFID reader Innovation ID-12LA 125KHz Read Frequency, EM4001 64-bit
tags, 9600bps TTL output

Table 1: The hardware components of the Simulator Probe.

some considerations about the obtained results, highlighting the motivations
that support the final choice of the algorithm implemented on the system.
Finally, Section 6 summarizes the overall development of the simulator.

2. System components

In this section the hardware and software development of the simulator
is briefly summarized, highlighting the improvement and the difference with
respect to the previous prototype implementation.

2.1. Hardware

In order to create an economically sustainable system, all of the hardware
components are chosen with the aim to increase the performance/cost ratio.
The list of components can be found in Table 1.

The design of the probe involves a microcontroller that accomplishes dif-
ferent tasks: firstly, measurements are acquired from the RFID reader and
from the inertial sensors, then the elaboration of the tracking algorithm is
performed and the information on the probe pose is real-time communicated
to the visualization system. The RFID reader is located at the bottom side of
the probe. It acquires the codes of a set of markers, typically nine, positioned
under the phantom skin, in agreement with the point of care described in
FAST procedure. When the reader enters in the field of a marker, the iden-
tification (ID) code uniquely associated to the marker is read. Since for each
marker its location with reference to the phantom is known, the ID code
specifies also the position of the probe on the phantom skin. The distance
between tags should be at least 3 cm, in order to avoid the acquisition of the
wrong ID code. The chosen component is the Innovation ID-12LA, which
differs from the prototype RFID reader of (Farsoni et al., 2015) in terms of a

4



lower input voltage and a wider read range, although it maintains the same
size.

Another important hardware upgrade concerns the microcontroller, the
previous choice of Arduino Nano did not satisfy the requirement of the ap-
plication in terms of stability, as one UART had to be shared between the
RFID reader and the visualization system, often producing communication
errors. The Teensy 3.1 is a recent low-cost microcontroller featuring three
UARTs, suitable for implementing the TTL data communication up to three
devices. Also the core, a MK20DX256 32 bit ARM, ensures better per-
formances during the tracking processing, and a larger amount of memory
allows the deployment of the sensor calibration code within the elaboration
algorithm script.

The firmware running on the microcontroller executes repeatedly a main
loop consisting of six successive acquisitions from inertial sensors, with the
corresponding estimations and transmissions of the probe orientation to the
visualization system. Afterwards, the microcontroller performs the acqui-
sition and the transmission of the RFID code and another loop can start.
The previous microcontroller mean loop time was 285 ms, while the Teensy
mean loop time is decreased to 180 ms, allowing a faster response in the
visualization of a US data set.

Finally, the inertial sensor Invensense MPU-9150 includes the three-axis
MEMS sensors (the accelerometer, the gyroscope and the magnetometer)
and communicates the measurements via I2C to the microcontroller. It is
the same component exploited in the prototype, but the position inside the
probe is different: it is located more distant from the bottom of the device in
order to reduce the magnetic disturbances caused by the RFID reader and
by the external sources. The shell of the probe can be built by a 3D printer,
different shapes can be produced, based on user needing. The probe and the
inner components are shown in Figure 1.

It is worth noting that the hardware required to track the phantom orien-
tation has to be fixed to the phantom, and it consists of an inertial sensor unit
and a microcontroller which acquires the measurements, executes the orien-
tation estimation and transmits the information to the visualization system.
The RFID reader is instead not included, because its information is only re-
lated to the position tracking and not to the orientation tracking. Once the
current orientation of the probe and the current orientation of the phantom
have been estimated, the rotation required for aligning the two systems can
be calculated and the final information on the relative orientation is there-
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Figure 1: The 3D printed shell of the simulator probe (A) and the inner hardware com-
ponents: from top to bottom: the microcontroller (B) , the inertial sensor unit (C), and
the RFID reader (D).

fore provided. The overall system setup is depicted in the block diagram of
Figure 2.

2.2. Visualization software

The software has been developed for Microsoft .NET Framework to per-
mit the compatibility with the most common personal devices such as laptop,
desktop or tablet. Two separated graphical user interfaces, namely one for
the trainer and one for the trainee, running on different devices and commu-
nicating through a network socket, allow the execution of a standard training
session, during which the instructor stays in its dedicated environment, se-
lects the desired case from the database, and supervises the trainee’s activity.
The trainee, on the other hand, operates inside the simulation scenario which
consists of the phantom, the probe, and the visualization system hosted in
the trainee’s application. He has to position and orientate the probe cor-
rectly and then he has to analyze the US view generated by the visualization
system. The trainee’s application allows the management of real US scans,
in form of a single image, a video or a 3D volume, as explained more in detail
in (Farsoni et al., 2015). Figure 3 shows the two graphical user interfaces
and the operator during a simulation session.

Compensation of magnetic disturbances
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Figure 2: The scheme of the overall system setup.
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Figure 3: A simulation session with the trainee’s (A) and the trainer’s (B) applications.

An important feature implemented in the latest software version is the
automatic disturbance compensation. Indeed, when a new data set is in-
serted into the database, the user has to specify the desired probe orientation,
associated to that data set, in terms of elemental probe rotations. Unfortu-
nately, often the measured orientation differs from the ideal one, because
of the presence of magnetic disturbance sources located inside the phantom
itself, as speakers or batteries. However, several experiments on magnetic
disturbances showed that they can be considered as constant offsets around
the target position marked by the RFID tags (see Section 4.3). Therefore,
the user can acquire the actual target orientation exploiting the probe and
a compensation rotation matrix can be created by comparing the measure-
ments and the ideal values (it is the rotation required to align the measured
and the desired orientation). The matrix is finally stored into the database as
a landmark property, so that the visualization system can real-time perform
the compensation by applying the constant rotation specified by the matrix
to the current estimated orientation.
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Figure 4: The representation of the orientation of a moving rigid body in the Earth
Reference System.

3. Theory and calculation

3.1. Measuring the orientation from inertial sensors

In the context of low-g quasi-static applications the orientation can be
measured by means of inertial sensors, using the accelerometer as a grav-
itometer and including the magnetometer data. In the following a brief
summary on how to obtain nautical angles from inertial measurements is
reported.

With reference to Figure 4, the Earth Reference System (ERS) is repre-
sented as a fixed left-handed triplet of orthogonal axes xE, yE, zE pointing
respectively to the North Pole, the East, and the gravity down direction. Sim-
ilarly, the Body Reference System (BRS) is understood as a mobile triplet of
left-handed orthogonal axes x, y, z. In this mainframe, the nautical angles
roll (φ), pitch (θ), yaw (ψ), represent the rotation about each of the three
BRS axes required to align that reference system to the ERS. An indirect
measure of such angles can be calculated from accelerometers and magne-
tometers measurements, as follows:
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φam = arctan
(ay
az

)
θam = arctan

( −ax√
a2y + a2z

)
(1)

ψam = arctan
( mz sinφ−my cosφ

mx cos θ +my sin θ sinφ+mz cosφ sin θ

)
Where ax, ay, az are the accelerations along the three axes of the BRS,

under low-g motion hypothesis, while mx, my, mz are the Earth magnetic
field vector components, measured in the BRS, pointing the North Pole when
no disturbance affects the system. In order to return the appropriate angular
value, the arctan(y/x) function has to be correct when x < 0 by adding the
value of sign(y)π.

It is worth observing that the yaw angle computation requires an align-
ment procedure that exploits the roll and pitch angles.

The obtained values represent a static (or low-g) estimation of the orien-
tation of the rigid body and they are calculated by means of trigonometric
functions applied to the accelerometer and the magnetometer data. However,
this estimation can be too noisy for the requirement of the application and
the dynamic behavior can be poorly tracked.

On the other hand, three-axis gyroscopes can provide a dynamic estima-
tion of nautical angles φg, θg, ψg . Indeed, they measure the angular rates
gx, gy, gz of the three BRS axes. If the current nautical angles φg, θg, ψg are
known, the gyroscope measurements can be transformed into the nautical
angle rates φ̇g, θ̇g, ψ̇g by means of the following expressions:

φ̇g = gx + gy sin(φg) tan(θg) + gz cos(φg) tan(θg)

θ̇g = gy cos(φg)gz sin(φg) (2)

ψ̇g = gy sin(φg)/ cos(θg) + gz cos(φg)/ cos(θg)

Then, assuming the knowledge of the initial conditions, Equation (2) can be
integrated obtaining the time evolution of φg, θg, ψg. However, the numerical
integration of signals with high noise levels and time varying additive biases
is always characterized by drift errors, that prevent the correct estimation of
the orientation, so that a corrective procedure is required.

Therefore, the main idea is to elaborate the static and the dynamic esti-
mation of the orientation through a filter algorithm that fuses together the
data provided by the inertial sensors.
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3.2. Tracking algorithms

In the following three sensor fusion algorithms are presented. It will be
shown how the acquired measurements are processed, and fused together, in
order to provide the final estimation of the orientation.

The first algorithm is a Kalman Filter (KF), a well known technique to
estimate the state of a dynamic system, taking into account the statistical in-
formation about the disturbances affecting the system and the measurements.
The second solution deals with a Nonlinear Complementary Filter (NCF). It
combines the static and the dynamic estimations followed by filtering pro-
cedures that operate at different frequencies. Finally, the third algorithm
proposes a Quaternion-Based Filter (QBF) that involves the quaternion kine-
matic properties, described in detail in Appendix A.

Kalman filter

In recent years many studies proposed the use of KF and Extended
Kalman Filter (EKF) in order to track the motion of a body, by fusing the
acquisition from the inertial sensors (Ali and Hassan, 2014; Sabatini, 2006).
The simple KF model adopted in this study is a suitable starting point for
the tracking system comparison. The main idea is to integrate the gyro-
scope measurement over the time in the prediction step, and to update the
estimation in the correction step by using the static measurements from the
accelerometer and the magnetometer. The state x of the system collects, be-
sides the three nautical angles, the bias affecting their angular rate, namely
bφ̇, bθ̇, bψ̇. These disturbances, due to the gyroscope noisy measurements,
are difficult to estimate in an analytical way, because of their temperature
dependence. The input u of the system contains the nautical angle rates
φ̇, θ̇, ψ̇ coming from the gyroscope measurements through the conversion of
Equation (2). The KF measurements y is represented by φ, θ, ψ as expressed
by Equation (3):

x =


φ
θ
ψ
bφ̇
bθ̇
bψ̇

u =

φ̇θ̇
ψ̇

y =

φθ
ψ

 (3)
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The general KF scheme assumes the following model equations:

xk+1 = Axk + Buk + wk (4)

yk = Cxk + vk (5)

Where:

A =


1 0 0 −∆t 0 0
0 1 0 0 −∆t 0
0 0 1 0 0 −∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 B =


∆t 0 0
0 ∆t 0
0 0 ∆t
0 0 0
0 0 0
0 0 0


C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


w is the process noise with covariance matrix Q, v is the measurement noise
with covariance matrix R, ∆t is the sample time and the subscript k indicates
the current sample.

According to KF algorithm the final estimation of the state x̂ is performed
by means of two steps, namely the prediction and the correction. The former
exploits the state evolution law and produces the predicted estimation x̂−

through the dynamic integration (6) of the angular rate acquired from the
gyroscope, after its conversion into the nautical angle rate:

ûk =
[
φ̇g θ̇g ψ̇g

]T
k

x̂−k+1 = Ax̂k + Bûk (6)

P−k+1 = APkA
T + Q

Where P is the error covariance matrix and P− is its predicted value.
Afterwards, the correction step exploits the relations between the current

state and the indirect measurements coming from the accelerometer and the
magnetometer, as in (1). These relations can be expressed as:

ŷk =
[
φam θam ψam

]T
k

(7)
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Finally, the correction is performed by means of the following equations:

Kk = P−k+1C
T (CP−k+1C

T + R−1)

x̂k+1 = x̂−k+1 + Kk(ŷk −Cx̂−k+1) (8)

Pk+1 = (I−KkCP−k+1)

Where K is the Kalman gain, I is the identity matrix.
It is worth observing that the singularity problems of nautical angles,

that affect this algorithm and not the others described in the following, as
they are based on different orientation representations, arises when θ = 90
deg, and therefore when cos(θ) = 0. However, they can easily handled via
software by checking, at each filter iteration, the current value of θ inside the
estimated state vector x̂ and, in case it is equal to 90 deg, by adding a small
value ε, not prominent in the context of the application as it is hidden by
the measurement noise.

Further details regarding the setup of the filter parameters will be given
in Section 4.

Nonlinear complementary filter

A Nonlinear Complementary Filter (NCF) is a sensor fusion algorithm
based on two filters characterized by an overall sum of their transfer functions
that is constantly equal to one across the whole frequency domain (Hua
et al., 2004). It is commonly used in inertial tracking because of its intrinsic
capability to merge together the information coming from different sources,
operating on different frequency range. Indeed, as pointed out in (Mahony
et al., 2008), the accelerometer can be low-pass filtered in order to preserve
the static component of the body acceleration due to the gravity. On the
other hand, the gyroscope measurements can be high-pass filtered so that
the bias of the sensor is attenuated. The proper combination of the filtered
signals can produce an increment of the signal to noise ratio. The NCF
algorithm considered in this study follows the implementation of (Premerlani
and Bizard, 2009) and involves the orthogonality properties of the rotation
matrix. It represents a commonly adopted solution for inertial navigation of
autonomous vehicles.

The block diagram in Figure 5 shows the elaboration of the data acquired
from the inertial sensors.

The first step of the algorithm involves the evolution along time of the
estimated rotation matrix R̂, which represents the current orientation of the
rigid body. It depends on the angular rate and follows the law:
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Figure 5: The block diagram of the NCF algorithm.

R̂k+1 = R̂k

 1 −ωz∆t ωy∆t
ωz∆t 1 −ωx∆t
−ωy∆t ωx∆t 1

 (9)

Where ωx, ωy, ωz are the components of the angular rate, after the correction
procedure described in the following. Subscripts k are omitted where obvious.
Equation (9) derives from the numerical integration of the moving axes of
BRS and it is affected by numerical errors and measurement disturbances
that are difficult to estimate and produce the drift of orientation estimation.
Hence, a correction procedure is required and it involves the orthogonality
property of the rotation matrix. Indeed, its three columns X,Y,Z should be
normalized and orthogonal with respect to each other. The scalar product
erro between X and Y can be considered as the orthogonality error between
the two columns, because it is zero only when they are orthogonal with
respect to each other.

erro = X ·Y (10)

It can be demonstrated (Premerlani and Bizard, 2009) that, if the norm
of each column is close to one, the orthogonality error is greatly reduced by
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equally dividing the error between X and Y. Therefore, three approximately
orthogonal columns Xo,Yo,Zo are obtained as follows:

Xo = X− erro
2

Y

Yo = Y − erro
2

X (11)

Zo = Xo ×Yo

Where the third column Zo is the cross product of Xo and Yo.
Afterwards, the resulting columns can be re-normalized in XN ,YN ,ZN

exploiting the Taylor expansion, instead of dividing by the norm, so that a
lower computational effort is required:

XN =
1

2
(3−Xo ·Xo)Xo

YN =
1

2
(3−Yo ·Yo)Yo (12)

ZN =
1

2
(3− Zo · Zo)Zo

Indeed, considering that the norm of Xo, Yo, Zo is already close to one,
the higher order terms of the expansion can be neglected (Premerlani and
Bizard, 2009).

Once the current rotation matrix has been orthogonalized and normalized
the orientation estimate can be extracted in form of nautical angles φ̂, θ̂, ψ̂
from the rotation matrix. Afterwards, the feedback step can start from a
comparison between the rotation matrix and the static estimation of the ori-
entation provided by the accelerometer and the magnetometer. Indeed, the
third row elements R31, R32, R33 of the matrix represent the three compo-
nents of the gravity acceleration from the BRS point of view. This vector can
be compared to the accelerometer acquisition by means of the cross prod-
uct. Similarly, the elements R11, R12 of the rotation matrix represent the
components of the North Pole direction vector form the BRS point of view,
after the alignment to the horizontal plane, and they can be compared to the
magnetometer measurements after the roll and pitch compensation.
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errg =

axay
az

×
R31

R32

R33


errm =

mx cos θ̂ +my sin θ̂ sin φ̂+mz cos φ̂ sin θ̂

mz sin φ̂−my cos φ̂
0

×
R11

R12

0

 (13)

errw = wgerrg + wmerrm (14)

Then, the weighted sum in (14) resulting from the linear combination
of the two error vectors (13), by means of the design parameters wg, wm,
becomes the input of a PI controller which provides the final correction signal
ωcork , at the k-th time step, to apply to the next gyroscope measurements:

Pcork = Kperrwk

Icork = Icork−1
+KIerrwk

∆t (15)

ωcork = Pcork + Icork

Where Kp and KI are the PI proportional and integral gains.
Finally, the current correction signal is subtracted to the new gyroscope

acquisitions so that another iteration can start.

ωk+1 = ωgk+1
− ωcork (16)

Where ω =
[
ωx ωy ωz

]T
is the corrected angular rate vector and ωg =[

gx gy gz
]T

is the gyroscope measurement vector. Further details about
the tuning of the filter will be given in Section 4.

Quaternion-based Filter

Alongside the rotation matrix and nautical angles, quaternions are a com-
monly used representation of the orientation of a rigid body. They consist of
a vector of four elements understood as a three-dimensional axis and the ro-
tation, along that axis, required to align the BRS to the ERS. They involve
less parameters than those of the rotation matrix and they do not intro-
duce the singularity problem of nautical angles. Therefore, in recent years,
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many quaternion-based tracking algorithms have been developed. In (Madg-
wick, 2010; Madgwick et al., 2011), the dynamic evolution of the orientation,
elaborated by means of the gyroscope acquisitions, is fused with the static es-
timation, provided by the accelerometer-magnetometer measurements. The
proposed solution exploits the weighted sum of the dynamic and the static
quaternion estimations, namely q̂d,k and q̂s,k:

q̂k = wdq̂d,k + wsq̂s,k (17)

Where the weight wd,ws are design parameter and q̂k =
[
q1 q2 q3 q4

]T
is

the final quaternion estimation, at the k-th instant.
Note that Equation (17) indicates that also this algorithm can be consid-

ered a complementary filter, since low and high frequency measurements are
combined into a weighted sum. The derivation of q̂d,k follows the quaternion
evolution law, described by the equation:

q̂d,k = q̂k−1 +
1

2
∆t(q̂k−1 ⊗ ωgk) (18)

Where ωg =
[
0 gx gy gz

]T
is the angular rate quaternion, containing

the gyroscope measurements, and the symbol ⊗ indicates the quaternion
product.

On the other hand, the calculation of q̂s,k involves the solution of the
optimization problem described by Equation (20). In this case, the error
function f , to be minimized, consists of two terms, namely fa and fm. The
former, fa, relies on the difference between the gravity vector a measured in
the BRS and the same vector g viewed from the ERS, compensated through
the quaternion alignment. Similarly, fm is given by the difference between
the BRS Earth magnetic field vector m and the ERS magnetic vector M,
after its alignment to BRS. These error functions are expressed as:

fa(q, a) = q∗ ⊗ g ⊗ q− a

fm(q,m) = q∗ ⊗M⊗ q−m (19)

f =

[
fa
fm

]
Where g =

[
0 0 0 1

]T
is the normalized gravity quaternion in ERS, a =[

0 ax ay az
]T

contains the accelerometer acquisitions, M =
[
0 bx 0 bz

]T
17



is the normalized Earth magnetic field quaternion, m =
[
0 mx my mz

]T
contains the magnetometer acquisitions, and the superscripts ∗ indicates the
quaternion conjugation.

Then, the optimization problem, solved by exploiting the gradient-descent
algorithm, can be formulated as:

q̂s,k = arg min
q
|f(q, a,m)| (20)

The gradient-descent method commonly uses more iterations per step,
however, in this case only one iteration per sample is executed, in order to
save the computational time between two consecutive time steps. Hence, the
resulting static estimation is:

q̂s,k = q̂k−1 − µ
Of

|Of |
(21)

Where µ is a design parameter and Of = JT (q̂k−1)f , with J the Jacobian of
the error function f .

4. Experimental setup and results

In order to evaluate and compare the performances of the three proposed
tracking algorithms, the simulator probe has been fixed to the hand-tool of
a PUMA-260 robot so that the inertial sensor reference system is aligned to
the robot reference system. Figure 6 shows the setup of the platform.

The first experiment tests large probe movements. They are common
when the user has to switch the visualization from a view to another one,
e.g. the switching between a two-chambers and a four-chambers view of the
heart. The trajectory assigned to the hand-tool of the robot performs three
sequential movements along the three Cartesian axes. In particular, the first
movement concerns the yaw angle: the probe has an initial orientation Θ0 =[
φ θ ψ

]
=
[
0 0 0

]
deg, and reaches the orientation Θ1 =

[
0 0 −45

]
deg. Afterwards, the probe comes back to the initial orientation with a
specular trajectory. Then, a rotation involving the roll angle is performed,
in which the probe reaches the orientation Θ2 =

[
45 0 0

]
deg, and comes

back to Θ0. The last movement is related to the pitch angle, as the probe
rotates to Θ3 =

[
0 45 0

]
deg and returns to Θ0. The mean movement rate
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Figure 6: The simulator probe fixed to the robot.

is about 50 deg/s for the roll angle rotation, while it is about 90 deg/s for
pitch and yaw rotations.

In the meanwhile the probe microcontroller acquires the noisy raw mea-
surements from the inertial sensors and sends the data via serial bus to a
laptop computer, where they are stored allowing the off-line elaboration and
the evaluation of the performances. On the other hand, also the robot joint
positions are acquired in order to reconstruct the actual orientation of the
tool (and consequently of the probe) exploited as the target orientation for
the tracking algorithm evaluation. The robot signal is acquired at a fre-
quency of 1 kHz, while the inertial sensor unit provides data at 100 Hz. The
synchronization between the two signals is achieved via software, by getting
the absolute clock time at each acquisition.

The adopted design parameters for the three filters are reported in the
following. Regarding the KF, the state and the output covariance matri-
ces, namely Q, R are difficult to estimate a priori because of the unknown
statistics description of the system disturbances. Therefore they can be con-
sidered as design parameters. The values assumed by the matrices during
the experiment are:
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Q =


30 0 0 0 0 0
0 30 0 0 0 0
0 0 30 0 0 0
0 0 0 40 0 0
0 0 0 0 40 0
0 0 0 0 0 40


R =

1 0 0
0 1 0
0 0 0.1


Then, the tuning of the NCF involves the choice of the proportional and
integral gains of the PI regulator and the error weights. The values used in
the experiment are:

KP = 15

KI = 1

Wg = 10−4

Wm = 10−3

Finally, regarding the QBF, the gradient descent convergence rate value
µ is chosen as:

µ = 3

While the static and the dynamic quaternion weights are:

ws = 0.6

wm = 0.4

The second experiment involves small probe movements, as they are common
when the user adjusts the probe to find the best visualization of a particular
view. In this case, the hand-tool trajectory has been planned to perform
the simultaneous rotation of the roll and the pitch angles of 5 deg in both
the positive and the negative direction, at a rate of about 5 deg/s. The
initial orientation has been set to Θ′0 =

[
−45 45 0

]
deg. Then, the probe

passes sequentially through the first goal orientation Θ′1 =
[
−40 40 0

]
deg,
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the initial orientation, the second goal orientation Θ′2 =
[
−50 50 0

]
and,

finally, the initial orientation. When the probe reaches a trajectory point, it
pauses for a short time, in order to simulate a typical user movement while
adjusting the probe to find the best visualization. The setup of the filters is
the same of the first experiment.

4.1. Results of the large movement test

The first experiment involves large probe movements. For each of the
three algorithms, and for each of the three nautical angles, three performance
indices are calculated. They are the Root Mean Squared Error (RMSE) and
the variance of the estimation error signal during the static phase, as they
give an idea of the accuracy of the estimation, and the settling time during
the transients, as it measures the readiness of the tracking. The settling time
is defined as the time elapsed from the instant in which the reference reaches
a steady-state value to the instant in which the considered filter signal reaches
the 95% of the mean value of the subsequent static condition. Furthermore,
the real-time mean computational time has been evaluated by implementing
the algorithms on the microcontroller. This parameter indicates the com-
putational effort required by the algorithms to the microprocessor. Table 2
summarizes the results of the experiments.

It is worth noting that RMSE and variance indices, for a particular nauti-
cal angle, are calculated when that estimation signal has reached the steady
condition, after the movement relative to the considered angle has been per-
formed. Similarly, the settling time, is calculated as the difference between
the instant in which the target signal reaches the steady-state condition and
the instant in which the estimation signal concludes the transient (the 95%
of the steady condition has been considered).

Figures 7 to 9 show the tracking of the reference orientation signals per-
formed through the three algorithms, that involves the transient of the roll,
the pitch and the yaw angle estimations, respectively. Furthermore, Figure
10 depicts the tracking errors in steady condition associated to the roll angle
estimation, for each of the three algorithms.

4.2. Results of the small movement test

The second experiment deals with small probe movements. The filter
parameters are the same of the previous experiment. The considered perfor-
mance indices (i.e. RMSE and variance) are reported in Table 3. They are
the mean values of the indices that have been computed during the static
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Figure 7: The comparison among algorithms considering the transient of the roll angle
tracking.
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Figure 8: The comparison among algorithms considering the transient of the pitch angle
tracking.
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Figure 9: The comparison among algorithms considering the transient of the yaw angle
tracking.
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Figure 10: The tracking error after the transient of the roll angle estimation.
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Parameter KF
φ− φref θ − θref ψ − ψref

RMSE (deg) 1.16 0.44 1.78

Variance (deg2) 0.073 0.091 3.24
Settling time (s) 0.030 0.034 0.099

Computational time (µs) 6274 ± 12

NCF
φ− φref θ − θref ψ − ψref

RMSE (deg) 1.11 0.56 0.64

Variance (deg2) 0.014 0.049 0.078
Settling time (s) 0.078 0.078 0.169

Computational time (µs) 5438± 10

QBF
φ− φref θ − θref ψ − ψref

RMSE (deg) 1.09 0.40 1.51

Variance (deg2) 0.013 0.032 0.109
Settling time (s) 0.071 0.071 0.152

Computational time (µs) 5438± 15

Table 2: The performance indices computed for the large movement experiment.

phases. Figure 11, 12 depict the tracking of the roll and pitch reference
signals.

4.3. Analysis of magnetic disturbances

All of the proposed tracking algorithms rely on magnetometer reading,
that could be affected by external sources of disturbance. Therefore the fol-
lowing experiment, carried out on a phantom that presents strong magnetic
disturbances, investigates the influence of these disturbances on the consid-
ered tracking methods.

The probe has been positioned on the phantom thorax, and aligned to
its reference system so that the actual relative orientation is equal to Θref =[
0 0 0

]
deg. Then three complete rotations involving the yaw angle have

been carried out, stopping temporarily the movement when the probe reached
the Θref orientation (marked on the phantom skin). In the meanwhile the
raw sensor data have been acquired.
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Figure 11: The comparison among algorithms considering small movements of the roll
angle.

10 11 12 13 14 15 16 17
36

38

40

42

44

46

48

50

52

54

t [s]

de
g

 

 

NCF
QBF
KF
reference

Figure 12: The comparison among algorithms considering small movements of the pitch
angle.
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Parameter KF
φ− φref θ − θref

RMSE (deg) 1.20 1.08

Variance (deg2) 1.112 1.280

NCF
φ− φref θ − θref

RMSE (deg) 1.10 1.10

Variance (deg2) 0.091 0.094

QBF
φ− φref θ − θref

RMSE (deg) 1.11 1.08

Variance (deg2) 0.075 0.069

Table 3: The performance indices computed for the small movement experiment.

Then, the three algorithms have been off-line elaborated to provide the
orientation estimations Θ̂. Afterwards, the compensation procedure de-
scribed in Section 2.2 has been applied to the reconstructed orientation,
obtaining the compensated estimation Θ̂c. Table 4 show, for each algorithm,
the RMSE and the variance of the yaw angle estimations, computed with and
without the compensation procedure, during the motionless phase after each
of the three rotations, when the estimations reach the steady condition. In
the table only the yaw estimation has been reported, as it has been observed
that the magnetic disturbances does not significantly affect the roll and pitch
estimations. The obtained values show that the RMSE is significantly lower
after the compensation procedure, supporting the assumption that magnetic
disturbances act mainly as a constant offset, for all the proposed tracking
algorithms.

Furthermore, it has been observed that the effect of magnetic disturbances
does not significantly vary for small changes in probe position, so that the
magnetic offset to be compensated remains constant in a sphere of 5 cm
diameter, centered in the RFID tag target position. Outside that sphere the
probe is no more in the tag read range and without that information the
visualization software does not exploit the probe orientation estimate at all.
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Parameter KF NCF QBF

Θref − Θ̂ Θref − Θ̂c Θref − Θ̂ Θref − Θ̂c Θref − Θ̂ Θref − Θ̂c

RMSE (deg) 75.55 2.78 74.09 1.94 74.30 1.59

Variance (deg2) 3.10 3.19 0.091 0.089 0.12 0.12

Table 4: The results of the experiment on the influence of magnetic disturbance on the
proposed tracking algorithms.

5. Discussion

The results described in the previous section yield some considerations
about the choice of the algorithm to implement on the simulator.

The 3D views have the most strictly requirements in terms of tracking
the movement of the simulator probe. Indeed, the accuracy of the estimated
orientation should be high enough to permit the execution of the proper
volume slice. RMSE of about 3 deg can be detected by users. Moreover, in
steady state the signal coming from the probe, should be constant enough
to generate a stable image. It has been observed that excessive noise of the
orientation signal, i.e. with variance greater than 1 deg2) can cause undesired
image flicker. In addition, the readiness of the tracking should be fast, and
should not introduce delays higher than 0.3 s, in order to guarantee a real-
time simulation.

The results of the experiments have shown that all the considered filters
provide an accurate estimation, measured in terms of RMSE in steady con-
dition. The computed RMSE is about 1 deg for all the filters, considering
both large and small movements.

The requirement of stability is achieved satisfactorily by NCF and QBF,
indeed the variance of the error signal is always less than 0.1 deg2, while
KF produces a yaw estimation characterized by high noise. Indeed, both the
experiments report a KF variance higher than 1 deg2.

Finally, all the proposed algorithm achieve a fast tracking of the orienta-
tion, as the measured settling time during the transient is always less than
0.3 s. These considerations suggest the choice of NCF or QBF rather than
KF, since they meet all the application requirements and because of their
lower computational effort.

It is worth noting that the parameters of the filters have been empirically
tuned taking into account the trade-off between the variance of the estimation
and their settling time. In particular, regarding the NCF, the readiness of
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the response can be increased by exploiting higher values of KP . On the
other hand this increment leads to an undesired growth of the estimation
noise. A more stable, but slower, response can be obtained by increasing the
KI parameter. The tuning of the convergence rate µ of the QBF involves
considerations similar to those discussed for the Kp parameter of the NCF.

Furthermore, a large number of tests has been carried out regarding the
tuning of the KF parameters, on the basis of the well known properties of the
KF covariance matrices, see e.g. (Åkesson et al., 2008). The results did not
show a significant improvement of the performance so that the accuracy and
the noise on the yaw estimations never met the application requirement. In
particular, further tuning tests show that a smoother Kalman filter signal,
with a variance of about 1 deg2 can be obtained by decreasing the state
covariance matrix Q to a value of Q′ = 10−2Q or equivalently by increasing
the measurement covariance matrix R to a value of R′ = 102R. However, in
both cases, the settling time becomes higher than 0.5 s and does not meet
the application requirements.

6. Conclusions

The developed US simulator represents a device suitable for medical train-
ing and education, particularly in Point of Care Ultrasonography. Hardware
and software implementation fulfills the requirement of cheapness and the
system is design to be used in high-fidelity simulation session, thanks to the
two separated graphical user interfaces (instructor and trainee). The visual-
ization system can manage 2D as well as 3D US data sets, and the database
editor allows the user customization and the sharing of materials. The proper
functioning of the simulator is based on the real-time inertial tracking of the
hand-guided probe. Therefore, the main contribution of this work is the
analysis of three tracking algorithms, i.e. a Kalman filter, a nonlinear com-
plementary filter and a quaternion-based filter, that have been tested and
compared each other in terms of accuracy, noise and response time during
the tracking. The results show that the Kalman filter does not match the
discussed requirements of the application, while the other algorithms provide
satisfactory performances. Furthermore, since the magnetometer is involved
in all the considered algorithms, the effect of magnetic disturbances, mainly
due to phantom components, has been investigated. It has been demon-
strated that they act as an offset on the orientation tracking, that can be
compensated by applying a rotation to the current orientation estimation.
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The overall simulator has been exploited during several simulation ses-
sions, held at the University of Ferrara and the Maggiore Hospital of Bologna,
Italy and it has obtained positive impression from physicians concerning the
user-friendliness and fidelity of the system.

Appendix A. Quaternion properties

A unit quaternion q is a four-dimensional vector with unitary norm,
consisting of two subcomponents: a scalar qw and an inner vector qv =[
qx qy qz

]T
. Unit quaternions (Diebel, 2006) are related to the axis-angle

representation of the orientation of a rigid body, in which two subcompo-
nents denote respectively the angle θ and the axis versor u around which the
orientation is defined:

q =

[
qw
qv

]
=

[
cos( θ

2
)

u sin( θ
2
)

]
(A.1)

A set of useful operations applied to quaternions can be defined, and they
are briefly recalled in the following:

• The product of two quaternion q, r is given by:

q⊗ r =

[
qwrw − qv · rv

qv × rv + qwrv + rwqv

]
(A.2)

• The conjugate q∗ of a quaternion q is:

q∗ =

[
qw
−qv

]
(A.3)

• A vector v =
[
0 vx vy vz

]T
can be rotated by a quaternion q ob-

taining the vector v′ as:

v′ = q⊗ v ⊗ q∗ (A.4)

Furthermore, the time variation of the orientation is associated to the time
derivative of the unit quaternion describing the orientation of the rigid body.
The evolution of that quaternion along time is related to the body angular
rate by means of the expression:

q̇ =
1

2
q⊗ ω (A.5)

where the body angular rate ω is seen from the body-fixed frame, and it is

considered as ω =
[
0 ωx ωy ωz

]T
.
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