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A B S T R A C T

The ultimate limit state behavior of masonry domes under axisymmetric gravity loads is nowadays well known
and it has been proved how a generalization of the thrush line method used successfully for arches is quite ef-
fective also in this case. However, the behavior of a dome under horizontal loads, which is important in case
of seismic action, becomes incredibly hard to tackle and still remains an open issue.The present paper aims at
presenting a fast and reliable automatized kinematic limit analysis approach able to accurately predict the ac-
tual behavior of masonry domes subjected to horizontal static loads. The model uses a rough discretization of
the dome obtained by means of few rigid-infinitely resistant NURBS generated elements, adapting step by step
the initial mesh in order to progressively overlap the element edges (where all dissipation is lumped) with the
hinges forming the failure mechanism. The adoption of a rough mesh makes the code extremely fast, much more
competitive than a standard FE model, allowing at the same time to approximate the actual geometry and load
distributions in an extremely accurate way. The utilization of geometries obtained with laser scanner acquisi-
tions is straightforward and the presence of pre-existing cracks can be accounted for as well. Three complex case
studies are analyzed in detail to benchmark the approach proposed, relying into existing domes belonging to the
Italian cultural heritage. The first example has the geometrical parameters of a typical late Renaissance dome,
the Cathedral of Montepulciano, the second is the dome of Anime Sante church (collapsed during the L’Aquila
2009 earthquake with a paradigmatic failure mechanism) and the last is the dome of Caracalla baths, whose
causes of collapse remain still unknown. In all cases inspected, the approach proposed quickly provides collapse
accelerations and active failure mechanisms at a fraction of the time needed by non-linear FE analyses, providing
interesting hints into the actual behavior of such kind of structures under horizontal loads.

1. Introduction

Masonry domes represent one of the most widespread structural ty-
pologies in the historical buildings of both Eastern and Western archi-
tecture. Since the majority of them date back to centuries ago, an ac-
curate modeling of their mechanical behavior is of fundamental impor-
tance to both correctly evaluate their structural safety under gravity
loads and ensure their correct conservation [1,2]. Moreover, a large
amount of them is located in seismic areas, and the evaluation of their
vulnerability is becoming crucial, at least to establish –after prelimi-
nary screening- the priorities to follow in light of a strengthening strat-
egy implementation. Recent strong earthquakes occurred in Italy (Um-
bria-Marche 1997–98, L’Aquila 2009, Emilia 2012 and Central Italy
2016) have been devastating in this regard, causing collapses and se-
rious damages to several domes. This shows the high vulnerability of
such kind of structures, but at the same time stimulates the research to

predict the accelerations associated to the activation of a failure mecha-
nism and the mechanism itself, this latter information being paramount
for an effective local strengthening.

A dome is a vaulted structure having a circular plan and usually the
form of a portion of a sphere. As far as the geometry is concerned, a
dome is a surface that can be divided into parallels and meridians. The
state of stress under gravity loads is typical of a membrane with curved
shape. Under vertical loads, meridian stresses are always compressive,
whereas along parallels, stresses are positive in the lower part and neg-
ative (with beneficial hooping effect) in the upper portion; in most
cases the passage from compressive to tensile stresses occurs between
45 and 60 degrees with reference to the vertical axis [3,4]. Assuming
that masonry behaves as either a no-tension (or scarcely resistant under
tensile stresses) material, it can be stated that the load-bearing capac-
ity of a masonry dome is typically shape-dependent. When hoop mem-
brane stresses due to self-weight and dead loads exceed the weak ten
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sile strength of masonry, then first damages start to appear, namely
cracks along meridians open at the base of the dome, because of the
positive stresses present in the lower part along parallels. Such progres-
sive crack propagation is always associated to a dilatation of the drum,
which makes the deformed shape of the dome similar to an orange peel.
Due to the development of vertical cracks, the dome is thus divided in
equally stepped wedges, membrane stresses are only compressive and
the dome starts behave like a series of concentric masonry arches along
the meridians. This phenomenon is quite common in masonry domes, it
does not compromise the structural stability and allows to make predic-
tions on the load carrying capacity by means of a modification of the
thrust-line approach used for arches, as suggested for instance by [5],
where a dome is divided into arches having a constant thickness.

In such or similar arch schematizations, the presence of horizon-
tal cracks not due to meridian stresses is more dangerous and may de-
nounce the development of a kinematic mechanism that may lead to col-
lapse. In fact, like in a simple masonry arch, the position of the line of
thrust changes when the vertical load is increased or the geometry of the
dome changes during the formation of meridian cracks, moving from the
center of the section to its hedges. When the line of thrust touches the
external or internal surface of the dome, an annular flexural hinge de-
velops and in the opposite side a crack opens along the parallels [6–8].
The limit analysis of domes axis-symmetrically loaded is therefore rel-
ative simple and the literature available is nowadays abundant [2]; on
the other hand, the good behavior of such kind of structures under grav-
ity loads fully justify their wide utilization during the history to bear
heavy vertical loads and cover large spans. However, when symmetry is
lost, as in the case of seismic actions, the determination of the load bear-
ing capacity becomes extremely difficult. Before to deal with the possi-
ble seismic collapse of a dome, we think useful briefly review the way
the domes have been analyzed during the centuries, the computational
methods with which they are studied nowadays and the scarce literature
on their behavior under seismic actions.

The modern history of the calculus of masonry vaults [9] begins
with the contributions of the late 1600s English school (Hooke in 1676
and 1705 and Gregory in 1698) that stated the analogy between the
inverted shape of a catenary and a compressed arch. Poleni employed
this analogy in 1743 for the consolidation of the dome of St. Peter in
Rome. Bouguer (1734), Bossut (1778) and Mascheroni (1785) derived
equilibrium equations for masonry domes under vertical axisymmetric
loads neglecting circumferential forces, i.e., considering a one-dimen-
sional (1D) behavior, even if they seem to recognize the presence of cir-
cumferential stresses. In particular, Bouguer (1734), in his geometrical
construction, introduces the circumferential actions among dome slices
as a qualitative consideration and seems to be aware of the incapabil-
ity of masonry of carrying tensile stresses, pointing out that, for spheri-
cal domes of uniform thickness subjected to self-weight, circumferential
stresses change sign at an angle of 0.904 rad. A considerable improve-
ment in the analysis of spherical masonry domes was achieved when
Levy (1888) proposed a graphical analysis aimed at finding the circle on
which circumferential forces are zero. Due to the hypothesis of null ten-
sile forces, below this circle the behavior of a masonry dome is, indeed,
1D. Despite later developments in the membrane theory of shells [10]
and more generally in elastic shells [11], due the unavoidable need to
take into account the scarce tensile strength, recent contributions ana-
lyze masonry domes in the context of limit analysis. In the first half of
the 20th century, new methods of analysis for the evaluation of the be-
havior of masonry arches were proposed. Namely, Kooharian [12] and
in an exhaustive way Heyman [13], extended to no tension materials
and in particular to masonry arches and vaults the limit analysis theo-
rems since developed for plastic material with associated flow rules.

Nowadays it can be stated [14,15] that the modern theory of limit
analysis for masonry structures, as formalized by Heyman, is the most
suited approach to deeply understand and predict the behavior of ma-
sonry structures. Typically, an infinite compressive strength and a
no-tension resistance are assumed, two hypotheses that turn out to be
quite consistent with the actual masonry behavior. In addition, shear
failure is neglected because violates one of the classic limit analysis hy-
pothesis, i.e. the associated flow rule. Considering the aforementioned
hypotheses, it appears clear that the no-tension limit analysis problem as
stated by Heyman is perfectly suited for arches and vaulted structures in
general, where the structure collapses for the formation of a mechanism
involving different rigid-blocks mutually connected by flexural hinges
where dissipation is negligible. The approach is particularly simple, it
can be easily take into account both a limited compressive strength and
a non-vanishing tensile resistance without an excessive complication,
does not require other specific mechanical parameters and can be han-
dled with computerized methods where geometric issues are the most
important.

The diffusion of personal computers occurred in the early 70ths stim-
ulated in the successive decades also the research in the field of com-
puterization of structural analyses for masonry vaulted structures. At
present, computational methods can be classified into three broad cat-
egories: (1) Thrust network methods, based on the Static Theorem of
limit analysis and directly derived from Heyman’s approach, (2) Adap-
tive limit analysis, based on the Kinematic Theorem with a representa-
tion of the geometry by means of few NURBS elements, (3) Direct Finite
Element methods, in the framework of both nonlinear incremental and
limit analysis, (4) Discrete element methods.

As far as the thrust network analysis is concerned, O’Dwyer [16]
was probably the first to generalize thrust-line approach outside the
analyses of arches, introducing the use of 3D funicular force networks
defined in plan. His approach is limited to vertical loads and the lay-
out of the networks is fixed in plan. Even though the fixed network in
plan still inherently gives rise to conservative results, these 3D networks
give a much better understanding of vaults than the previous simpli-
fied analysis that combines one-dimensional thrust line analyses. Start-
ing from O’Dwyer’s seminal work, Ochsendorf research group at MIT
[17,18] and then Block at ETHZ introduced Maxwell reciprocal force
diagrams, which describe the possible equilibria of compressive funicu-
lar networks, named thrust networks, under vertical loading. A modified
approach possibly suitable in presence of horizontal loads has been re-
cently proposed in Italy by different research groups, probably the first
one being provided by [19]. A related approach to TNA for generating
funicular networks in the presence of vertical loading has been proposed
by [20,21], as a specific 3D extension of the lumped stress method. It
can be shown how their equilibrium conditions were entirely equiva-
lent to thrust network analysis; in contrast, this approach, based on the
discretization of Airy stress functions, presented some challenges with
respect to singularities in the boundary conditions and loading, or dis-
continuities, such as cracks or openings, in the discretized equilibrium
surfaces and the supports [21].

Adaptive limit analysis (second approach) is an interesting alterna-
tive, because it does not require any kind of expertise by the user and
can run assuming different strength hypotheses for the masonry mater-
ial, including anisotropy, limited shear strength and non negligible ten-
sile strength (this latter assumption being particularly important for the
limit analyses of domes made by Roman concrete). The Authors of this
paper formalized in [22] an adaptive limit analysis, which is based on
the kinematic theorem and requires only a rough discretization of the
structure by means of few NURBS described rigid infinitely resistant el-
ements. A given masonry vault, eventually strengthened with tie-rods or
FRP, can be geometrically represented in a very accurate way by few
NURBS parametric surfaces. According to the real behavior of a ma-
sonry vault/dome near failure, each NURBS is assumed as a rigid body,
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interconnected with neighboring elements by means of curved flexural
hinges, where all possible dissipation is lumped. The approach is capa-
ble of well predicting the load bearing capacity of masonry vault of ar-
bitrary shape, if the initial mesh is adjusted adaptively, for instance by
means of meta-heuristic algorithms (i.e. Genetic Algorithm GA, Particle
Swarm Optimization (PSO), Firefly Algorithm (FA), Prey Predator Algo-
rithm (PPA) etc. see [23]), in order to capture the position of the hinges
activating that failure mechanism associated with the minimum of the
load carrying capacity. It is worth noting that is possible easily take into
account any type of loading condition and boundary constraints, any
geometry and the expertise required by the user is minimal, being nec-
essary only the knowledge of a 3D CAD software.

The third approach is represented by direct FE methods. Unsurpris-
ingly, ancient masonry vaults have been studied since long time ago by
using the most advanced tools available for structural assessment and
nonlinear incremental analyses, i.e. by using FE codes both in the sta-
tic (pushover analyses) and dynamic fields [2]. Limit analysis combined
with FEs can be used as well and both upper and lower bound formu-
lations are available, for instance in [24] and [25], also with attempts
to adjust the mesh by means of Sequential Linear Programming [26].
In general, the utilization of a direct FE discretization is not wrong and
a deep insight into the actual behavior of masonry curved structure up
to collapse can be still obtained. However, the computational burden is
usually huge, the user needs a strong theoretical background, and, in
case of limit analyses formulations, robust linear programming solvers
must be available and for non-linear analyses, the sensitivity of the re-
sults to the many input material variables needed is an issue to consider
carefully.

The last approach concerns the use of discrete element methods to
assess the bearing capacity of masonry vaults, which in the recent years
has been successfully applied to many typologies of masonry structures
(see e.g. [27,28]).

At present, a number of papers devoted to the limit analysis and
non-linear behavior of masonry arches subjected to under horizontal
loads are available, both experimental or based on the three afore-
mentioned numerical methodologies, because the computational effort
needed is much lower than that required for domes subjected to hori-
zontal loads. In the case of arches, the focus was on both the longitudi-
nal behavior of single arches [29,30], but also on the effects of out of
plane rotation of spandrel walls [31,32] and multi-span bridges at col-
lapse [33].

The present paper aims at presenting the application of a fast and re-
liable automatized kinematic limit analysis approach able to accurately
predict the actual behavior at failure of masonry domes subjected to hor-
izontal static loads. According to the second methodology discussed pre-
viously for the analysis of curved structures at failure, the model uses
a rough discretization of the dome obtained by means of few rigid-infi-
nitely resistant NURBS elements, adapting step by step the initial mesh
in order to progressively overlap the element edges (where all dissi-
pation is lumped) with the hinges forming the failure mechanism. The
adoption of a rough mesh makes the code extremely fast, much more
competitive than a standard FE model, allowing at the same time to ap-
proximate the real geometry and load distributions in an extremely ac-
curate way. In addition, the approach can be used by anyone unfamil-
iar with complex structural analyses computations and FEs theory. The
utilization of geometries obtained with laser scanner acquisitions can be
easily handled, as well as the presence of pre-existing cracks.

In Section 2, we present concisely the main features of the pro-
posed approach. In Section 3, we firstly validate the proposed formu-
lation studying a prototype dome with the geometrical parameters of
a typical late Renaissance dome, the Cathedral of Montepulciano, see
[34]. At this aim, we compare our results with those obtained with
non-linear incremental analyses performed with a FE commercial code.

In more detail, we consider the structure subjected to four distributions
of horizontal loads respectively inspired by first mode shape on the hor-
izontal plane and in the vertical direction, constant or mixing them to-
gether. The aim is to propose and compare different statically equivalent
seismic actions. For validation purposes, again in Section 3, we con-
sider two famous cases of collapsed masonry domes, namely the dome
of “Anime Sante” church in L'Aquila collapsed during the 2009 earth-
quake (in this case a direct validation with the “experimental” behavior
is available) and the Calidarium dome belonging to Baths of Caracalla
complex in Rome. In this latter case, the dome was made by Roman
concrete (i.e. with mechanical properties quite different from those as-
sumed for Medieval masonry) and a realistic hypothesis of the collapse
causes is provided, according to the numerical results obtained. In all
cases, the collapse failure mechanisms are reproduced satisfactorily in
comparison either with the results obtained through demanding FE com-
putations or with the geometric configuration of the still standing parts,
which are suggestive of the failure mechanism occurred during the col-
lapse. All simulations performed show the reliability of the simple adap-
tive approach proposed, confirming that it is convenient to adopt such a
kinematic approach to deal with the limit analysis of domes subjected to
horizontal loads, instead of pursuing strategies based on the thrust net-
work analysis or direct FE computations, which require experience users
and potentially long time to be performed.

2. Limit analysis with adaptive search of the collapse mechanism:
Main features and computational advantages

In this Section, the essential features of the adaptive search algo-
rithm of limit analysis adopted to predict the behavior at failure of ma-
sonry domes under horizontal loads are recalled. First, we discuss how
masonry material is modeled and then the computational features that
make the approach fast and efficient are discussed.

As far as the material modelling is concerned, the essentials of the
material “masonry” should be taken in account, namely the almost van-
ishing resistance to tensile stress and the good compressive strength, as
suggested by Heyman, as well as the exclusion of sliding between blocks,
which would require a more sophisticated mathematical approach to
deal with non-associated plasticity.

However, it is worth mentioning the tensile strength is not always
exactly null, but quite variable and uncertain. In addition, the resistance
to compression is at least an order of magnitude greater but finite, as
well as the shear resistance, especially in absence of meaningful normal
compression, may result quite low.

Moreover, masonry is typically anisotropic at failure, because it is
made by bricks or stone blocks staggered row by row and joined with
mortar [15]. Furthermore, in the case of vaulted structures, the tex-
ture can vary considerably in the different parts of a single structural
element. To reproduce consistently all such aspects, the adoption of an
isotropic no-tension material –as done in the thrust network analysis-
could result simplistic and suitable homogenization techniques should
be preferred, as recommended for instance by Milani and co-workers in
[35,36]. The advantages of the utilization of an anisotropic strength do-
main is also related to the fact that a no tension material can be eas-
ily obtained by sending the tensile strength ft to zero. Typically, when
the actual texture of the dome is disregarded, an isotropic behavior with
limited tensile strength, cap in compression and frictional behavior, as
illustrated in Fig. 1, can be effective without the risk to introduce large
inaccuracies. Finally, let us observe that for almost brittle materials,
which do not diffuse too much damage in neighboring regions, inelas-
tic deformation concentrates along well-defined yield lines and therefore
the assumption of numerical models made by rigid elements and inelas-
tic interfaces may be very effective and more realistic.

Limit analysis theorems hold both under the Heyman’s hypotheses
(see [37]) and for a generic rigid plastic material with associated flow
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Fig. 1. Typical isotropic strength domain with limited tensile strength, cap in compression and frictional behavior that can be assumed for masonry interfaces in the limit analysis of
domes.

rule. However, in presence of friction, the normality rule is lost, because
sliding is typically associated to scarce dilation, especially for moder-
ate/strong pre-compression. As well known, in all those cases where the
non-associativity can play an important role, see [38] or [39], clas-
sic limit analysis does not hold anymore. Robust Linear Programming
solvers should be replaced by more demanding Non-Linear Program-
ming approaches, which have been specialized for masonry in differ-
ent ways by many authors in the recent past, see for instance [40–42].
The effects of friction on the static behavior of masonry vaults has been
studied by D’Ayala and coworkers [43,44]. They assert that limit state
analysis with finite friction allows investigating two aspects previously
neglected for masonry vaults: the possibility of sliding mechanisms be-
tween the blocks and the importance of three-dimensional stress fields in
the equilibrium of complex vaults. Particularly, the analyses were able
to show that for values of the coefficient of friction smaller than 0.5,
sliding becomes a critical failure mode and further increases in the thick-
ness are necessary to re-establish equilibrium.

As far as the computational aspects are concerned, three main as-
pects of the adaptive upper bound limit analysis approach adopted are
worth noting, namely:

(1)The “exact” geometrical representation of the dome is obtained
with a rough subdivision by means of few rigid NURBS elements.
This step is accomplished by subdividing the NURBS two-dimen-
sional parametric space through an n-parameters family of straight
or curved lines, which are representative of a wide class of phys-
ically meaningful mechanisms. The family of subdividing lines is
chosen so that, by suitable adjustment of the n subdivision para-
meters (see Step 3), it is capable of capturing mechanisms which
closely approximate the actual failure mechanism.

(2)For any mechanism considered, i.e. for each shape of the mesh dur-
ing the progressive adaptation, the use of efficient internal point al

gorithms for solving the Linear Programming (LP) problem translat-
ing into mathematics the kinematic theorem of limit analysis speeds
up considerably the single computations, making the overall algo-
rithm very fast.

(3)The adaptation of the mesh is done step by step using an efficient
metaheuristic algorithm, that does not require any information re-
garding the first derivatives of equality-inequality constraints and
objective function.

As for masonry arches, the thrust line shape (in domes the thrust
surfaces) and the evaluation of gravity loads depends strictly on the ex-
act determination of the geometry, small differences having significant
consequences on the load carrying capacity. Moreover, nowadays laser
scanner techniques are commonly used for accurate geometric surveys
of complex geometries [45] and to interface with such technology is
particularly interesting to have a detailed insight into geometric details
that before were usually disregarded.

The NURBS-based approach here adopted interfaces closely with
laser scanner surveys, providing very accurate 3D models. In fact, from
a laser scanner cloud of points, see e.g. [46], it is possible to generate an
accurate NURBS representation of the given vaulted surface, by means
of the advanced features found in any commercial free form modeler
such as Rhinoceros® [47], see Fig. 2. By exploiting the properties of
NURBS functions, a mesh of the given surface, which still provides an
exact representation of the vaulted surface, can be obtained. Each ele-
ment of the mesh is a NURBS surface itself and idealized in the model
proposed as a rigid body.

The reader is referred to previous papers by the authors [22,48–51]
for an exhausting description of the details of the limit analysis model.
Very concisely here the main features of the approach proposed are
recalled. NURBS basis functions are built on B-splines basis functions,
which are piecewise polynomial functions defined by a sequence of
coordinates , also known as the knot

Fig. 2. Passage from NURBS geometric model built in CAD environment (using for instance a laser scanner survey) to the initial NURBS kinematic FE limit analysis discretization.
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vector, where the so-called knots, , are points in a parametric
domain, in which p and n denote the polynomial order and the total
number of basis functions, respectively. Once the order of the basis func-
tion and the knot vector are known, the i-th B-spline basis function,
, can be computed by means of the Cox-de Boor recursion formula [52].
Given a set of weights, , the NURBS basis functions, , read as
follows:

(1)

NURBS share many properties with B-spline basis functions, however
they have the great advantage of representing exactly the geometry of a
wide set of curves such as circles, ellipses, and parabolas and of all the
surfaces that can be generated by such curves.

A NURBS surface of degree p in the u-direction and q in the v-direc-
tion is a parametric surface in the three-dimensional Euclidean space de-
fined as follows:

(2)

where form a bidirectional net of control points.
Given a NURBS surface , isoparametric curves on the surface

can be defined by fixing one parameter in the parameter space and let-
ting the other vary. By fixing the isoparametric curve is
defined on the surface , whereas by fixing the isoparametric
curve is obtained.

Starting from the geometrical properties of each element, an upper
bound formulation can be obtained and implemented through an effi-
cient internal point linear programming algorithm, e.g. using open pro-
gramming codes as MATLAB, in order to assess the ultimate load bear-
ing capacity of a given masonry dome.

Be the number of elements composing the NURBS mesh, which
geometrically represents a generic curved surface. As already pointed
out, since each NURBS element is considered rigid and infinitely resis-
tant, the kinematics of each element is determined by the six (three
translational and three rotational) generalized velocity components

of its center of mass , expressed in a global ref-
erence system . On the structure, dead loads and live loads are
acting. Possible dissipation is assumed to occur only along element in-
terfaces, which are curved splines. Let us observe that is simple to in-
troduce in the structural model a preexisting crack, simply constraining
a common edge between two contiguous elements to coincide with the
crack.

In order to enforce closely compatibility along interfaces and cor-
rectly evaluate the possible dissipated power, integrals are numerically
evaluated on interfaces by means of classic collocation method on sev-
eral points . On each point , a local reference system is de-
fined, where is the unit vector normal to the interface, is the tangen-
tial unit vector in the longitudinal direction and is the tangential unit
vector in the transversal direction, as sketched in Fig. 3.

Taking suitably into account boundary conditions, compatibility con-
straints and internal and external power dissipation, the upper bound
limit analysis problem can be written in compact notation –at freezed
discretization or better for each configuration of the mesh used

Fig. 3. Collocation method used on curved NURBS edges to correctly approximate ex-
pended power and compatibility constraints.

during adaptation- as the following linear programming problem:

(3)

In Eq. (3), condition (a) represents the assembled geometrical con-
straints/boundary conditions, condition (b) compatibility constraints,
condition (c) the non-negativity of plastic multipliers and condition (d)
normalization of the plastic multiplier.

The progressive adaptation of the mesh is carried out by means of
a metaheuristic approach, in order to overlap at the last iteration the
position of element edges with fracture lines forming the failure mecha-
nism. Metaheuristic algorithms have a wide range of applicability in the
vast structural engineering field, thanks to their efficiency, simplicity of
programming, and because they do not require the computation of gra-
dients to linearize constraints and objective function at each iteration.
The strength of the proposed method lies in the fact that even by using a
mesh made by very few elements, it is possible to obtain an accurate pre-
diction of the load multiplier and active failure mechanism very quickly
and without needing a particular expertise by the user.

A recent paper by the Authors [53] is devoted to the evaluation
of the most adequate metaheuristic approach to use. The Genetic Algo-
rithm (GA) originally proposed in the first papers [22] has been com-
pared with alternative numerical strategies, as for instance the Particle
Swarm Optimization (PSO) Algorithm, the Firefly Algorithm (FA) and
a modified version of the Prey-Predator Algorithm (PPA), which turned
out to be in general the more efficient and accurate.

Prey-Predator Algorithm (PPA) has been proposed as new algorithm
for optimization problems in 2015 by [54]. In this approach, randomly
generated solutions are assigned to a predator and preys, depending on
their performance in the objective function. This performance is called
survival value (SV). The mesh associated with lowest survival value is
assigned to the predator and the rest to preys. Then the predator chases
the weakest prey, the prey running away from the predator trying to fol-
low the pack of preys with better survival values. The prey with best sur-
vival value, which is called the best prey, is considered as a prey which
has found a hideout and in this case only a local search is done. The
movement of each individual is defined by a direction, i.e. a unit vec-
tor, and a step length, which determines how far on that direction the
individual tries to move. The reassignment of a predator and preys is re-
peated at each iteration. In [53] the Authors proposed simplifications
related to the specificity of this application and the reader is referred
there for further details.

5



UN
CO

RR
EC

TE
D

PR
OO

F

N. Grillanda et al. Engineering Structures xxx (xxxx) xxx-xxx

3. Limit analysis of Montepulciano Cathedral dome subjected to
vertical and horizontal actions

The first example analyzed is the dome of Montepulciano Cathedral,
Fig. 4-a. The example is simplified on purpose, in order to prelimi-
nary evaluate the capabilities of the approach proposed in presence of
very simple geometries still approximating consistently a real case. The
dome is a brick masonry spherical calotte of uniform thickness equal
to 15cm and internal radius equal to 10.60m. A drum is present un-
der the calotte, whose structural thickness is hard to establish. The drum
is then carried by large triumphal arches. Here, the drum thickness is
assumed equal to 1m (corresponding roughly to the continuous core
from the top to the bottom), whereas its height is assumed equal to
10.60m, i.e. equal to the dome radius, see Fig. 4-b. This typical propor-
tion follows classical construction rules adopted during both medieval
age and Renaissance. The same example was analyzed by [34] to es-
tablish the minimum thickness profile of a dome resting in equilibrium
under gravity loads and assuming that masonry behaves as a no-ten-
sion material. Openings of the drum and lunettes in the drum crown are
not considered for the sake of simplicity. In addition, the actual thick-
ness of the drum crown is not considered and the calotte is prolonged
maintaining the constant thickness of the dome. Several FE models are
adopted, as shown in Fig. 4-c, namely a NURBS rough discretization to
performed the adaptive kinematic limit analysis and two detailed clas-
sic FE meshes obtained either with 8-noded brick elements (axis-sym-
metric) or with 4-noded tetrahedrons (not symmetric because obtained
with an auto-meshing routine). The axis-symmetric mesh is used to per-
form modal analyses and hence apply suitable distributions of horizon-
tal loads when the dome is analyzed under seismic excitation, whereas
the discretization with tetrahedron is adopted for the non-linear static
analyses.

Mechanical properties adopted in the limit analysis computations
are summarized in Table 1 for the NURBS-based limit analysis and
Table 2 for the FE non-linear analyses. The main strength parameters
have been chosen in agreement with the prescriptions provided by the

explicative circular to the Italian Building Code [55,56] for existing
buildings. In absence of precise information about the actual texture of
the dome, an isotropic failure criterion is adopted. Masonry is assumed
behaving as a frictional material with limited tensile strength and lin-
earized cap in compression. Symbols meaning in Table 1 are explained
in Fig. 1.

For the FE non-linear static analyses, a total strain cracking model is
assumed for masonry, with linear softening in tension and an elastic-per-
fectly plastic behavior in compression, in agreement with the most dif-
fused approaches used in the literature when a commercial FE code
is utilized to perform pushover analyses and more sophisticated ap-
proaches accounting for masonry anisotropy cannot be used.

3.1. Calotte under distributed vertical load

When the dome is subjected –apart its own weight- to a distributed
vertical load increased up to collapse, the load-displacement curve ob-
tained with the non-linear FE model is that depicted in Fig. 5. Control
node is represented by the calotte vertex; as can be noted for an ex-
ternal load equal to zero, a vertical deflection of about 0.8mm exists,
which is due to calotte self-weight. The behavior is elastic up to point
A, where the dome detaches from the drum, as demonstrated by the
crack pattern reported in Fig. 5. From point A forward, the global be-
havior is characterized by softening and initial snap-back, both phenom-
ena being explained by the progressive formation of meridian cracks,
which are clearly visible at the end of the simulations, i.e. in correspon-
dence of Point B. As a result, the behavior of the dome after the for-
mation of the meridian cracks is highly brittle. The crack pattern ob-
tained at failure is slightly asymmetric because the discretization used
is obtained through an auto-meshing pre-processor. In the same figure,
collapse loads obtained with limit analysis are also represented assum-
ing for masonry different values of tensile strength and keeping all the
other parameters unaltered. As can be observed and as expected, the
no-tension material hypothesis is over-conservative, providing an ulti-
mate load bearing capacity roughly reduced by half. In addition, re

Fig. 4. Montepulciano Cathedral dome. –a: real geometry of the calotte and the drum. –b: idealized geometry studied in the paper. –c: models adopted (left: NURBS limit analysis dis-
cretization; center: FE discretization with brick elements; right: FE discretization with tetrahedrons.
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Table 1
Montepulciano Cathedral dome. Masonry parameters adopted in the adaptive NURBS-limit
analysis (for symbols meaning the reader is referred to Fig. 1).

Property Symbol Value
Unit of
measure

Specific weight γ 18 kN/m3

Ultimate tensile strength ft 0–0.2 MPa
Cohesion c 0.06 MPa
Friction angle Φ 22 °
Ultimate compressive strength fc 2.4 MPa
Parameters defining the shape of the linearized
compressive cap

ρ 0.5 –

Φ2 10 °

Table 2
Masonry parameters adopted for the FE pushover analyses. A Total Strain Based Crack
model is used for masonry.

Property Symbol Value Unit of measure

Young’s modulus E 1500 MPa
Poisson’s coefficient ν 0.2 –
Specific weight γ 18 kN/m3

Ultimate tensile strength ft 0.2 MPa
Ultimate tensile strain εu 0.0001 –
Ultimate compressive strength fc 2.4 MPa
Shear retention factor β 0.33 –

sults are quite sensitive to the value adopted for the tensile strength,
a result that is not surprising, considering failure mechanisms obtained
with the approach proposed and depicted in Fig. 6. As can be observed,
the mechanism is formed by an annular flexural hinge near the top and
meridian cracks, associated to velocity jumps along parallels. Dissipa-
tion is therefore exclusively ruled by ft, and this justify the large variabil-
ity of collapse loads obtained. In any case, when results are compared
with those obtained through the non-linear FE model, two issues should
be considered, namely that in the FE incremental model a much higher
peak tensile strength is assumed (200kPa against 40kPa), but followed
by a steep softening. In limit analysis, which assumes materials behaving
in a perfect plastic way, it is therefore recommended to properly limit
masonry strength in tension, or at least consider residual values (if any)
instead of peak ones.

Another key issue is worth nothing, see Fig. 6, namely the depen-
dence of the value of collapse load found on the number of fracture

lines along meridians considered. As can be observed, it is recommended
to subdivide with 10–12 meridians the NURBS mesh to obtain reliable
results, a practical rule that obviously holds only for this particular case
where the dissipation along meridians becomes crucial.

3.2. Half calotte under distributed vertical load

Often, after the collapse of a masonry dome, it is found that about
one-half of the dome remains erect. Certainly, it is not possible to justify
the stability of this structure under vertical loads considering a simple
one-dimensional behavior, for example schematizing through indepen-
dent curved cantilevers. However, it makes sense to analyze the static
behavior of one-half of the calotte under – in addition to self-weight –
the same vertical distributed load considered for the entire dome and in-
creased up to the activation of the failure mechanism. It is intuitively ev-
ident that the expected structural behavior still remains 2D, but hooping
meridian compression stresses, which help in increasing the load bear-
ing capacity of the entire calotte, here should play a much less important
role, because of the presence of free vertical edges. It is also expected
that the collapse load strongly decrease.

In analogy with what done for the entire calotte, in Fig. 7 the global
load-displacement curve obtained with the non-linear FE model is de-
picted for the semi-calotte. In addition, the collapse loads obtained with
limit analyses at different values of masonry tensile strength are re-
ported. Analyzing incremental FE results, it can be seen how the be-
havior is extremely fragile. Furthermore, comparing the damage distri-
bution at peak (point A) and that at the last iteration in the soften-
ing region (point B), again reported in Fig. 7, it can be observed how
the crack pattern does not provide a very clear information of the com-
plex mechanism associated to failure. Limit analysis helps much more
in this regard, showing (see Fig. 7) that the semi-calotte collapses for
the formation of a network of very curved yield-lines (not easily re-
producible with standard methods) working in bending, with a diago-
nal in-plane crack forming in the drum, which is clearly visible also in
the FE incremental model. Let us finally observe that the semi-calotte
and semi-drum system analyzed resembles closed to two famous Roman
dome ruins that are still standing, namely those of the temple of Min-
erva Medica and those of the dome of the Baths of Caracalla.

3.3. Calotte subjected to horizontal force distributions simulating seismic
actions

The main aim of the limit analysis model here presented is to pro-
vide a tool for the ultimate limit state analysis (i.e. prediction of col

Fig. 5. Montepulciano Cathedral dome. Analyses under distributed vertical loads increased up to collapse, FE non-linear load deflection curve and limit analyses collapse loads varying
masonry tensile strength.

7



UN
CO

RR
EC

TE
D

PR
OO

F

N. Grillanda et al. Engineering Structures xxx (xxxx) xxx-xxx

Fig. 6. Montepulciano Cathedral dome. Collapse load convergence study at progressively increased number of fracture lines along meridians with null value of tensile strength: collapse
mechanism for 6 meridians, 12 meridians, 18 meridians and collapse multipliers obtained.

Fig. 7. Montepulciano Cathedral dome. Analyses under distributed vertical loads increased up to collapse, FE non-linear load deflection curve and limit analyses collapse loads varying
masonry tensile strength.

lapse loads and active failure mechanisms) of masonry domes subjected
to statically equivalent seismic loads.

As far as the distribution of horizontal loads to apply is concerned,
the new Italian norms for constructions NTC2018 [55] recommend for
masonry structures to apply incrementally a horizontal distribution of
accelerations either proportional to the first mode of vibration (first type
distribution, if the excited mass of the mode is >60%) or constant along
height.

Fig. 8 shows the first modal shape as obtained through the symmet-
ric FE discretization of Fig. 4. Values of normalized displacements are
kept in the centroids of the elements for the sake of simplicity, and this
justified the stepped resolution obtained with the thick continuous line.
As it is possible to observe, the deformed shape can be well approxi-
mated by a linear distribution along the height and a cosine-shaped dis

tribution in plan. To have at disposal an analytical representation of the
applied horizontal forces depending on the load multiplier is particularly
convenient for the NURBS approach here proposed, because the pro-
gram through numerical integration carries out computations automati-
cally. Taking into account this important practical aspect, limit analyses
under horizontal loads are performed with the four different distribu-
tions of horizontal loads summarized in Fig. 9.

In Fig. 10, the load-displacement curve obtained by means of the
FE nonlinear model is depicted with cracks patterns appearing in two
meaningful instants, labeled as A and B. With the term load, it is in-
tended the distributed pressure applied on the surface of the elements
located in the upper edge of the calotte and as control node the apex
of the dome is assumed. Point A is at peak, whereas B is located at the
end of the simulation, where the failure mechanism is intended fully
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Fig. 8. Montepulciano Cathedral dome. Analysis of the first mode deformation. –a: deformation along the height; -b: deformation on the horizontal plan (at the dome’s base).

Fig. 9. Montepulciano Cathedral dome. Four configurations of accelerations applied.

Fig. 10. Montepulciano Cathedral dome. -a: Nonlinear FE analysis under horizontal forces on the whole structure, type 1 distribution of loads (proportional to first mode deformed shape).
–b: crack pattern at steps A & B (perspective, lateral and plan views).

developed and the structure is prone to collapse. As can be observed,
softening is extremely steep in this case and cracks diffuse quickly af-
ter the peak load is reached, as demonstrated by the differences in the
crack patterns obtained for points A and B. Fig. 10 shows also the fail-
ure mechanism found with the same distribution of horizontal loads
with the NURBS approach, as well as the different collapse loads ob-
tained progressively increasing masonry tensile strength. Analogously
to what observed in the case of vertical loads increased up to failure,
a very good prediction of the peak load is obtained assuming for ma-
sonry a tensile strength equal to 40kPa, a value that is 1/5 of the peak
strength adopted in the FE incremental analyses. Again, practical rec

ommendations about the reduction of the expected masonry tensile
strength could be given to practitioners in order to remain on the safe
size and properly account for the fragile behavior of masonry in tension.
In any case the no-tension material hypothesis is always very conserva-
tive and, hence, in reality and extra resistance of the structure is more
likely.

An important aspect to underline is also the very good prediction by
NURBS limit analysis of the crack pattern forming the failure mecha-
nism, with the opening of a diagonal crack in the drum upper part, see
Fig. 10. The diagonal cracks is visible at failure also in the FE incre-
mental model, as well as the flexural hinge forming at the drum/calotte
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connection. In this regard, limit analysis failure mechanism is much
more understandable and provides a more interesting insight into the
behavior of the structure at collapse. The identification of such a clear
collapse mechanism is also useful to perform non-linear static analy-
ses which are much less demanding than those performed here, simply
re-meshing the structure with elastic elements and non-linear interfaces
where the yield lines are located.

The results obtained in terms total shear at the base at collapse con-
sidering the dome subjected to all four distributions of horizontal forces
are finally reported in Table 3, whereas a comparison with the result
of the nonlinear FE analysis is depicted in Fig. 11. Fig. 12 shows the
collapse mechanisms obtained. A tensile strength equal to 200kPa is
adopted in this case, as in the FE incremental simulations. It is interest-
ing to point out how the obtained total shear at the base is different from
case to case, because the load distribution is different; on the contrary,
collapse mechanisms are quite similar, see Fig. 12. This is not surpris-
ing, because despite the velocities fields at collapse are almost superim-
posable; power dissipated by external loads is different because of the
different distribution of the forces applied. An interesting final qualita-
tive aspect to point out is also that the still standing part after the col-
lapse reproduces quite closely some situations of dome ruins nowadays
visible in seismic zones, suggesting that one possible cause of collapse of
ancient domes may be probably ascribed to strong earthquakes.

4. Collapse of the dome of the church of Anime Sante

The second benchmark considered to validate the NURBS approach
here proposed is the dome of the Church of Anime Sante, destroyed on
6th April 2009 by L’Aquila earthquake (Mw=6.3, ML=5.8).

The construction of the Anime Sante Church begun in 1713 to com-
memorate the victims of the earthquake that destroyed the city of
L’Aquila in 1703. The church consists of a rectangular hall with a bar-
rel vault flanked by two chapels on each side, with eight windows

Table 3
Results obtained for each distribution of horizontal acceleration.

Configuration of accelerations # Corresponding base shear [kN] ag/g [−]

(1) 3470 0.260
(2) 5327 0.401
(3) 2884 0.171
(4) 4086 0.307

Fig. 11. Results obtained for each distribution of horizontal acceleration.

placed to illuminate the presbytery from the hemispherical dome, Fig.
13. The design was entrusted to Carlo Buratti student of the famous
baroque architect Carlo Fontana. The definitive completion of the
church will be in 1805 with the realization of the dome attributed to
Giuseppe Valadier and already conceived in the original project of the
building written by the Buratti a century earlier. L’Aquila earthquake
in 2009 caused 308 victims and seriously damaged the historical city
center. The Anime Sante Church had the same destiny—the earthquake
being responsible for the collapse of both the lantern and the dome, dif-
fused cracks of the key stone arches, detachment of the facade and apse
and shear cracking of several walls. The still standing parts of the drum
and the dome are visible from photos reported Fig. 13, where the geom-
etry of the drum/dome system is also shown by means of a transversal
section.

In absence of specific data to assign to masonry mechanical proper-
ties, for the numerical simulations here reported, the same parameters
adopted in the previous Section are assumed. In general, such data are in
agreement with Italian code, more precisely with Explicative Notes [56]
for existing buildings. Fig. 14 depicts the NURBS model of the system
constituted by drum, dome and lantern in Rhinoceros and the MATLAB
NURBS FE implementation used for the limit analyses.

The results obtained considering the dome subjected to all four dis-
tribution of horizontal forces discussed in the previous Section are re-
ported in Table 4 and Fig. 15, whereas Fig. 16 shows the collapse
mechanisms obtained in the different cases. Considerations similar to
those done in the previous case can be repeated here. In particular, the
failure mechanism does not change too much with the distribution of
horizontal loads applied, conversely the collapse acceleration is very
sensitive to the actual distribution of accelerations. In agreement with
consolidated literature in the field and with the Italian code, the most
conservative case is an inverse linear distribution along the height with
cosine variability in plan, i.e. which follows the first mode.

5. “Calidarium” of the Baths of Caracalla

The last example discussed is the limit analysis under horizontal
loads of the Calidarium of the Baths of Caracalla. The Baths of Caracalla
are a monumental complex located in Rome city center (near Colosseo),
built in Roman age (212–216 A.C.), and conceived as imperial public
baths (thermae) for wealthy people. Calidarium was a room with a hot
plunge bath, used in Roman bath complexes, in this case almost isolated
from the rest, with circular plan and covered by a dome, hence with a
typical shape that can be studied with the present approach, see Fig.
17.

In 537 during the Gothic War, Vitiges king of the Ostrogoths laid
siege to Rome and severed the city's water supply. Shortly thereafter,
the baths were abandoned. Located too far away from the still populated
area of Rome, the baths were mostly disused.

According to [57], the earthquake of 847 destroyed much of the
building, including Calidarium along with many other Roman struc-
tures. This Section is aimed at discovering if the NURBS limit analysis
approach proposed is able to (a) predict a failure mechanism which jus-
tifies the actual situation of the still standing ruins and (b) provide a col-
lapse acceleration compatible with a moderate/strong PGA occurred in
the past in Rome.

The real shape of the Calidarium and the correct dimensions of its
architectural elements are not known with absolute certainty, but cur-
rently only some reconstructions are available. DeLaine’s book on the
Baths of Caracalla [57] is the only published collection of detailed geo-
metrical and constructive information for the site. The DeLaine’s geo-
metrical reconstruction is shown in Fig. 17. However, there are many
others different interpretations: an example is Palladio, which repre-
sents the Calidarium characterized by a geometry very similar to that
of the Pantheon and with some differences compared to the work of
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Fig. 12. Montepulciano Cathedral dome. Collapse mechanisms obtained for the four load configurations considered (perspective, lateral and plan views).

DeLaine (such as the presence of an oculus at the top of the dome and
as the different height of openings).

According to such researches, the plan view shows a structure com-
posed by an internal diameter of 36m and pillars with a thickness of 6m
(equal to 1/6 of the external radius). Another thickness of 2.7m, over
which the columns are based is added, in this way an external diameter
of 53.4m is obtained. Column diameters are equal to 3 feet (0.9m) and
the interspacing is three times wider, in agreement with Vitruvius rec-
ommendations. Two levels of vaults can be observed from the cross sec-
tions. The first one consists in vaults with springing located at a height
of 11m from the ground; conversely, those at the upper level have a
particular shape which maximizes the light entering the structure. The
thickness of the dome at the crown is equal to 1.5m, as in the dome of
the Pantheon.

As in many other roman buildings, the walls of the Baths of Caracalla
had a composite structure made of two external brick walls with a tri-
angular shape disposed as indicated in Fig. 18 and a concrete core. The
inner nucleus was a conglomerate composed by pozzolanic lime mor-
tar containing large pieces of stones marbles, tuff and bricks (opus cae-
menticium). Considering the most common walls delimited by triangu-
lar bricks and obtained by diagonally cutting square bricks (typically
20×20cm) the real bearing width of the masonry was only 7cm, i.e.
absolutely negligible when referred to walls with a thickness of some
meters. Therefore, the mechanical characteristics of the wall depended
almost exclusively on the resistance of the opus caementicium, which is
much better than masonry used in the Middle Age. In this regard, the
present example is very different with respect to the previous ones and
the adoption of a no-tension material model is not suitable in this case.

Therefore, for the evaluation of the structural behavior of a roman build-
ing, an accurate knowledge of the mechanical characteristics of the opus
caementicium is essential. The distribution of materials in the Calidar-
ium has been modeled reproducing the stratigraphy observed in the
semi-dome of the exedra of the West palestra, in which different types
of caementa are arranged in a descending order of specific weight (see
Fig. 17). They contain as main component: bricks, tuff and Vesuvian
scoria. Columns, arranged inside the vaults of the first level, were made
of travertine marble.

In the following analyses, the dome has been considered as isolated
from other structures, a hypothesis which appears reasonable consider-
ing the plan distribution of the different parts, Fig. 17.

A representation by NURBS surfaces of the Calidarium has been ob-
tained –analogously to the previous cases- through the software Rhi-
noceros. By importing the geometry in MATLAB and assigning “thick-
ness” and “offset” properties to each surface, the NURBS model adopted
for the presented adaptive limit analysis has been obtained, see Fig.
19. Some approximations have been necessarily applied on the geo-
metrical model, because the presented procedure does not allow to re-
produce vaults with variable thickness. Therefore, an average thickness
value has been assigned to the dome and openings have been regular-
ized by applying the same “opened-area” inside and outside of the tam-
bour. Moreover, marble columns have not been taken into account in
this model. A total number of 37 surfaces have been adopted for the ini-
tial NURBS model. The initial model is shown in Fig. 19. The initial
number of surfaces used is relatively large because of the need to repre-
sent correctly arches and assign different specific weight values. Mater
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Fig. 13. Dome of Anime Sante Church. –a: geometry before the earthquake; -b: still standing parts after the collapse.

Fig. 14. Dome of Anime Sante Church. NURBS model in Rhinoceros (-a) and after NURB discretization in Matlab (-b).

ial properties adopted for Roman concrete in limit analysis are reported
in Table 5.

The same four configurations of horizontal accelerations used in the
previous benchmarks are applied also in this case and results (failure
mechanisms and normalized accelerations at failure) are summarized in
Fig. 20. The collapse mechanism is very similar in all cases; differently
to the case of Anime Sante, in this case the entire dome collapses. This
can be due to the presence of a tambour characterized by many open-
ings, which makes the upper part less stable against horizontal loads.
The dome seems to collapse for the formation of a complex yield pat

tern but also for a rigid sliding over the pillars of the second level, which
suffer for overturning. The fracture lines in the dome, clearly visible
along meridians directions, are connected with the vertical fracture lines
in the tambour.

In order to validate quantitatively the limit analysis approach
adopted, a nonlinear static analysis (pushover) is performed on the same
3D geometric model considered for limit analysis computations. A FE
mesh with around 53,000 tetrahedron elements is utilized, as shown
Fig. 19. Elastic and inelastic properties of the Roman concrete in the
three levels are collected in Table 6.
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Table 4
Dome of Anime Sante Church. Results obtained for each distribution of horizontal acceler-
ation.

Configuration of accelerations # Corresponding base shear [kN] ag/g [−]

(1) 1520 0.237
(2) 2296 0.354
(3) 1405 0.217
(4) 2104 0.325

Fig. 15. Dome of Anime Sante Church. Results obtained for each distribution of horizontal
acceleration.

All the different types of Roman concrete are assumed with the
same compressive strength of 5MPa and with a tensile strength equal to
one-tenth of the compressive one, in agreement with some experimental
data available for coeval structures in the same region. The non-linear
behavior of the Roman concrete is reproduced numerically by mean of
a Concrete Damaged Plasticity material model already available in the
software used [58].

The definition of the post peak tensile response does not reference
to any experimental data, as, unfortunately, no post-peak results have
been yet published. However, a bilinear softening law was determined
by [59] from a series of experimental arc-shaped three-point bending
tests on recreated Roman pozzolanic mortar samples. To evaluate the
material response in post-critical range, a displacement controlled bend-
ing procedure (CMOD or crack width measure) was developed such that
a load-point displacement was applied at the top of the arc samples
while two rollers supported the base. The interested reader is referred
to [59] for further details. According to experimental data, the bilinear
curve depicted in Fig. 21 with values as in Table 6 is adopted in the FE
non-linear model.

A comparison between pushover curve obtained with the non-lin-
ear FE model and limit analysis prediction (horizontal load distribu-
tion #(3)) is reported in Fig. 22, with deformed shapes and developed
cracks provided by the two models (left: FE non-linear analysis and dam-
age patch in tension; right: NURBS limit analysis active failure mecha-
nism). Two main aspects are worth noting from a detailed analysis of
the results obtained, namely (1) the very good agreement in terms of
deformed shapes at collapse and crack pattern distributions provided by
the two numerical models and (2) the values of acceleration at collapse
obtained, again very close one each other.

The agreement of deformed shapes, crack patterns and failure accel-
erations found suggests that the NURBS procedure proposed is a very
effective tool that is not only predictive of the actual behavior of such

kind of structures under horizontal loads, but that should be preferred
non-linear FE computations carried out with refined meshes and soft-
ening materials. Typically, this latter approach is computationally very
demanding, the obtained results turn out to be dependent on a series of
non-linear material parameters difficult to determine and requires very
experienced users and a convenient theoretical background. On the con-
trary, the limit analysis approach proposed is immediate, does not re-
quire any expertise by the user (exception made that a general knowl-
edge of a Cad software) and furnishes very clear mechanisms that can
be used also in advanced non-linear computations with concentrated
non-linearity.

As far as the collapse acceleration found is concerned, it should be
finally pointed out that the value numerically estimated could be com-
patible with a PGA of a strong earthquake occurred in the past in Rome.
For instance, there is memory of a ‘big one’ earthquake occurred near
Rome presumably of magnitude 7 or more in 1915, with epicenter near
the town of Avezzano 100km east of Rome, which caused damage to
buildings and Roman monuments in Rome. Probably many moderate/
strong earthquakes took place from Gothic war to the renaissance pe-
riod, with unknown PGAs but probably compatible with the collapse of
the structure. In addition, the still standing ruins configuration is very
similar to that predicted by limit analysis. Another aspect worthy of in-
vestigation could be the cumulated damage caused by the application
of repeated accelerograms. This latter issue is however reproducible nu-
merically only with non-linear dynamic analyses.

6. Conclusions

Recent strong earthquakes occurred in Italy (Umbria-Marche
1997–98, L’Aquila 2009, Emilia 2012 and Central Italy 2016) caused
serious damages and collapses to the architectural historical heritage
and in particular to several masonry domes. This shows the high vul-
nerability of such kind of structures, but at the same time, the need to
make available computational tools to predict the accelerations associ-
ated to the activation of a failure mechanism and the mechanism itself,
this latter information being paramount for an effective local strength-
ening. The present paper aims at presenting a fast and reliable autom-
atized kinematic limit analysis approach able to accurately predict the
actual behavior of masonry domes subjected to horizontal static seis-
mic loads. The model uses a rough discretization of the dome obtained
by means of few rigid-infinitely resistant NURBS generated elements,
adapting step by step the initial mesh in order to progressively over-
lap the element edges (where all dissipation is lumped) with the hinges
forming the failure mechanism. The adoption of a rough mesh makes
the code extremely fast, much more competitive than a standard FE
model, allowing at the same time to approximate the actual geometry
and load distributions in an extremely accurate way. The utilization of
geometries obtained with laser scanner acquisitions is straightforward
and the presence of pre-existing cracks can be accounted for as well.
Three complex actual historical masonry belonging to the Italian cul-
tural heritage domes are analyzed in detail to benchmark the approach
proposed. The first example has the geometrical parameters of a typi-
cal late Renaissance dome, the dome of Montepulciano cathedral. The
second is the dome of the eighteen-century church of Anime Sante (col-
lapsed during the L’Aquila 2009 earthquake with a paradigmatic fail-
ure mechanism). The last is the dome of the Calidarium of the Baths
of Caracalla built in the second century after Christ, whose causes of
collapse remain unknown. All simulations performed show the reliabil-
ity of the simple adaptive approach proposed by the Authors able to
quickly provide collapse accelerations and failure mechanisms. There-
fore, it appears convenient to adopt such a kinematic approach to deal
with the limit analysis of domes subjected to horizontal loads, instead
of pursuing strategies based on the thrust network analysis or direct FE
computations, which require experience users and potentially long time
to be performed. The adopted NURBS representation has proven to be
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Fig. 16. Dome of Anime Sante Church. Collapse mechanisms obtained for the four configurations of acceleration considered (perspective, lateral and plan views).

particularly suited for the limit analysis of curved geometries from a
three-dimensional point of view. However, it has to be mentioned that
this method is actually limited to structures which are representable
through an assemble of surfaces. In some cases, such as masonry struc-
tures described by variable or not negligible thickness values in compar-
ison with other dimension (as for the Calidarium of Caracalla), simplifi-
cations in the initial geometries or in the structural behavior are neces-
sarily required. Therefore, future research will address the development
of new efficient modeling strategies based on NURBS volumes instead of
surfaces. In this way, the field of application will be extended to more
complex structures, such as towers, masonry arches interacting with the
infill, and vaults with variable thickness values.
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Fig. 17. Caracalla Calidarium. Reconstruction, cross section, lateral view and plan view, drawing by Palladio and weights of the different parts.

Fig. 18. Caracalla Calidarium. Still standing ruins composed by opus caementicium contained within two facing walls of triangular bricks (-a), view of different types of caementa (-b).

Fig. 19. Caracalla Calidarium. –a: NURBS model in Rhinoceros; -b: NURBS model in MATLAB and –c: 3D FE non-linear model (tetrahedron elements).

Table 5
Caracalla Calidarium. Material properties adopted for the NURBS limit analyses.

Specific weight γ 12-16-18 kN/m3

Tensile strength ft 0.25 MPa
Compressive strength fc 5 MPa
Cohesion c 0.5 MPa
Friction angle φ 22 °
Linear cap in compression ρ 0.5 –

φ2 10 °
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Fig. 20. Caracalla Calidarium. Results of the NURBS limit analyses (collapse mechanisms shown in axonometric view, perspective and horizontal view).

Table 6
Caracalla Calidarium. Elastic and inelastic (tensile behavior) properties assumed for the Roman concrete.

Density ρ [kg/
m3]

Elastic modulus E
[GPa]

Poisson’s ratio
ν [–]

Fracture energy Gf
[J/m2]

Tensile strength
(yielding) ft [MPa]

Tensile strength
(intermediate) f1 [MPa]

Intermediate CMOD
value??1 [mm]

1200/1600/1800 3.37 0.2 55 0.5 0.175 0.066
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Fig. 21. Caracalla Calidarium. Bilinear tensile curve assumed in the post-elastic phase.

Fig. 22. Caracalla Calidarium. Comparison between pushover curve obtained with the FE non-linear model and collapse load provided by NURBS limit analysis.
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