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ABSTRACT
This paper presents an application of the Model Conditional Processor (MCP), originally proposed by 
Todini (2008) within the hydrological framework, to assess the predictive uncertainty in water demand 
forecasting related to water distribution systems. The MCP enables us to assess the probability distribution 
of the future water demand conditional on the forecasts provided by two or more deterministic forecasting 
models. In the numerical application described here, where two years of hourly water demand data for 
a town in northern Italy are considered, two forecasting models are applied in order to forecast hourly 
water demands from 1 to 24 hours ahead: the !rst model has a modular structure comprising a periodic 
component which re"ects the long-term e#ects and a persistence component which represents the short-
term memory of the process; the latter is based on neural networks. The results highlight the e#ectiveness 
of the approach, provided that the data set used for the MCP parameterization is properly selected so as to 
be actually representative of the accuracy of the real-time water demand forecasting models.
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1. Introduction
Accurate short-term water demand forecasting represents a 
fundamental prerequisite for e$cient real-time management 
of water distribution systems, where the aim is to minimize the 
operating costs of pumping stations and contain network wa-
ter losses, while ensuring that minimum levels of service and 
reliability are maintained. It is not surprising, therefore, that nu-
merous short-term longitudinal (i.e. time series based) water de-
mand forecasting models have been proposed in the scienti!c 
literature over the past twenty years. They generally fall into one 
of two large categories: models based on representing periodic 
patterns on di#erent scales (e.g. Alvisi et al., 2007; Bakker et al., 
2013; Shvartser et al., 1993; Zhou et al., 2002), and models based 
on data-driven techniques (e.g. Cutore et al., 2008; Ghiassi et al., 
2008; Herrera et al., 2010; Jain et al., 2001).

However, all of this scienti!c production relies on “crisp” 
data and disregards the uncertainty connected to forecasting. 
One exception is the model proposed by Cutore et al. (2008), in 
which the uncertainty component connected to estimating the 
parameters is assessed using the SCEM-UA algorithm by Vrugt 
et al. (2003); however, it does not in itself represent the actual 
uncertainty of future demand.

In reality, as highlighted by Donkor et al. (2013) in a 
recent review of water demand forecasting models, taking 
into account the uncertainty within the framework of water 
demand forecasting is of fundamental importance, particularly 
when these models are used within the framework of water 
management procedures or to support decision-making (see 
also Bargiela, 1993; Hutton et al., 2014). Indeed, operation of 

water distribution systems requires a variety of decisions for 
determining, for example, water pumping schedules, reservoirs’ 
rules and pressure control in the network (Bargiela, 1993). These 
decisions depend both on the information available at the 
moment in which the decision is taken and the attitude of the 
decision maker (Jamieson et al., 2007). For example, turning a 
pump on or o# to charge a reservoir for the subsequent hour 
will depend, !rst of all, on the forecasted water consumptions, 
but also on the attitude of the decision-maker towards risk: s/
he could be risk-prone when the level of damage (e.g. the tank 
run out or low pressures can occur at some network nodes) is 
low but s/he could be risk-averse when the level of damage is 
high. Very often, relying on deterministic forecasts, without 
any information about the probability of occurrence of future 
values, operators tend to stay on the side of caution (Jamieson 
et al., 2007). Indeed, remembering that the risk depends both on 
the damage and the probability of occurrence, in order to take 
rational decisions, it is necessary a) to de!ne a utility function 
which depends on the damage, b) to estimate the forecasting 
uncertainty, and in particular the predictive density function of 
the value of interest conditional on all the information available 
at the time of forecasting, and then c) to minimize the expected 
value of the risk depending on a) and b).

Unfortunately, as mentioned earlier and to our knowledge, 
water demand forecasting models proposed in the scienti!c 
literature to date do not take into account the actual uncertainty 
of future demand, and this, given the previous considerations, 
certainly represents a serious limitation. In the !eld of hydrology, 
in contrast, over the past two decades numerous researchers 
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the MCP and the individual forecasting models in the case of a 
real water distribution system in northern Italy. Finally, in the last 
section we present some concluding considerations.

2. Predictive uncertainty
Predictive uncertainty is described by the probability distribution 
of the future (real) value of the predictand (in this case, the av-
erage hourly water demand in a water distribution system in the 
next hour or in one of the following 24 hours), which is condi-
tional upon all the knowledge and information available at the 
time of forecasting (Krzysztofowicz, 1999; Raftery, 1993; Todini, 
2008). At the operational stage, all the knowledge gathered up to 
the time of forecasting is summarized in the predictions made by 
the (deterministic) model or models used.

Predictive uncertainty must not be confused with emulation 
uncertainty. The di#erence between the two can be easily un-
derstood by introducing the joint probability distribution of the 
real value and the forecasted one(s) (Todini, 2008). Let us con-
sider, for the sake of graphic simplicity, the case of a single fore-
casting model. Figure 1 provides an example of a possible joint 
(sampling) distribution of the real (q) and forecasted (q̂) water 
demands. In general, the points (q̂,q) form a cloud in which the 
degree of scatter will depend on the accuracy of the forecasting 
model: the higher the scatter, the lower the accuracy. In particu-
lar, by cutting the joint probability distribution by a preset real 
water demand q and re-normalizing it we obtain the conditional 
probability distribution of the forecasted water demand q̂ given 
the real water demand q, i.e. f (q̂|q) (see Figure 1): this represents 
the emulation uncertainty of the model and basically quanti!es 
how the values forecasted by the model are distributed when 
the water demand takes on a given value in reality. Therefore, 
it is a useful tool for assessing the forecasting model’s perfor-
mance. On the other hand, if we cut the joint probability distri-
bution by a preset forecasted water demand value q̂and re-nor-
malize it, we will obtain the conditional probability distribution 
of the real water demand q givenq̂, i.e. f (q|q̂) (see Figure 1): this 
represents the true predictive uncertainty, since it provides the 
probability distribution of the future real value given a certain 
value (a certain forecast) provided by the model. It is important 
to observe that it is this latter information, not the emulation 
uncertainty, which is of practical utility when it comes to using 
forecasts for water management purposes. It is precisely the real 
value of the water demand that will occur in the next hour (or 
in one of the next 24 hours) which may result in a system failure 
(e.g. emptying of a storage tank, etc.), not the value provided by 
the model.

3. The Model Conditional Processor (MCP)
The MCP is a Bayesian method proposed by Todini (2008) - 
drawing on the studies by Raftery (1993) and Krzysztofowicz 
(1999) - to estimate predictive uncertainty based on a set of 
historical observations and the corresponding values predicted 
by one or more forecasting models. Below we illustrate the 
MCP with reference to a case in which two forecasting models 
are used; we refer the reader to Todini (2013) for greater 
details about its application in the case of a generic number of 
forecasting models.

The method entails converting historical observations and 
the corresponding forecasted values into a normal space using 

have investigated the problem of uncertainty tied (real-time) 
forecasting of hydrological variables such as hydrometric levels or 
discharges in a given river cross-section (see, for example, Alvisi & 
Franchini, 2011, 2012; Alvisi et al., 2012; Montanari & Grossi, 2008; 
Pelletier, 1987; Shrestha et al., 2009). Many di#erent methods are 
employed and the terminology used is not always consistent and 
this has indirectly resulted in a “linguistic uncertainty” (Regan et 
al., 2003). In any case, these methods are generally structured so as 
to construct a chain (using probabilistic or non-probabilistic tools) 
between the uncertainty of a) the input data (for example, rainfall, 
upstream levels, etc.), b) the model parameters, c) the structure 
of the model and d) the output, as amply discussed in the papers 
by Shrestha and Solomatine (2006) and Montanari (2011). A 
distinctly di#erent approach has been proposed, however, by 
Raftery, (1993), Krzysztofowicz (1999) and Todini (2008), where 
the uncertainty of the real future value is addressed by formally 
including the natural unpredictability of this value in a probability 
distribution that is conditional on the information available at the 
time of forecasting. This method, recently condensed by Todini 
(2008) into the Model Conditional Processor (MCP), is Bayesian in 
nature and can be used to estimate both the future expected value 
and its uncertainty on the basis of the forecasts (which summarize 
the information available at the time of forecasting) provided by 
one or more deterministic models. The recent applications of this 
model (Coccia & Todini, 2011) have demonstrated its validity and 
robustness.

Todini (2008) and Coccia and Todini (2011) also clearly 
demonstrate that the (global) uncertainty of the model, derived 
from the chain linking the input/model/parameters and out-
put cannot be called predictive uncertainty but should rather be 
called emulation uncertainty. Indeed it is the predictive uncer-
tainty that is actually of interest at the operational stage, since 
it regards the real future value of the variable being monitored 
(it can in fact be used to estimate water demand predictive den-
sity function to be used to minimize the expected value of the 
risk linked to a generic decision making process (Ostfeld, 2014) 
such as turning on/o# a pump in order to increase the volume 
of water stored in a tank (Van Zyl et al., 2010) or issuing a water 
restriction alert during periods of low storage and in"ow when 
prolonging water supply (Brennan et al., 2007; Chiew et al., 
1998)). On the other hand, the emulation uncertainty has more 
value as a means of validating the model used in forecasting, 
since it shows the variability of its output relative to the actual 
future value.

Based on these latter considerations, which will be discussed 
in Section 2, and given the ability of the MCP to estimate pre-
dictive uncertainty, we thought it would be useful to analyze its 
potential in forecasting demand within a real water distribution 
system.

The rest of this paper is thus organized as follows. In Section 
2 we focus on the meaning of predictive uncertainty (and how 
it di#ers from emulation uncertainty), which is the underlying 
concept of the MCP. Section 3 describes the structure of the MCP 
itself, or, rather, the manner in which it produces an estimate of 
future water demand and the associated uncertainty. As the 
MCP relies on forecasts provided by models which are external 
to the MCP itself, we present two water demand forecasting 
models having very di#erent structural characteristics. Sections 
4 and 5 describe the results obtained through the application of 
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the Normal Quantile Transform (NQT) in order to arrive analyti-
cally at an estimate of the joint distribution of the real and fore-
casted values and hence at a conditional distribution of the real 
values given the forecasted ones. In greater detail, let qt with t = 
1:n be the set of n observed values (for example hourly water 
demands across the network), q̂t|t−kΔt the set of corresponding 
values forecasted kΔt time steps earlier (i.e. kΔt is the forecast-
ing lead time) by means of a !rst forecasting model, and ̂̂qt|t−kΔt 
the set of corresponding values forecasted kΔt time steps ear-
lier by means of a second forecasting model. Via the NQT, we 
convert the set of n observed values qt into a normal space, by 
arranging the data in ascending order and associating the cor-
responding cumulative sampling probability value with the i-th 
datum in the ordered vector using the Weibull plotting position 
i∕(n + 1); each value qt is thus associated with the correspond-
ing value ηt, obtained from a standard normal distribution, the 
cumulative probability being equal. The same operation is re-
peated for the forecasted values q̂t|t−kΔt and ̂̂qt|t−kΔt, so that we 
arrive at the values "̂t|t−kΔt and ̂̂"t|t−kΔt, respectively. By virtue of 
the very nature of the NQT, ηt, "̂t|t−kΔt and ̂̂"t|t−kΔt are each distrib-
uted according to a normal distribution N(0,1). On the basis of 
these variables, we can therefore construct the joint distribution 
!k

(
"t , "̂t|t−kΔt , ̂̂"t|t−kΔt

)
, assumed to be approximately normal 

(Todini, 2008), and having a mean:
 

and correlation matrix (Todini, 2013):
 

(1)! =

⎡
⎢
⎢
⎢⎣

!"

!"̂

! ̂̂"

⎤
⎥
⎥
⎥⎦
=

⎡
⎢
⎢
⎢⎣

0

0

0

⎤
⎥
⎥
⎥⎦

(2)
P =

⎡
⎢
⎢
⎢⎣

1 !""̂ !" ̂̂"

!""̂ 1 !"̂ ̂̂"

!" ̂̂" !"̂ ̂̂" 1

⎤
⎥
⎥
⎥⎦

q
[l

/s
]

[l/s]q̂

ˆ( | )f q q

ˆ( | )f q q

Figure 1. Example of joint sample frequencies of observed q and forecasted q̂ water demands.

where !""̂, !" ̂̂" and !#̂ ̂̂# represent the coe$cients of correlation be-
tween ηt, "̂t|t−kΔt and ̂̂"t|t−kΔt.

The conditional probability distribution !k

(
"t|"̂t|t−kΔt , ̂̂"t|t−kΔt

)
 

can therefore be derived from the joint distribution by exploit-
ing the properties of multivariate normal distributions (see 
Mardia et al., 1979; Todini, 2008) in order to obtain a normal dis-
tribution N

(
!"t |"̂t|t−kΔt , ̂̂"t|t−kΔt , $

2

"t |"̂t|t−kΔt , ̂̂"t|t−kΔt

)
 whose conditional mean 

and variance are respectively:
 

 

Equations (3) and (4) thus provide, in the normal space, the ex-
pected value and the corresponding variance of the predictand, 
which are conditional on the forecasts "̂t|t−kΔt and ̂̂"t|t−kΔt (in the 
transformed plane) provided by the two models used. Again, in 
the normal space, it is easy to de!ne an interval around the ex-
pected value of assigned probability (e.g. 95%).

For operational purposes, !nally, the conditional probabili-
ty distribution must be reconverted to the real space using the 
NQT. In order to carry out this operation, it is advisable to ac-
company the sampling distribution of real data obtained using 
the Weibull plotting position with curves that can better de-
scribe the tail of the distribution itself and in particular enable 
quantiles which have corresponding cumulative probabilities 
greater than n∕(n + 1)or less than 1∕(n + 1) to be converted into 
real space. For this purpose, as suggested by Coccia and Todini 
(2011), we can use the following curves:
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a seasonal and weekly cyclicity of daily water demands and 
a daily cyclicity of hourly water demands can typically be 
identi!ed in the demand time series, the proposed model is 
structured in two modules. In the !rst module, which has the 
function of forecasting average daily water demand on the day 
(or days) comprising the 24 h for which we are forecasting the 
hourly water demands, account is taken of the seasonal and 
weekly cyclicity and of a short-term persistence. Analogously, 
in the second module, which, by using the output of the !rst 
module, provides the water demand forecast for the following 
24 hours, account is taken of the daily cyclicity and of a short-
term persistence.

In greater detail, the average daily water demand qford,m for the 
Julian date m is estimated by means of the following relation-
ship:

 

where q̄sd,m is the long-term average daily water demand repre-
senting the seasonal periodic component, Δdi,j is a daily correc-
tion factor which varies according to the season i (i = 1,…,4, win-
ter, spring, summer, autumn) and day j of the week (j = 1,…,7, 
Monday,…, Sunday) and !m is a short-term daily persistence 
component modelled by means of an auto-regressive model 
AR(1) (Box et al., 1994).

The hourly module, like the daily module, is made up of pe-
riodic and persistence components. The mean hourly water de-
mand qfort  forecast for the generic hour t is given by:

 

where qford,m is the average daily water demand forecast by means 
of the daily module, Δhi,j,h is the hourly pattern depending on 
the hour h (h = 1,…,24) of the day j of the week (j = 1,…,7, Mon-
day,…, Sunday) and season i (i = 1,…,4, winter, spring, summer, 
autumn). Finally εt represents the hourly persistence compo-
nent, which is obtained by means of a regressive model based 
on the residues/errors observed in the last instant of time and in 
the same hour to which the forecast pertains, but on the previ-
ous day.

All the patterns and parameters of the persistence models 
are estimated on the basis of the data for the case considered, 
with an eye to minimizing the mean square deviation over the 
calibration period.

3.1.2 The forecasting model ANN_for
The water demand forecasting model used here is based on a 
three-layer feedforward neural network featuring np inputs, nh 
neurons in the hidden layer and no outputs (Alvisi, 2004; Alvisi & 
Franchini, 2003). In such a neural network, given the input vec-
tor p [np×1], the weight matrixes U [nh×np] and W [no×nh] and the 
bias vectors a [nh×1] and b [no×1], the output vector o [no ×1] is 
given by:
 

where fhid and fout are the transfer function of the hidden and 
output layer respectively. The characterization of the ANN_for 
model entails de!ning the number np of neurons in the input 
layer, nh in the hidden layer and no in the output layer, the trans-

(7)qford,m = q̄sd,m + Δdi,j + "m

(8)qfort = qford,m + Δhi,j,h + !t

(9)o = fout
(
W ⋅

(
fhid(U ⋅ p + a)

)
+ b

)

 

 

wherein plow is a preset probability value below which the curve 
of Equation (5) is used and pup is a probability value above which 
the curve of Equation (6) is used, q(plow) and q(pup) are the real 
values (water demands) corresponding to these probabilities 
derived from the sampling distribution, qmin and qmax are the min-
imum and maximum real values (of water demands), for which 
the cumulative probability is assumed to be equal to 0 and 1, 
respectively, and a and b are the parameters to be estimated 
so that the shape of the two curves of Equations (5) and (6) !ts 
well, respectively, with the initial and terminal part of the sam-
pling distribution of real data obtained by means of the Weibull 
plotting position. Further details about the parameterization of 
these curves are given in the numerical application. Obviously, 
in the operational phase Equations (5) and (6) are used in inverse 
form: given the probability associated with ηt ∈ N(0,1), in turn 
identi!ed by means of the MCP, we calculate the corresponding 
value q belonging to the original domain.

3.1 The forecasting models used by the MCP
In the previous section it was shown how the MCP can process 
the forecasts provided by two distinct forecasting models. Here 
below we describe the two models used by us in the context 
of water demand forecasting. The !rst one seeks to reproduce 
the periodic patterns of water demand taking into account 
short-term persistence components, and will be referred to 
hereinafter as Patt_for (Alvisi et al., 2007). The second determin-
istic forecasting model is based on neural networks and will be 
referred to hereinafter as ANN_for. It is worth highlighting the 
di#erent structure of the two models, since the former seeks to 
enucleate and reproduce the periodic phenomena that are at 
the basis of the water demand time series, whereas the latter 
is a purely data-driven model, in which no heuristic knowledge 
about the phenomenon to be forecasted is introduced a priori 
into the structure. Indeed, it is worth noting that combination of 
models characterized by very di#erent structures allows improv-
ing signi!cantly the performances of the MCP. In fact, as shown 
by Coccia (2011), even within a completely di#erent framework, 
i.e. river discharge forecasting, application of two distributed 
models with very similar structures (TETIS and TOPKAPI models) 
lead to just marginal gains in terms of forecast accuracy and re-
duction of the predictive uncertainty. Instead, the combination 
of a physically based model with a data driven model leads to 
greater improvements, and this is comprehensible considering 
the higher amount of information they provide with respect to 
two very similar models.

3.1.1 The Patt_for forecasting model
The Patt_for water demand forecasting model (Alvisi et al., 
2007) is based on use of the periodic patterns present in the 
data time series in order to forecast the hourly water demands 
from 1 to 24 hours ahead. Starting from the observation that 

(5)p(q) = plow

[
q − q

min

q(plow) − q
min

]a

(6)p(q) = 1 − (1 − pup)

[
q
max

− q

q
max

− q(pup)

]b
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into the distribution network; the measurements thus represent 
the overall consumption of the network, including the water 
lost through leakage. It is important to observe that the overall 
water consumption across the network is precisely what needs 
to be taken into account for the real-time management of the 
system and proper planning of tank re!lls (Alvisi et al., 2007). The 
available data pertain to two years, 1998 and 2000, respective-
ly years 1 and 2 in Figure 2. Both forecasting models were cali-
brated using the data of year 1 (set 1 of Figure 2). In particular, 
in the case of the Patt_for model, the data observed in year 1 
were used to de!ne the patterns which characterize the periodic 
components and to parameterize the AR(1) model and the re-
gression that serve to represent the daily and hourly persistence 
components, respectively. In the case of the ANN_for model, the 
data observed in year 1 were equally divided between training 
and testing in order to calibrate the neural network using the 
early stopping technique.

Both models were validated using the data observed in the 
second half of year 2, i.e. set 3 of Figure 2

For the purpose of applying the MCP, the latter was parame-
terized using the data related to the !rst half of year 2 (set 2 in 
Figure 2) and validated using the data observed in the second 
half of year 2 (set 3) (see Figure 2). It is important to note that, 
given the presence of signi!cant periodic components in water 
demand (Alvisi et al., 2007), the data were standardized prior to 
the application of the MCP: that is, the demand of the generic 
hour h of each day j was cleansed of the daily and seasonal "uc-
tuation components connected to that hour h, represented by 
means of a Fourier series (Alvisi et al., 2007) of the data for that 
same hour, so as to convert it to a variable with a mean of 0 and 
variance of 1 by means of the following relation:

 

where qSh,j represents the standardized variable associated with 
the generic hour h of the day j (with h = 1:24), qFh,j the "ow rate of 
the hour h on the day j produced by means of the Fourier series, 
constructed in such a way that the di#erences qh,j − qFh,j have a 
mean 0 and standard deviation σh when computed over all the 
days j of the year.

Finally, with regard to the conversion of the variables by 
means of the NQT, the curves representing the tails of the sam-
pling distribution obtained by means of the Weibull plotting 

(10)qSh,j =
qh,j − qFh,j

!h

fer functions fhid and fout and the weights U and W and biases a 
and b.

As regards the inputs, since the factors which most greatly 
in"uence hourly water demand are the periodic pattern over the 
day, on the one hand, and short-term "uctuations on the other, 
account is taken, respectively, of the 24 hourly water demands 
of the previous week corresponding to the 24 hours to be fore-
cast and the last two observed hourly water demands. Thus, the 
number np of neurons in the input layer is set equal to 26. In-
deed, test performed considering as inputs other variables such 
as climatic factors (average daily temperature, daily rainfall, etc.) 
showed that these information do not improve the accuracy of 
the forecasting model (Alvisi, 2004), and thus were not used.

As regards the number of hidden neurons, it is set equal to 72 
in this case, based on previous experiences (the smallest num-
ber of neurons that can be used without excessively penalizing 
the model’s performances, Hsu et al., 1995; Zealand et al., 1999).

As regards the number of neurons in the output layer, given 
that like the Patt_for model also the ANN_for model is speci!-
cally structured so as to provide water demand forecasts for the 
following 24 hours, no is set equal to 24.

The Tan-Sigmoid and linear transfer function are used in the 
hidden and output layers, respectively.

To avoid the problem of signal saturation (Hsu et al., 1995), 
the input data are normalized in the range [0.05:0.95]

Finally, the network is calibrated, and the weights and bias 
quanti!ed accordingly using the Levemberg Marquardt algo-
rithm (Hagan & Menhaj, 1994). In order to prevent over!tting 
and improve the robustness of the model, the technique of early 
stopping is used within the selected calibration period (ASCE, 
2000; Demuth & Beale, 2000).

4. Case study
The MCP and individual forecasting models were applied to the 
water distribution system of Castelfranco Emilia (a municipality 
in the northern Italian province of Modena) with the aim of fore-
casting hourly demands [l/s] over a time horizon of 24 hours. The 
distribution network considered has an overall length of 160 
km, serves around 23,000 inhabitants and is supplied through 
a tank, which is fed in turn by a well !eld located in proximity to 
the residential area of the town.

The measurements used to parameterize and validate the 
individual forecasting models and the MCP were taken on an 
hourly basis in the outlet pipe of the storage tank which feeds 

Year 1
1 1365 365180

Calibration
Validation

Patt_for

ANN_for

MCP

Set 1 Set 2 Set 3

Year 2

Figure 2. Data used for the calibration and validation of the individual deterministic forecasting models and for parameterization and validation of the MCP method.
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where qobst  (with t = 1:n) [l/s] represents the observed water de-
mand, !qobs [l/s] the mean of the observed demand, qfort|t−kΔt [l/s] 
the water demand forecasted kΔt time steps earlier (i.e. kΔt is 
the forecasting lead time) by the Patt_for or ANN_for model or 
the expected value provided by the MCP, and n the number of 
data considered.

Figure 3 shows a comparison between the NS coe$cient 
and RMSE provided by the Patt_for and ANN_for deterministic 
models versus the expected value provided by the MCP, in re-
lation to the datasets used for the calibration (set 2) and valida-
tion (set 3) of the MCP itself. As may be observed, the Patt_for 
model delivered excellent performances as far as both set 2 and 
set 3 are concerned, with an NS coe$cient ranging between a 
maximum value of about 0.96 for the shortest forecasting lead 
time (1 hour) and about 0.88 for the longest forecasting lead 
time (24 hours) Figure 3a and b); the ANN_for model likewise 
performed well, though the values of the NS coe$cient were 
slightly lower, between 0.92 and 0.88 for set 2 (Figure 3a) and 
0.91 and 0.84 for set 3 (Figure 3b). The expected value pro-
vided by the MCP enables us to obtain a forecast that is even 
more accurate than the ones provided by the aforementioned 
models, with values of the NS coe$cient ranging between 
0.96 and 0.92 for both set 2 and set 3. In particular, it is inter-
esting to observe that the improvement in the NS coe$cient 
compared to the values given by the individual deterministic 
models becomes more signi!cant as the lead time lengthens. 
Similar considerations apply for the RMSE (see Figure 3c and 
d): the expected value provided by the MCP shows a reduced 
mean square error compared to the forecasts of both deter-
ministic models. In general, therefore, the MCP can provide a 
more accurate forecast of future water demand than each of 
the two deterministic models alone since, by combining their 
forecasts, it exploits the information output by both of them. 
These results are in line with previous !nding by Todini (2008), 
which however relates to the hydrological context of river dis-
charge forecasting.

position (see Equations (5) and (6)) were de!ned assuming plow 
(lower probability value, below which use is made of the curve 
of Equation (5)) to be equal to 0.01 and pup (upper probability 
value, above which use is made of the curve of Equation (6)) to 
be equal to 0.99, and the lower and upper limits of these curves 
qmin and qmax (i.e. the minimum and maximum value for which it 
is assumed that the cumulative probability is equal to 0 and 1, 
respectively) to be equal, respectively, to a water demand which 
is null and one that double the maximum observed.

5. Analysis and discussion of the results
The results obtained using the MCP to forecast water demand 
under uncertainty were analyzed, with attention being focused 
on a) the accuracy and b) the uncertainty associated with the 
forecast provided.

5.1 Accuracy
The MCP was used to estimate the probability distribution of 
the real value conditional on the values forecasted by the two 
deterministic models. The mean of this distribution thus rep-
resents the expected value of the predictand which should be 
used for operational purposes in place of the deterministic fore-
casts provided by the individual models. The accuracy of this es-
timate was compared with that provided by the two individual 
models, Patt_for and ANN_for, considering the NS coe$cient of 
Nash-Sutcli#e (Nash & Sutcli#e, 1970) and the root mean square 
error (RMSE), given respectively by:
 

 

(11)NS = 1 −

n∑
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(12)RMSE =
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(
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Figure 3. Comparison between the NS and RMSE coefficients for the Patt_for and ANN_for deterministic models and those related to the expected values (EV) provided 
by the MCP conditional on the Patt_for and ANN_for forecasts together, over the dataset used for the calibration (set 2) and validation of the MCP (set 3).
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with an average band width ranging between approximately 20 
and 26 l/s depending on the lead time considered; the average 
width of the band we obtained considering the Patt_for model 
on its own is distinctly smaller, in the range of about 16 to 20 l/s, 
and it is interesting to observe that by combining the two mod-
els we obtain an uncertainty band that is slightly narrower still. 
In short, when formulated so as to use the information provided 
by two forecasting models, the MCP enables us to better com-
bine that information, thereby reducing the uncertainty in water 
demand forecasting. This is also con!rmed by Figure 5, which 
shows and compares the 95% uncertainty bands we obtained 
when considering the 1-hour-ahead forecasts for two days be-
longing to set 3. As may be observed, combining the forecasts 
provided by the two deterministic models using the MCP serves 
to reduce the width of the uncertainty band, which is even nar-
rower than the one associated with the MCP itself when based 
on the individual forecasting models. To summarize, as was al-
ready observed in the hydrological context of river discharge 
forecasting (Todini, 2008), using the MCP enables us to combine 
the water demand forecasts provided by two (or more) deter-
ministic models, thus drawing useful information from both 
models and arriving at a forecast that is more accurate than the 
ones obtained from either model on its own, and marked by less 
uncertainty. It is furthermore worth remembering that perfor-
mances of the MCP are signi!cantly in"uenced by the charac-
teristics of the deterministic forecasting models more than the 
number of models themselves. Indeed, model characterized by 
very di#erent structures, like those here considered, provide 
high amount of information which leads to great improvements 
in forecast (Coccia, 2011).

5.3 Analysis of the e!ects of the choice of dataset for 
parameterization of the MCP method
The previously analyzed results regarding forecasting accuracy 
and the estimation of predictive uncertainty were obtained by 
parameterizing the MCP using the data of set 2 (see Figure 2) 
and validating it with the data of set 3. It should be noted that 

5.2 Uncertainty
Focusing our attention on the uncertainty associated with 
forecasting, we considered the average width (AW) of the 95% 
band and the percentage of observed values actually included 
in it (PI), given respectively by (see also Alvisi & Franchini, 2012; 
Xiong et al., 2009; Zhang et al., 2009):
 

 

qlowt and qupt  being respectively the lower end and upper end of 
the 95% band. In particular, these coe$cients were evaluated 
based on the results provided by the MCP, considering the two 
deterministic forecasting models simultaneously. The predictive 
uncertainty associated with the MCP was also assessed consid-
ering only one deterministic model at a time, i.e. using the Hy-
drologic Uncertainty Processor (HUP) method (Krzysztofowicz, 
1999) in the modi!ed version developed by Todini (2008) (see 
also Todini, 2013).

Figure 4 shows the AW and PI obtained considering the two 
deterministic forecasting models individually, and in combina-
tion, for di#erent lead times ranging between 1 and 24 hours.

It may be observed !rst of all that the bands obtained when 
we considered the forecasting models both individually and in 
combination do actually include a percentage of observed val-
ues close to 95% with respect to both set 2 and set 3 (Figure 4c 
and d); the width of these bands (Figure 4a and b) is greater for all 
forecasting lead times in the case of the ANN_for model, which 
thus displays not only a slightly lower accuracy, as observed pre-
viously (see Figure 3), but also a greater predictive uncertainty, 

(13)AW =
1

n

n∑
t=1

|||q
up
t − qlowt

|||

(14)

PI =
1

n

n∑
t=1

!t

where !t =

{
1 if qlowt ≤ qobst ≤ qupt
0 otherwise

 1  3  6  9 12 15 18 21 24
13
15
17
19
21
23
25
27

Forecasting lead time [h]
AW

 [l
/s

]
 1  3  6  9 12 15 18 21 24

13
15
17
19
21
23
25
27

Forecasting lead time [h]

AW
 [l

/s
]

 1  3  6  9 12 15 18 21 24
70
75
80
85
90
95

100

Forecasting lead time [h]

PI

 1  3  6  9 12 15 18 21 24
70
75
80
85
90
95

100

Forecasting lead time [h]

PI

(a) (b)

(c) (d)

Set 2 Set 3

Patt_for ANN_for Patt_for+ANN_for

Figure 4. Average width (AW) and percentage of observed values actually included (PI) in the 95% uncertainty band conditional on the ANN_for forecasts, the Patt_for 
forecasts and the Patt_for and ANN_for forecasts together, in relation to the dataset used for the calibration (set 2) and validation of the MCP (set 3).
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which, in the validation phase, includes a distinctly lower 
percentage of observed values than the expected 95%. The 
result is understandable, considering that the individual water 
demand forecasting models provide a more accurate forecast 
in the calibration phase (set 1) than in the validation phase (set 
3) (see Figure 7.). If the MCP is parameterized with the same 
dataset that was used to calibrate the individual forecasting 
models (set 1), their predictive uncertainty at the operational 
stage will not be captured and the 95% uncertainty band will 
be narrow(er). Its width will increase and it will become more 
reliable when the MCP is parameterized using a dataset (set 2) 
where the individual forecasting models operate outside their 
calibration range.

In short, the MCP, whose function is to quantify forecasting 
uncertainty, must be calibrated with the individual models used 
under operational conditions (outside calibration).

6. Conclusions
In the context examined here, the MCP enables us to combine 
the (short-term) demand forecasts of two or more models and 
provides a probability distribution of the real future demand 

the dataset used for parameterization, that is, for estimating the 
coe$cients of correlation !""̂, !" ̂̂" and !#̂ ̂̂# between the observed 
values (in the normal space) η and forecasted values "̂ and ̂̂" (see 
Equations (3) and (4)), was not the same as the one used to cal-
ibrate the individual forecasting models (set 1 of Figure 2). This 
choice is justi!ed by the fact that using a dataset which coin-
cides with the one used for calibrating the individual forecasting 
models would have a negative impact on the performance of 
the MCP. To demonstrate this, in Figure 6. we show the results 
provided, during the validation step (set 3), by the MCP param-
eterized using both the data of set 1 and the data of set 2 (see 
Figure 2.). A change can be observed in the average width (AW) 
of the 95% uncertainty band and the corresponding percentage 
of observed values actually included (PI) (Figure 6c. and d): pa-
rameterizing the MCP with set 1 during the validation process 
results in an AW ranging between 13 and 16 l/s and a PI ranging 
between 75 and 85%; these values are distinctly lower than the 
ones obtained for the same set 3 when the MCP is parameter-
ized using set 2.

This means that when the MCP is parameterized with the 
data of set 1, it provides a very narrow 95% uncertainty band 
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Figure 5. Comparison between the 95% Predictive Uncertainty band computed by using just one forecasting model (either Patt_for or ANN_for) and the two models 
together for 50 hours included in Set 3.
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