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Abstract—Network navigation is a promising paradigm for
providing location-awareness in wireless environments, where
nodes estimate their locations based on sensor measurements and
prior knowledge. In the presence of limited wireless resources,
only a subset rather than all of the node pairs can perform inter-
node measurements. The procedure of selecting node pairs at dif-
ferent times for inter-node measurements, referred to as network
scheduling, affects the evolution of the localization errors. Thus
it is crucial to design efficient scheduling strategies for network
navigation. This paper introduces situation-aware scheduling that
exploits network states to select measurement pairs, and develops
a framework to characterize the effects of scheduling strategies
and of network settings on the error evolution. In particular,
both sufficient and necessary conditions for the boundedness of
the error evolution are provided. Furthermore, opportunistic and
random situation-aware scheduling strategies are proposed, and
bounds on the corresponding time-averaged network localization
errors are derived. These strategies are shown to be optimal in
terms of the error scaling with the number of agents. Finally,
the reduction of the error scaling by increasing the number of
simultaneous measurement pairs is quantified.

Index Terms—Network navigation, scheduling strategies,
Fisher information, localization error evolution, error scaling.

I. INTRODUCTION

NETWORK NAVIGATION is a promising paradigm for
providing location-awareness [1]–[8], which is a key

enabler for a myriad of applications including those in diverse
areas such as autonomous vehicles [9], smart cities [10],
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Fig. 1. Situation-aware scheduling for a two-agent navigation network: the
localization error of an agent is represented by an ellipse with the major axis
corresponding to the direction of the agent’s largest localization error [4].

logistics [11], public safety [12], distributed sensing [13],
social networks [14], medical services [15], and environmental
monitoring [16]. In GPS-challenged environments such as
indoor and urban areas, network navigation enables location-
awareness based on sensor measurements and prior knowl-
edge [17]–[30]. Wireless networks with navigation capability,
referred to as wireless navigation networks, consist of anchor
nodes with known locations and agent nodes with unknown
locations. The goal of navigation is to estimate the location of
each agent as it moves through the network. In particular, the
agents scatter in the network and are equipped with sensors
for inter-node and intra-node measurements.1 The location of
each agent can then be estimated based on inter-node mea-
surements (e.g., range) with neighboring nodes (anchors and
agents), intra-node measurements (e.g., acceleration), and prior
knowledge (e.g., mobility model) [31]–[41]. The applications
enabled by location-awareness have motivated a wide range
of research in localization and navigation networks [42]–[56].

In wireless navigation networks, typically only a subset
of node pairs can simultaneously perform inter-node mea-
surements due to limited wireless resources. Therefore, it
is indispensable to design scheduling strategies for selecting
measurement pairs,2 i.e., node pairs for performing inter-node

1Sensors for inter-node measurements can be wideband radios, infrared
sensors, and acoustic sensors. Sensors for intra-node measurements can be
accelerometers, gyroscopes, and magnetometers.

2Fig. 1 shows an example where only one measurement pair can be selected
at a time due to limited wireless resources. At time tn, the measurement pair
(1, 3) is selected since anchor 3 can efficiently help to reduce agent 1’s
localization error along the direction of its major axis. At time tn+1, the
two agents have moved to new positions, and the measurement pair (1, 2)
is selected since agent 1 can efficiently help to reduce agent 2’s localization
error along the direction of its major axis.
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measurements. Scheduling strategies affect the localization
errors as explained in the following. During the navigation
process, the localization errors of the agents evolve in time
with two competing tendencies: the errors are increased
by the uncertainty in intra-node measurements and in prior
knowledge, whereas the errors are reduced by the location
information from inter-node measurements. Thus, the error
evolution depends on the scheduling strategy through the
selections of measurement pairs. A key requirement for the
scheduling strategy is to maintain the boundedness of the
error evolution, i.e., the localization errors should be kept
bounded as the agents move. Furthermore, the error reduc-
tions provided by inter-node measurements depend on the
network states consisting of the network topology, the agents’
localization errors, and the measurement qualities [4], [44],
[45]. These states can be exploited to select the measurement
pairs that provide significant localization error reductions.
However, such exploitation incurs additional communication
overhead and computational complexity. In particular, network
schedulers need to acquire the knowledge about network states
and estimate the error reduction brought by each candidate
measurement pair. Finally, efficient utilization of wireless
resources calls for an understanding of the tradeoff between
allocating the resources to a single measurement pair and
sharing them among multiple measurement pairs.

The key questions related to the design of efficient schedul-
ing strategies for network navigation are as follows:

1) How do scheduling strategies improve navigation accu-
racy in the presence of limited resources?

2) What gain can one expect from the exploitation of
network states in scheduling strategies?

3) Can multi-agent resource sharing improve network nav-
igation performance?

The answers to these questions rely on the analysis of the
error evolution for different scheduling strategies and network
settings.

The above questions have been addressed only partially in
the existing literature. For example, the evolution of the error
covariance matrix was analyzed for multi-robot navigation
in [40] without constraints on the wireless resources for
inter-node measurements. A distributed scheduling strategy
exploiting the network states was proposed in [45] and the
corresponding error evolution was analyzed without account-
ing for the correlation of agents’ localization errors. The
error evolution remains underinvestigated for other scheduling
strategies such as those designed considering delay [53],
overhead [54], and energy consumption [55], as well as those
based on a game-theoretic approach [56]. Furthermore, results
on the scheduling strategies for data networks [57]–[59] are
not suited for navigation networks since the strategies for
communication aim to improve throughput or delay while
those for navigation aim to minimize localization error.

This paper introduces situation-aware scheduling for net-
work navigation that exploits network states to select mea-
surement pairs, and develops a framework to determine the
error evolution for different scheduling strategies and net-
work settings (e.g., agent trajectories, anchor deployments,
measurement models, and multiple-access protocols). Both

non-Bayesian and Bayesian estimations of agents’ locations
are considered.3 The errors in these estimations, referred to
as localization errors, can be characterized by the inverse
of the Fisher information matrix (FIM), which provides a
fundamental performance limit for parameter estimation [60].
Furthermore, to understand the performance gain provided by
the exploitation of the network states, the error evolutions
for the proposed opportunistic and random situation-aware
scheduling strategies are compared, where the former selects
measurement pairs based on the network states and the latter
randomly selects measurement pairs. The key contributions of
the paper are to:

• determine the recursive error evolution expression for
different scheduling strategies and network settings;

• develop both sufficient and necessary conditions for the
boundedness of the error evolution;

• derive upper bounds on the time-averaged network local-
ization error (NLE) for the proposed opportunistic and
random scheduling strategies;

• obtain universal lower bounds on the NLE and show that
the proposed scheduling strategies achieve the optimal
error scaling with the number of agents; and

• characterize the effect of resource sharing among multiple
measurement pairs on the error evolution and show the
reduction of error scaling via resource sharing.

The rest of the paper is organized as follows. Section II
introduces the network settings and characterizes the error
evolution. Section III provides conditions for the boundedness
of the error evolution. Section IV proposes situation-aware
scheduling strategies and provides their error upper bounds.
Section V derives universal error lower bounds and the error
scaling. Section VI extends the results to networks with multi-
ple measurement pairs per time interval. Section VII specifies
the results for a network with linear Gaussian measurement
models and extends the results to 3-D networks. Section VIII
shows numerical results for a case study. Finally, conclusions
are given in Section IX.

Notation: A random variable and its realization are respec-
tively represented in the form of x and x; a random vector
and its realization are respectively represented in the form of
x and x; a random matrix and its realization are respectively
represented in the form of X and X; a random set and its
realization are respectively represented in the form of X and X ;
R≥0 denotes the set of nonnegative real numbers; SK+ and SK++

denote the sets of K×K symmetric positive semidefinite and
positive definite matrices, respectively; ∅ denotes the empty
set; |X | is the cardinality of a set X ; ⌈·⌉ denotes the smallest
integer greater than or equal to its argument and ⌊·⌋ denotes
the largest integer smaller than or equal to its argument; P{·}
denotes the probability of an event; E{·} and Ex{·} denote
the expectation with respect to all the randomness in the
argument and the expectation with respect to x, respectively;
N (x; µ,Σ) denotes the probability density function (PDF)
of a random vector x following the Gaussian distribution with
mean vector µ and covariance matrix Σ, evaluated at x. The

3Agents’ locations are modeled to be deterministic and random for non-
Bayesian and Bayesian estimations, respectively.
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relationships involving random quantities throughout the paper
are all in the sense of “almost surely.”

Vector 0K denotes the K × 1 zero vector; matri-
ces OK and IK denote the K × K zero and iden-
tity matrices, respectively; x(n1:n2) denotes the concate-
nation of x(n1), x(n1+1), . . . , x(n2) for n2 ≥ n1;
diag{A1, A2, . . . , AK} is a block diagonal matrix with Ai

being the ith block, i = 1, 2, . . . ,K; AT denotes the transpose
of the matrix A; tr{·} denotes the trace of its argument; and
⊗ denotes the Kronecker product. The symmetric eigenvalue
decomposition (SED) of a 2×2 real symmetric matrix A is ex-
pressed in the form of A =

∑2
l=1 λl(A)u(ψl(A))uT(ψl(A)),

where λ1(A) and λ2(A) with λ1(A) ≥ λ2(A) are the two
eigenvalues of A, u(ψ1(A)) and u(ψ2(A)) with ψ2(A) =
ψ1(A)+π/2 are the corresponding eigenvectors, and u(ϕ) =[
cos(ϕ) sin(ϕ)

]T
. For matrices A and B, A ! B denotes

that A−B is positive semidefinite; for a sequence of matrices
{An}, limn→∞ An denotes element-wise limit. For sets A
and B in Rd, A+B denotes the set {a+b : a ∈ A, b ∈ B}. For
functions g1(·) and g2(·), g1(n) = Θ(g2(n)) denotes that there
exist cL, cU, and N such that cLg2(n) ≤ g1(n) ≤ cUg2(n) for
all n > N .

The functions fx(x; θ), fx(x), and fx|y(x|y) denote respec-
tively the PDF of x parameterized by θ, the PDF of x, and the
conditional PDF of x given y. For non-Bayesian estimation,
define

ȷb̄m
(
z, a(θ1, θ2), θ1

)
" −

∂2 ln fz
(
z; a(θ1, θ2)

)

∂θ1∂θT
1

where θ1 and θ2 are deterministic unknown parameters, z is
a random vector representing the measurement of θ1 and θ2,
and a is a function of parameters. For Bayesian estimation,
define

ȷbm
(
z, a(θ1, θ2), θ1

)
" −

∂2 ln fz|a(θ1,θ2)
(
z
∣∣ a(θ1, θ2)

)

∂θ1∂θT
1

ȷbp
(
b(θ1), θ2, θ1

)
" −

∂2 ln fb(θ1)|θ2
(
b(θ1)

∣∣θ2

)

∂θ1∂θT
1

where θ1 and θ2 are random unknown parameters, z is a
random vector representing the measurement of θ1 and θ2,
and a and b are functions of parameters. Whenever there is
no ambiguity, the subscripts x and x|y of f will be omitted.
Finally, the notations of important quantities that are used
throughout the paper are summarized in Table I.

II. MATHEMATICAL SETTING

This section presents the mathematical model for wireless
navigation networks and the characterization of the error
evolution.

A. Navigation Network

Consider a two-dimensional navigation network with a
group of Na mobile agents with index set Na = {1, 2, . . . , Na}
and Nb anchors with index set Nb = {Na+1, Na+2, . . . , Na+
Nb}.4 Let {tn}n≥1 be a sequence of time instants with tn <

4The paper mainly focuses on the 2-D case to provide insights. The
extension to 3-D networks will be provided in Section VII-B.

TABLE I
NOTATIONS OF IMPORTANT QUANTITIES

Notation Definition

Na Index set of agents with cardinality Na

Nb Index set of anchors with cardinality Nb

p
(n)
i Location of node i at tn

p
(n)
a Vector of agents’ locations at tn

p
(n)
b Vector of anchors’ locations at tn

R Communication range

L Multiplexing factor

z
(n)
ij Vector of inter-node measurements between nodes i and j

z
(n)
ii Vector of intra-node measurements of agent i

(in, jn) Selected measurement pair in [ tn, tn+1)

d
(n)
ij Distance between nodes i and j

ϕ
(n)
ij Angle of the vector from node j to node i

ε
(n)
ij Inter-node measurement error between nodes i and j

J(n) FIM about agents’ locations from t1 to tn

E
(n)
i,j An n× n matrix with all zeros except a 1 on entry (i, j)

C
(n)
ij FIM from inter-node measurements between nodes i and j

D(n) FIM from intra-node measurements and prior knowledge

Q(n) IFIM about agents’ locations at tn

Q
(n)
ii IFIM about agent i’s location at tn

Υ
(n)
ij Error reduction matrix from inter-node measurements be-

tween nodes i and j

∆(n) Error increase matrix

ε Upper bound on expected inter-node measurement error

δ Upper bound on error increase

δ Lower bound on error increase

qN Time-averaged NLE

q⋆N Time-averaged largest individual error

N (n)
b,i Set of anchors within the communication range of agent i

N (n)
a,i Set of agents within the communication range of agent i

µb Anchor density

ζb Probability that there exists at least one anchor within the
communication range of an agent

tn+1 for all n ≥ 1. Furthermore, let the 2×1 vector p
(n)
i be the

location of node i at tn, p
(n)
a =

[
p
(n)T
1 p

(n)T
2 · · · p(n)T

Na

]T
, and

p
(n)
b =

[
p
(n)T
Na+1 p

(n)T
Na+2 · · · p(n)T

Na+Nb

]T
. Both non-Bayesian and

Bayesian estimations [60] of agents’ locations are considered.
In the non-Bayesian case, the agents estimate their locations
based only on the inter- and intra-node measurements, while
in the Bayesian case, the agents estimate their locations based
also on the prior knowledge about their movements. The
measurements and the prior knowledge are introduced in the
following.

Measurements: Two nodes can perform inter-node measure-
ments only if they are within a communication range of R
meters.5 Let N (n)

a,i and N (n)
b,i be respectively the index sets

of agents and anchors within R meters of agent i in the nth
time interval [ tn, tn+1). A limited number L of measurement
pairs can be selected by a scheduling strategy in every time

5The communication range R is related to the received signal-to-noise
ratio (SNR). For example, R is the maximum distance at which the expected
received SNR is above a given threshold for successful inter-node measure-
ments.
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interval [ tn, tn+1) due to limited wireless resources.6 Each
measurement pair consists of two agents or an agent and
an anchor. Single measurement pair per interval (L = 1) is
first considered as a basic case, and the extension to settings
with multiple measurement pairs per interval (L > 1) will be
provided in Section VI based on a transformation into the basic
case. All the agents can perform intra-node measurements in
every time interval. The inter- and intra-node measurements
are described as follows.

• Inter-node Measurements: The inter-node measurements
depend on nodes’ locations via distances (e.g., range mea-
surements). In particular, the vector of inter-node mea-

surements z
(n)
ij between node i and node j in [ tn, tn+1)

follows the distributions f
(
z
(n)
ij ; d(n)ij

)
and f

(
z
(n)
ij

∣∣ d(n)ij

)

respectively in the non-Bayesian and Bayesian cases,

where d(n)ij =
∥∥p(n)

i − p
(n)
j

∥∥ is the Euclidean distance
between node i and node j.

• Intra-node Measurements: The intra-node measurements
depend on nodes’ locations via displacements (e.g., ac-
celeration measurements). In particular, the vector of

intra-node measurements z
(n+1)
ii of agent i in [ tn, tn+1)

follows the distributions f
(
z
(n+1)
ii ;p(n+1)

i − p
(n)
i

)
and

f
(
z
(n+1)
ii

∣∣p(n+1)
i − p

(n)
i

)
respectively in the non-

Bayesian and Bayesian cases.

All the measurements are considered to be independent, con-
ditioned on agents’ locations.

Prior Knowledge: The prior knowledge is given by the

probability distribution of {p(n)a }n≥1, which characterizes the
knowledge about the movements of the agents. The prior
knowledge is considered to satisfy the Markov property, i.e.,

the distribution of p
(1:n)
a for n ≥ 1 can be factorized as

f
(
p(1:n)

a

)
= f

(
p(1)

a

) n∏

k=2

f
(
p(k)

a

∣∣p(k−1)
a

)
. (1)

The PDF f
(
p
(k)
a

∣∣p(k−1)
a

)
is considered to depend on p

(k−1)
a

and p
(k)
a via the displacement p

(k)
a − p

(k−1)
a .

B. Fisher Information Matrix

The localization errors are characterized based on the FIM,
which has been extensively utilized for the performance
analysis of estimation systems (e.g., [4], [23], [61]–[64]).
The FIMs about agents’ locations for the non-Bayesian and
Bayesian cases are provided in the following. Let (in, jn)
be the measurement pair selected by a scheduling strategy

in [ tn, tn+1) and z(n) be the concatenation of z
(n)
injn

and

{z(n+1)
ii }i∈Na . Let J(n) be the 2Nan×2Nan FIM about agents’

locations from t1 to tn.

For n = 1, the initial FIM J(1) is described in the following.

• In the non-Bayesian case, J(1) represents the contribution
from the initial measurements z(0) between the agents and

6The results of this paper apply to any wireless network with fixed total
amount of communication resources. Note that a wireless network employing
resource reuse over a large area can be subdivided into networks employing a
fixed amount of resources over a small area (e.g., cells in a cellular network).

some anchors, given by

J(1) = E

{
ȷb̄m
(
z(0),p(1)

a ,p(1)
a

)}
.

• In the Bayesian case, J(1) represents the contribution
from the initial measurements z(0) and from the prior

knowledge about p
(1)
a , given by

J(1) = E

{
ȷbm
(
z(0), p(1)a , p(1)a

)}
+ E

{
ȷbp
(
p(1)

a , ∅, p(1)a

)}
.

The initial FIM J(1) is considered to be invertible for both
the non-Bayesian and Bayesian cases.

For n ≥ 2, the FIM J(n) about agents’ locations from t1
to tn is given in the following proposition.

Proposition 1: The FIM J(n) for n ≥ 2 in both the non-
Bayesian and Bayesian cases is given by

J(n) =
n∑

k=1

E
(n)
k,k ⊗G(k) −

n∑

k=2

(
E

(n)
k−1,k +E

(n)
k,k−1

)
⊗D(k)

(2)

where E
(n)
i,j is an n × n matrix with all zeros except a 1 on

the (i, j)th entry, and

G(k) =

⎧
⎪⎨

⎪⎩

J(1) +C
(1)
i1j1

+D(2), k = 1

D(k) +C
(k)
ikjk

+D(k+1), 2 ≤ k ≤ n− 1

D(n), k = n .

(3)

The matrix C
(k)
ij in (3) represents the contribution from

the inter-node measurements between node i and node j in
[ tk, tk+1), given in the following.

• In the non-Bayesian case,

C
(k)
ij = Ξij

(
ε(k)ij ,ϕ(k)

ij

)
(4a)

"
1

ε(k)ij

Aiju
(
ϕ(k)
ij

)
uT
(
ϕ(k)
ij

)
AT

ij (4b)

where

ε(k)ij = E

{
ȷb̄m
(
z
(k)
ij , d(k)ij , d(k)ij

)}−1
(5)

is the inverse of the Fisher information about d(k)ij from

z
(k)
ij , ϕ(k)

ij is the angle of the vector from node j to node
i at tk, and

Aij =

{
ei ⊗ I2 , i ∈ Na, j ∈ Nb

(ei − ej)⊗ I2 , i, j ∈ Na

(6)

in which ei is an Na × 1 vector with all zeros except a
1 on the ith row.7

• In the Bayesian case,8

C
(k)
ij = E

{
Ξij

(
ε
(k)
ij ,φ(k)ij

)}
. (7)

The matrix D(k) in (3) represents the contribution from the
intra-node measurements in [ tk−1, tk) (and from the prior

knowledge about p
(k−1:k)
a for the Bayesian case), given by

7A toy example of C
(k)
ij is provided in Appendix I-B.

8In the Bayesian case, ε
(k)
ij and φ

(k)
ij are random variables since they

depend on agents’ locations in p
(k)
a .
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(74) and (75) respectively for the non-Bayesian and Bayesian
cases.

Proof: See Appendix I-A.

C. Error Evolution

Let Q(n) be the inverse of the FIM (IFIM) about p
(n)
a

(non-Bayesian) and p
(n)
a (Bayesian) from the measurements

in z(1:n−1) (and from the prior knowledge about p
(1:n)
a for

the Bayesian case). In particular, Q(n) is given by the nth
2Na × 2Na principal submatrix of [J(n)]−1, and it provides a
lower bound on the mean-squared estimation error of agents’
locations at tn according to the information inequality [4],
[60]. The time evolution of the IFIM {Q(n)}n≥1 is referred to
as the error evolution, which is characterized in the following
proposition.

Proposition 2: The error evolution {Q(n)}n≥1 is given by

Q(n+1) = Q(n) − Υ
(n)
injn

+∆(n+1) (8)

where Q(1) = [J(1)]−1, ∆(n) = [D(n)]−1, and

• in the non-Bayesian case,

Υ
(n)
ij =

Q(n)Aiju
(
ϕ(n)
ij

)
uT
(
ϕ(n)
ij

)
AT

ijQ
(n)

ε(n)ij + uT
(
ϕ(n)
ij

)
AT

ijQ
(n)Aiju

(
ϕ(n)
ij

) (9)

• in the Bayesian case,

Υ
(n)
ij = Q(n) −

(
[Q(n)]−1 + E

{
Ξij(ε

(n)
ij ,φ(n)ij )

})−1
.

(10)

Proof: See Appendix I-C.

Remark 1: In (8), Υ
(n)
injn

∈ S
2Na
+ is the error reduction matrix

corresponding to the inter-node measurements between nodes
in and jn, and ∆(n+1) ∈ S

2Na
++ is the error increase matrix due

to the uncertainty in the intra-node measurements (and in the
prior knowledge for the Bayesian case). Thus, the total error

reduction and increase in [ tn, tn+1) are given by tr{Υ (n)
injn

}
and tr{∆(n+1)}, respectively. Higher accuracy of inter- and
intra-node measurements corresponds to larger error reduction
and smaller error increase, respectively.

According to (8)–(10), the error evolution depends on
the scheduling strategy via the selected measurement pairs

{(in, jn)}, on the anchors’ locations {p(n)
b }, and on the

measurement errors {ε(n)injn
} and {∆(n)}. In the non-Bayesian

case, the error evolution depends also on the agents’ locations

{p(n)
a } as in (4a) and (74) since they are considered to be

deterministic. In the Bayesian case, the error evolution does
not depend on the agents’ locations due to the expectation
with respect to the prior knowledge as in (7), (70), and (75).

Following the nomenclature of data networks [58], Q(n),

Υ
(n)
injn

, and ∆(n+1) in (8) can be viewed as the “queue length,”
“service,” and “packet arrival” in [ tn, tn+1), respectively.
In contrast to queueing dynamics where the service rates
are commonly independent of the queue lengths, the error
reduction matrices in (9) and (10) depend on the IFIM Q(n),

the geometrical relationship of the measurement pair ϕ(n)
injn

(for the non-Bayesian case), the measurement errors ε(n)injn
,

and the uncertainty in the prior knowledge (for the Bayesian
case).

Finally, the recursive equation (8) can be used to character-
ize the error evolution for both synchronous and asynchronous
networks. For synchronous networks, the clocks of all the
nodes are synchronized and tn is the start of the nth time inter-
val, which is common to the entire network. For asynchronous
networks, tn is when the wireless channel is accessed (by a
measurement pair) for the nth time.

Remark 2: Due to the unified structure of the error evolution
in (8), the analysis in the rest of the paper holds for both
the non-Bayesian and Bayesian cases. Thus, we will not em-
phasize non-Bayesian or Bayesian estimation unless otherwise
necessary.

III. BOUNDEDNESS OF ERROR EVOLUTION

This section provides both sufficient and necessary condi-
tions for the boundedness of the error evolution, which is a
primary requirement on the design of scheduling strategies for
navigation networks. The results will later be used in Section
IV to analyze the error evolution for the opportunistic and
random situation-aware scheduling strategies.

A. Performance Metric for Network Navigation

The navigation performance in Section II-C is affected by
the network topology (anchors’ locations) and the selected
measurement pairs (scheduling strategy). Thorough analysis
of navigation networks requires the characterization of their
performance over the ensemble of possible network topolo-
gies and measurement pairs. We consider anchors’ locations
following a spatial distribution in R2 and measurement pairs
following a probability distribution defined by the scheduling
strategy. Therefore, the error evolution becomes a random
process {Q(n)}n≥1.

The NLE at tn is defined as tr{Q(n)}, which is the total
localization error of all the agents. Since we are interested
in the localization accuracy over N time intervals, the fol-
lowing performance metrics are considered. Define the time-

averaged NLE and the time-averaged largest individual error
respectively as

qN "
1

N

N∑

n=1

E{tr{Q(n)}} (11)

q⋆N "
1

N

N∑

n=1

E
{
tr{Q(n)

i⋆ni
⋆
n
}
}
. (12)

In (11) and (12), the expectation is with respect to the
randomness in the network topology and in the scheduling

strategy. In (12), Q
(n)
ii is the ith 2× 2 principal submatrix of

Q(n), i.e., the IFIM about agent i’s location at tn, and

i⋆n ∈ argmax
i∈Na

tr{Q(n)
ii } . (13)

Note that the index i⋆n of the agent with the largest localization
error is time-variant.

Remark 3: For a navigation network in which agents per-
form inter-node measurements following a scheduling strategy,
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qN in (11) characterizes the navigation performance averaged
over the randomness in anchors’ locations and the scheduling
strategy. Furthermore, qN can be used to characterize the
outage probability using the Markov’s inequality as9

P

{
1

N

N∑

n=1

tr{Q(n)} ≥ T

}
≤ qN

T

for any positive threshold T , even though the exact outage
probability is intractable to analyze due to the intricate struc-
ture of {Q(n)}n≥1.

The following condition is considered.
Condition 1:

• There exists an ε < ∞ such that

E
{
ε
(n)
ij

∣∣φ(n)ij ,
∣∣N(n)

b,i

∣∣ = K, Q(n)} ≤ ε (14)

for all K > 0, i ∈ Na, j ∈ N
(n)
b,i , and n ≥ 1 .10

• There exists a δ < ∞ such that

1

N

N∑

n=1

tr{∆(n+1)} ≤ 2Naδ , ∀N ≥ 1 . (15)

• There exists a δ > 0 such that

∆(n) ! δ I2Na , ∀n ≥ 2 . (16)

The inequality (14) requires that the expected inter-node
measurement error between an agent and an anchor within
the communication range is upper bounded. This is a mild
condition that is satisfied by practical sensors for inter-node
measurements [68]. The inequality (15) is implied by the
following condition

tr{∆(n)} ≤ 2Naδ , ∀n ≥ 2 (17)

i.e., the total error increase is upper bounded. The inequality
(17) is satisfied for agents with bounded velocities and for
practical inertial measurement units (IMUs) with bounded
intra-node measurement errors. The lower bound (16) on the
error increase is reasonable since intra-node measurements and
prior knowledge are always subject to uncertainty in practice.

B. Sufficient Condition for Boundedness

A sufficient condition for the boundedness of the error
evolution is provided as follows.

Proposition 3: Consider an error evolution {Q(n)}n≥1 sat-
isfying (8) and Condition 1. For a function υ : S2Na

+ → R≥0,
if there exists a convex function g : R≥0 → R with
limx→∞ g(x) = ∞ such that

E
{
tr{Υ(n)

injn
}
∣∣Q(n)} ≥ g

(
υ(Q(n))

)
, ∀n ≥ 1 (18)

then we have

1

N

N∑

n=1

E
{
υ(Q(n))

}
≤ BN , ∀N ≥ 1 (19)

9The outage probability is a well known concept for performance evaluation
of wireless communication systems (see, e.g., [65]–[67]). Here we evaluate
the probability that the NLE rises above a given target.

10Since anchors’ locations are drawn from a spatial distribution, the set

N
(n)
b,i and the index j are random.

where

BN = sup
{
x : g(x) ≤ 2Naδ +

1

N
E
{
tr{Q(1)}

}}
(20)

is upper bounded and non-increasing with N .
Proof: See Appendix II-A.

1) Interpretation of Proposition 3: Proposition 3 provides a
general sufficient condition for the boundedness of an arbitrary
function of the localization error. For example, if Proposition
3 holds for υ(Q(n)) = tr{Q(n)}, then by (11), there exists
a non-increasing sequence {BN} such that qN ≤ BN for all
N ≥ 1, which further implies lim supN→∞ qN ≤ B1. The
latter inequality is akin to strong stability in data communi-
cation networks, which is defined as the boundedness of the
time-averaged delay [59]. Moreover, if Proposition 3 holds

for υ(Q(n)) = tr{Q(n)
i⋆ni

⋆
n
}, then by (12), there exists a non-

increasing sequence {B⋆
N} such that q⋆N ≤ B⋆

N for all N ≥ 1.
Proposition 3 can be used to derive upper bounds on the

error evolution for different scheduling strategies. In particular,
the expectation on the left-hand side of (18) is with respect to
the randomness in the network topology and in the scheduling
strategy. Given a scheduling strategy, if a lower bound on the
expected error reduction in the form of (18) can be established,
then an upper bound on the error evolution in the form of
(20) can be obtained. An application of Proposition 3 on the
localization error analysis will be demonstrated with details in
Section IV-B. Furthermore, if in addition to convexity, g(·) in
(18) is strictly increasing, then (20) can be written as

BN = g−1
(
2Naδ +

1

N
E
{
tr{Q(1)}

})
. (21)

An example of a convex and strictly increasing g(·) is g(x) =
ax2/(x+ b) with a > 0 and b ≥ 0. Lower bounds on the

expected error reduction E
{
tr{Υ(n)

injn
}
∣∣Q(n)} in this form of

g(·) will be derived in the error analysis in Section IV-B.
Proposition 3 can also be used to compare the perfor-

mance of different scheduling strategies. Consider scheduling
strategies I and II. If there exist convex mappings gI(·) and
gII(·) with limx→∞ gI(x) = ∞, limx→∞ gII(x) = ∞, and
gI(x) ≥ gII(x) for all x such that

E
{
tr{Υ(n)

injn
}
∣∣Q(n)} ≥ gI

(
tr{Q(n)}

)
, ∀n ≥ 1

E
{
tr{Υ(n)

injn
}
∣∣Q(n)

}
≥ gII

(
tr{Q(n)}

)
, ∀n ≥ 1

for scheduling strategies I and II, respectively, then according
to (19) and (20) with υ(Q(n)) = tr{Q(n)}, there exist {BI,N}
and {BII,N} with BI,N ≤ BII,N for all N ≥ 1 such that
qN ≤ BI,N and qN ≤ BII,N for scheduling strategies I and
II, respectively. Thus, scheduling strategies with larger error
reductions lead to smaller upper bounds on the time-averaged
NLE. Since exact time-averaged NLE for a scheduling strategy
is often intractable to solve, the analytical comparison of
the time-averaged NLEs (rather than their upper bounds) for
different scheduling strategies remains an open problem.

2) Generalization of Proposition 3: The condition (18) in
Proposition 3 is required to hold for every time interval. This
requirement can be further relaxed for the boundedness of
the time-averaged NLE. Considering υ(Q(n)) = tr{Q(n)}, the
following extension of Proposition 3 can be obtained.



WANG, SHEN, CONTI, AND WIN: NETWORK NAVIGATION WITH SCHEDULING: ERROR EVOLUTION 7

Corollary 1: Consider an error evolution {Q(n)}n≥1 satis-
fying (8), Condition 1, and (17). If there exist an Nr ≥ 1 and
a convex function g : R≥0 → R with limx→∞ g(x) = ∞ such
that

E
{
tr{Υ(n)

injn
}
∣∣Q(n)} ≥ g

(
tr{Q(n)}

)
(22)

for all n = kNr with k ≥ 1, then we have qN ≤ BN for all
N ≥ 1, where

BN =
Nr − 1

N
E
{
tr{Q(1)}

}
+

(Nr − 1)(Nr − 2)Na

N
δ

+ B̆KN
+ (Nr − 1)Naδ (23)

is bounded from above and non-increasing with N , in which
KN = ⌊N/Nr⌋ and

B̆K = sup
{
x : g(x) ≤ 2NrNaδ +

1

K
E
{
tr{Q(1)}

}}
. (24)

Proof: See Appendix II-B.

In Corollary 1, the localization errors are effectively reduced
in the sense of (22) every Nr steps, while the errors are not
guaranteed to be reduced in the (Nr − 1) intermediate steps.
As a result, the upper bound (23) on the time-averaged NLE
is an increasing function of Nr.

Remark 4: In practical systems, it is often preferable to
perform as few inter-node measurements as possible as long as
a system requirement on the time-averaged NLE is satisfied.
Such a strategy helps to reduce power consumption as well
as interference to coexisting communication systems. In this
case, the system designer can solve for Nr from (23) with
BN being the required time-averaged NLE. Then in order to
meet the requirement on the time-averaged NLE, it is only
necessary to perform inter-node measurements (that lead to
effective error reduction in the sense of (22)) every Nr steps.

Finally, following the proof of Proposition 3, a result can
be obtained on the boundedness of general matrix evolution.

Corollary 2: Consider a matrix evolution {Q(n)}n≥1 on
SD++ with D ≥ 1 following

Q(n+1) = Q(n) −Υ(n) +∆(n+1) (25)

where ∆(n) satisfies (15). If (18) holds with Υ
(n)
injn

being

replaced by Υ(n), then {Q(n)}n≥1 is bounded in the sense
of (19) with 2Na being replaced by D in (20).

Remark 5: Corollary 2 can be used to analyze the bound-
edness of general matrix evolution in the form of (25). An
example is the evolution of the error covariance in Kalman
filters [69]–[73], where Q(n) is the a priori estimate error
covariance,Υ(n) is the difference between the a priori estimate
and the a posteriori estimate error covariances, and ∆(n+1) is
the covariance of the process noise at the nth step.

C. Necessary Conditions for Boundedness

If Proposition 3 holds for υ(Q(n)) = tr{Q(n)}, then (19)
together with (11) implies qN ≤ BN for all N ≥ 1. Since
{BN} is non-increasing with N , we have qN ≤ B1 for all
N ≥ 1. Such boundedness of qN leads to the balance between
the error increase and reduction as follows.

Proposition 4: For an error evolution {Q(n)}n≥1 satisfying
(8) and Condition 1, if there exist a B < ∞ and an δ ≥ 0
such that qN ≤ B for all N ≥ 1 and

lim
N→∞

1

N

N∑

n=1

tr{∆(n+1)} = 2Naδ (26)

then

lim
N→∞

1

N

N∑

n=1

E
{
tr{Υ(n)

injn
}
}
= 2Naδ . (27)

Proof: See Appendix II-C.

Equations (26) and (27) show that the asymptotic time-
averaged total error increase and reduction are equal when
the time-averaged NLE is bounded, which agrees with the in-
tuition. Furthermore, a stronger condition on {∆(n)} together
with the boundedness of qN leads to the following result.

Proposition 5: For an error evolution {Q(n)}n≥1 satisfying
(8) and Condition 1, if there exist a B < ∞ and an ∆ ∈ S

2Na
+

such that qN ≤ B for all N ≥ 1 and

lim
N→∞

1

N

N∑

n=1

∆(n+1) = ∆ (28)

then

lim
N→∞

1

N

N∑

n=1

E
{
Υ

(n)
injn

}
= ∆ . (29)

Proof: See Appendix II-D.

Equations (28) and (29) show that the asymptotic time-
averaged error increase and reduction matrices are equal when
the time-averaged NLE is bounded.

Following the proof of Proposition 4, a sufficient condition
on the unboundedness of the time-averaged NLE can be
obtained in the following.

Corollary 3: For an error evolution {Q(n)}n≥1 satisfying
(8) and Condition 1, if

lim inf
N→∞

1

N

N∑

n=1

E{tr{Υ(n)
injn

}} < lim inf
N→∞

1

N

N∑

n=1

tr{∆(n+1)}

(30)

then there does not exist a B < ∞ such that qN ≤ B for all
N ≥ 1.

Proof: See Appendix II-E.
Corollary 3 agrees with intuition: if the asymptotic time-

averaged error reduction is not large enough to compensate for
the asymptotic time-averaged error increase as in the inequality
(30), then the boundedness of the time-averaged NLE is not
guaranteed.

IV. SCHEDULING STRATEGIES AND ERROR ANALYSIS

This section presents the opportunistic and random
situation-aware scheduling strategies for network navigation.
Then the upper bounds on the corresponding time-averaged
NLEs are quantified by applying the sufficient condition for
boundedness in Proposition 3. The results provide an example
of how Proposition 3 is applied for error analysis.
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A. Situation-Aware Scheduling Strategies

The problem of finding the optimal scheduling strategies
that minimize the expected NLE E{tr{Q(N)}} at tN or the
time-averaged NLE qN over the first N time intervals can
be formulated under the framework of dynamic programming
[74]. However, the corresponding optimal scheduling strate-
gies are often intractable to characterize or implement due
to the nonlinearity of the error evolution and its intricate
dependency on the scheduling strategy, network topology,
and measurement errors. Furthermore, the focus of this paper
is to understand the effects of measurement pair selection
rather than collision control on the error evolution. Thus, we
consider two scheduling strategies that avoid packet collisions
although the application of the results in Section III is not
limited to these strategies. Let Mn be the set of candidate
measurement pairs in [ tn, tn+1). The scheduling policies of
the two strategies in [ tn, tn+1) are introduced in the following.

1) Opportunistic Scheduling Strategy: The strategy selects
a measurement pair providing the largest error reduction, i.e.,11

(in, jn) ∈ argmax
(i,j)∈Mn

tr{Υ(n)
ij } . (31)

If multiple measurement pairs can provide the largest error
reduction, then the strategy uniformly selects one of them at
random.

2) Random Scheduling Strategy: The strategy first uni-
formly selects an agent in at random, i.e., P{in = i} = 1/Na

for all i ∈ Na. If there exist anchors within the communication
range of agent in, i.e., N

(n)
b,in

̸= ∅, then the strategy uniformly

selects a jn from N
(n)
b,in

at random; otherwise, if there exist
agents within the communication range of agent in, i.e.,

N
(n)
a,in

̸= ∅, then the strategy uniformly selects a jn from N
(n)
a,in

at random. If both N
(n)
b,in

= ∅ and N
(n)
a,in

= ∅, then no pair is
selected.

Remark 6: The opportunistic scheduling strategy is the one-

step optimal strategy. It requires calculating tr{Υ(n)
ij } for

all measurement pairs (i, j). The computational complexity

of calculating tr{Υ(n)
ij } for one pair (i, j) based on (9) is

O(Na), and hence the overall complexity of the opportunistic
scheduling strategy is O(N3

a ).
12 Furthermore, since the net-

work scheduler needs to gather information about the angles
for all measurement pairs, the communication overhead of the
opportunistic scheduling strategy is O(N2

a ).
13 For practical

11The opportunistic scheduling strategy is similar to the max-weight
scheduling strategy in data communication networks, which selects a link
with the largest queue length for transmission [57].

12From (9), the error reduction between nodes i and j is given by

tr
{

Υ
(n)
ij

}

=
uT

(

φ
(n)
ij

)

AT
ijQ

(n)Q(n)Aiju
(

φ
(n)
ij

)

ε
(n)
ij + uT

(

φ
(n)
ij

)

AT
ijQ

(n)Aiju
(

φ
(n)
ij

)

where Q(n)Aij and AT
ijQ

(n)Aij can be calculated using lookup tables by
exploiting the structure of Aij in (6). Then the complexity of calculating

tr{Υ(n)
ij } is the same as that of multiplying two Na ×1 vectors, i.e., O(Na).

13To reduce communication overhead and computational complexity in a
distributed network, an agent may select the best neighboring anchors and
randomly select neighboring agents for inter-node measurements. In practice,
it is often preferable for an agent to select neighboring anchors with known
locations than neighboring agents whose knowledge of locations is subject to
uncertainty.

implementation, the exact knowledge of Q(n) and {φ(n)ij } is
unavailable, and the scheduler should select measurement pairs

based on their estimates Q̂
(n)

and {φ̂(n)ij }. An example of a
distributed implementation is provided in [45]. In contrast, the
random scheduling strategy does not incur any communication
overhead or computational complexity. It does not use the
knowledge of the network states, except that each agent only
needs to know which nodes are within its communication
range. Thus, the random scheduling strategy is easier for
distributed implementation.

B. Localization Error Analysis

The error evolution for the opportunistic and random
situation-aware scheduling strategies is analyzed by applying
the sufficient conditions for boundedness provided in Section
III-B. Let A ⊂ R2 be the region within which the agents move
and B ⊂ R2 be a circle centered at the origin with the radius
being the communication range R. Note that agents can only
perform inter-node measurements with the nodes in the region

A+B. The anchors are considered to be static, i.e., p
(n)
b = p

(1)
b

for all n ≥ 1. The spatial distribution of the anchors’ locations

in p
(1)
b is modeled by a homogeneous Poisson point process

(PPP) restricted to A + B with density µb (unit: nodes/m2)
[75], [76].14 The samples of the homogeneous PPP charac-
terize different network topology, and the error evolution is
analyzed in the average sense with respect to the randomness
in the anchors’ locations and in the scheduling strategy.

By applying the sufficient condition for boundedness in
Proposition 3, we obtain the following result on the error evo-
lution for the opportunistic and random scheduling strategies.
Recall that ε and δ are given in (14) and (15), respectively.

Proposition 6: Consider that the anchors’ locations follow
the homogeneous PPP restricted to A + B with density µb.
The error evolution {Q(n)}n≥1 satisfying (8) and Condition
1 is bounded for the opportunistic and random scheduling
strategies in the following sense,

qN ≤ Na

ζb

(
ρN +

√
ρ2N + 4ζb ερN

)
, ∀N ≥ 1 (32)

where ζb is the probability that there exists at least one anchor
within the communication range of an agent, given by

ζb = 1− e−πR
2µb (33)

and

ρN = 2Naδ +
1

N
E
{
tr{Q(1)}

}
. (34)

Furthermore, for the opportunistic scheduling strategy,

q⋆N ≤ 1

ζb

(
ρN +

√
ρ2N + 4ζb ερN

)
, ∀N ≥ 1 . (35)

Proof: See Appendix III.

14The PPP provides a probability model that characterizes the scattering of
points on a plane, and such a model has been extensively used to characterize
random network topologies in existing literature (e.g., [77]–[81]). The density
µb is the expected number of anchors in a region of 1m2; small or large µb

corresponds to the network infrastructure with sparsely or densely deployed
anchors, respectively.
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The upper bounds in (32) and (35) depend on the measure-
ment errors through ε and δ as well as on the anchor deploy-
ment (network infrastructure) through µb. In particular, these
bounds are increasing functions of ε and δ, which respectively
characterize the inter- and intra-node measurement errors as in
(14) and (15). On the other hand, (32) and (35) are decreasing
function of ζb.

Remark 7: The bound in (32) implies that for both the
opportunistic and random scheduling strategies,

lim sup
N→∞

qN ≤ 2Na

ζb

(
Naδ +

√
(Naδ)2 + 2ζb εNaδ

)
(36)

where the upper bound is Θ(N2
a ). In two special cases with

perfect inter-node measurements (ε = 0) and perfect intra-
node measurements (δ = 0), the upper bound in (36) is
given respectively by 4N2

a δ/ζb and 0. This result implies
that the upper bound in (36) is dominated by intra-node
measurement error δ. Therefore, the time-averaged NLE can
be effectively reduced by using high-accuracy sensors for
intra-node measurements.

As a special case, we have ∆(n) = O2Na and δ = 0 for
static networks where agents do not move. Then from (32),
(34), and (11), the time-averaged NLE is upper bounded by

qN ≤ Na

ζb

(
q1
N

+

√
q21
N2

+ 4ζb ε
q1
N

)
, ∀N ≥ 1 (37)

which implies lim supN→∞ qN = 0. This agrees with the
intuition since there is no error increase in static networks and
hence agents’ localization errors monotonically decrease from
inter-node measurements. Furthermore, as N goes to infinity,
the upper bound in (37) decreases to zero as fast as

q̃N "
Na

ζb

√
4ζb ε

q1
N

and thus the time-averaged NLE qN decreases to zero at least
as fast as q̃N .

The sufficient condition for boundedness in Proposition
3 can be applied to analyze the time-averaged NLE for
all scheduling strategies. Proposition 6 provides a concrete
example of such analysis for the opportunistic and random
scheduling strategies. For distributed scheduling strategies, in
which agents make decisions on when and with whom to
perform inter-node measurements based on local knowledge of
the network states, collisions may happen. The corresponding
error evolutions can be analyzed using Proposition 3 by
accounting for failures of inter-node measurements, e.g., due
to collisions, in the calculation of the expected error reduction
in (18).

C. Extension to Other Anchor Spatial Distributions

The performance analysis in the previous section can be
extended to other spatial distributions of anchors’ locations

besides homogeneous PPP. Let ψ
(n)
i ∈ [ 0, 2π) be an angle

such that u(ψ(n)i ) is the eigenvector of Q
(n)
ii corresponding to

the largest eigenvalue, i.e., the localization error of agent i is

the largest along the direction of u(ψ(n)i ). Suppose that there is

a positive probability that u(ψ(n)i⋆n
) is not orthogonal to u(φ(n)i⋆nj

)

for some anchor j ∈ N
(n)
b,i⋆n

, i.e., there exist an α ∈ [ 0,π/2) and

a ζα > 0 such that for every n ≥ 1, there exists a j ∈ N
(n)
b,i⋆n

satisfying

P
{∣∣uT(ψ(n)i⋆n

)u(φ(n)i⋆nj
)
∣∣ ≥ cos(α)

}
≥ ζα . (38)

Then the localization error of agent i⋆n can be effectively
reduced by performing inter-node measurements with anchor
j.15 In particular, following derivations similar to those in
Appendix III, we can show that

E
{
tr{Υ(n)

injn
}
∣∣Q(n)} ≥

ζα cos2(α)
(
tr{Q(n)

i⋆ni
⋆
n
}
)2

2
(
tr{Q(n)

i⋆ni
⋆
n
}+ 2ε

) , ∀N ≥ 1

(39)

for the opportunistic scheduling strategy and

E
{
tr{Υ(n)

injn
}
∣∣Q(n)} ≥

ζα cos2(α)
(
tr{Q(n)

i⋆ni
⋆
n
}
)2

2Na

(
tr{Q(n)

i⋆ni
⋆
n
}+ 2ε

) , ∀N ≥ 1

(40)

for the random scheduling strategy. By Proposition 3, (39)
and (40) lead to upper bounds on the time-averaged NLE.
Therefore, under all anchor spatial distributions satisfying (38),
the time-averaged NLE is bounded for the opportunistic and
random scheduling strategies.

Two examples of anchor spatial distributions satisfying
(38) are provided here: 1) if the anchors’ locations follow a
homogeneous PPP with density µb, then (38) is satisfied with
α ∈ [ 0,π/2) and ζα = 2α

π ζb with ζb being given by (33); 2) if

the anchors are deterministically placed on a grid with R/
√
2

spacing, then (38) is satisfied with α = π/4 and ζα = 1.

V. ERROR LOWER BOUND AND OPTIMAL ERROR SCALING

This section derives a universal lower bound on the NLE
for all scheduling strategies and shows the optimality of the
proposed situation-aware scheduling strategies in terms of
error scaling with the number of agents.

A. Universal Lower Bound on NLE

The following lemma introduces the monotonicity property
of the error evolution (8), which will be used to derive the
lower bound on the NLE. Recall that δ is given in (16). A
universal lower bound on the NLE is provided in the following.

Proposition 7 (Universal Lower Bound): For given anchors’
locations and selected measurement pairs, the error evolution
satisfying (8) and (16) is lower bounded as

tr{Q(n)} ≥
(N2

a

2
+Na

)
δ , ∀n ≥

⌈Na

2

⌉
+ 1 . (41)

Proof: See Appendix IV.
Proposition 7 together with (11) implies that

lim inf
N→∞

qN ≥
(N2

a

2
+Na

)
δ (42)

for all scheduling strategies. The lower bound (42) on the
asymptotic time-averaged NLE is Θ(N2

a ).

15If u
(

φ
(n)
i⋆nj

)

is parallel to u
(

ψ
(n)
i⋆n

)

, i.e.,
∣

∣uT
(

φ
(n)
i⋆nj

)

u
(

ψ
(n)
i⋆n

)
∣

∣ = 1, then

the localization error of agent i⋆n along u
(

ψ
(n)
i⋆n

)

can be mostly reduced from

the inter-node measurements between agent i⋆n and anchor j. An example is
given in Fig. 1 with i⋆n = 1 and j = 3.
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B. Optimal Error Scaling with Number of Agents

Since both the upper bound (36) and lower bound (42) on
the asymptotic time-averaged NLE scale quadratically with the
number of agents Na, the following result holds.

Proposition 8 (Optimal Error Scaling): The optimal scaling

of the asymptotic time-averaged NLE with the number of
agents Na is Θ(N2

a ).
The scaling Θ(N2

a ) is optimal since it is the smallest achiev-
able scaling. Proposition 8 shows that, with one measurement
pair per time interval, the time-averaged NLE tends to increase
quadratically with the number of agents. The intuition for
the scaling Θ(N2

a ) can be explained as follows. On the one
hand, the total error increase in every time interval is at least
Na δ due to (16). On the other hand, since one measurement
pair is selected in every time interval, the error reduction per
interval is roughly proportional to tr{Q(n)}/Na (see (116c) for
example). Since the boundedness of the error evolution implies
the balance between the time-averaged error increase and
reduction (see (26) and (27)), the NLE is roughly proportional
to N2

a .
Remark 8: Unlike data networks where scheduling strate-

gies must exploit the network states to achieve the optimal
delay scaling with the number of users [59],16 in naviga-
tion networks, the random scheduling strategy without the
exploitation of the network states still achieves the optimal
error scaling with the number of agents. Thus, the random
scheduling strategy can be employed in scenarios where the
opportunistic scheduling strategy would be infeasible due to
the overhead and complexity. Nevertheless, the opportunistic
scheduling strategy can improve the performance over the
random scheduling strategy in the time-averaged NLE, as will
be shown in Section VIII.

VI. MULTIPLE MEASUREMENT PAIRS

This section extends the analysis of error evolution to
networks with multiple measurement pairs per time interval.
In particular, the total wireless resources per time interval
are divided into L orthogonal resource blocks (RBs) (e.g.,
time slots and subbands), each of which can be used by
a pair of nodes for inter-node measurements. Moreover, a
node is allowed to use multiple RBs to perform inter-node
measurements with other nodes in a time interval.17 The
parameter L is referred to as the multiplexing factor.

A. Error Evolution and Transformation

Following derivations similar to those in the proof of
Proposition 2, the error evolution {Q(n)} with L measurement
pairs per time interval is given by

Q(n+1) =

([
Q(n)

]−1
+

L∑

l=1

C
(n)
in,ljn,l

)−1

+∆(n+1) (43)

16In data networks, the network states include the queue lengths and channel
conditions, and the delay scaling refers to the scaling of the asymptotic time-
averaged delay.

17Consider the navigation network with two agents and three anchors
in Fig. 1. Suppose that the resources are divided into L = 2 RBs. The
two selected measurement pairs in a time interval can be {(1, 3), (2, 5)},
{(1, 3), (1, 4)}, {(1, 2), (1, 2)}, and so on. That is, a node can use multiple
RBs to perform inter-node measurements with others.

...

(i1,1, j1,1)

(i1,2, j1,2)

(i1,L, j1,L)

Q(1) Q(2)

+∆(2)

(a) Before transformation

...

(i1,1, j1,1) (i1,2, j1,2) (i1,L, j1,L)

Q̆(1) Q̆(2) Q̆(3) Q̆(L) Q̆(L+1)

+∆(2)

(b) After transformation

Fig. 2. Illustration of transformation: the error evolution with L measurement
pairs per time interval is transformed into a form with one measurement
pair per (smaller) time interval by incorporating the FIMs from inter-node
measurements one by one in the error evolution.

where Q(1) = [J(1)]−1, i.e., the inverse of the initial FIM,{
(in,l, jn,l)

}L
l=1

are the L measurement pairs selected in

[ tn, tn+1), and the FIM C
(n)
ij is given by (4a) and (7) for the

non-Bayesian and Bayesian cases, respectively. The recursive
equation (43) can be further transformed into a form similar

to (8). The idea is to incorporate the L FIMs
{
C

(n)
in,ljn,l

}L
l=1

in
(43) one by one in the error evolution as illustrated in Fig. 2.

Proposition 9: For integer m ≥ 1, n = ⌊m/L⌋ + 1, and

l = m−(n−1)L, let (im, jm) = (in,l, jn,l), ϕ̆
(m)
imjm

= ϕ(n)
in,ljn,l

,

and ε̆(m)
imjm

= ε(n)in,ljn,l
. If {Q̆(m)}m≥1 is a matrix evolution

satisfying

Q̆(m+1) = Q̆(m) − Ῠ
(m)
imjm

+ ∆̆(m+1) (44)

where Q̆(1) = Q(1),

∆̆(m+1) =

{
∆(m/L+1), if m = kL, k ≥ 1

O2Na , otherwise
(45)

and

• in the non-Bayesian case,

Ῠ
(m)
ij =

Q̆(m)Aiju
(
ϕ̆(m)
ij

)
uT
(
ϕ̆(m)
ij

)
AT

ijQ̆
(m)

ε̆(m)
ij + uT

(
ϕ̆(m)
ij

)
AT

ijQ̆
(m)Aiju

(
ϕ̆(m)
ij

) (46)

• in the Bayesian case

Ῠ
(m)
ij = Q̆(m)−

([
Q̆(m)

]−1
+ E

{
Ξij(ε̆

(m)
ij , φ̆(m)

ij )
})−1

(47)

then Q̆(m) = Q(n) for m = (n− 1)L+ 1 and n ≥ 1.

Proof: See Appendix V-A.
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Note that in the reformulated error evolution {Q̆(m)}m≥1,
the index m is used instead of n since the latter has been used
as the index in the original error evolution (43).

B. Error Analysis

With anchors’ locations drawn from a spatial distribution
and measurement pairs generated from a scheduling strategy,
the reformulated error evolution becomes a random process

{Q̆
(m)

}m≥1. Similar to Condition 1, the following condition
is considered.

Condition 2:

• There exists an εL < ∞ such that

E
{
ε̆
(m)
ij

∣∣ φ̆(m)
ij ,

∣∣N(m)
b,i

∣∣ = K, Q̆
(m)}

≤ εL (48)

for all K > 0, i ∈ Na, j ∈ N
(m)
b,i , and m ≥ 1 .

• There exists a δ < ∞ such that

1

K

K∑

k=1

tr{∆̆(kL+1)} ≤ 2Naδ , ∀K ≥ 1 . (49)

• There exists a δ > 0 such that

∆̆(kL+1) ! δ I2Na , ∀ k ≥ 1 . (50)

Inequalities (49) and (50) are similar to (15) and (16), re-
spectively. Since ∆̆(m+1) = O2Na for m ̸= kL with k ≥ 1,
(49) and (50) are imposed only on ∆̆(m+1) for m = kL with
k ≥ 1. Similar to Proposition 3, we have the following result

on the boundedness of {Q̆
(m)

}m≥1.

Proposition 10: Consider an error evolution {Q̆
(m)

}m≥1

satisfying (44) and Condition 2. For a function h : S2Na
+ →

R≥0, if there exists a convex function g : R≥0 → R with
limx→∞ g(x) = ∞ such that

E
{
tr{Ῠ

(m)

imjm
}
∣∣ Q̆

(m)}
≥ g
(
υ(Q̆

(m)
)
)
, ∀m ≥ 1

then we have

1

M

M∑

m=1

E
{
υ(Q̆

(m)
)
}
≤ B̆M , ∀M ≥ 1

where

B̆M = sup
{
x : g(x) ≤ 2Naδ

L
+

1

M
E
{
tr{Q̆

(1)
}
}}

(51)

is bounded from above and non-increasing with M .

Proof: The proof follows derivations similar to those in
Appendix II-A. In particular, (85) becomes

g(υM ) ≤ 1

M

⌊M
L

⌋
· 2Naδ +

1

M
E
{
tr{Q̆

(1)
}
}

≤ 2Naδ

L
+

1

M
E
{
tr{Q̆

(1)
}
}

which leads to (51).

The error evolution {Q̆
(m)

}m≥1 for the opportunistic and
random situation-aware scheduling strategies can be analyzed

using Proposition 10. The scheduling policies for these strate-

gies are applied for every index m in {Q̆
(m)

}m≥1, i.e., the
policies are applied for every RB. Define

q̆M "
1

M

M∑

m=1

E
{
tr{Q̆

(m)
}
}

(52)

q̆⋆M "
1

M

M∑

m=1

E
{
tr{Q̆

(m)

i⋆mi⋆m
}
}

where Q̆
(m)

ii is the ith 2× 2 principal submatrix of Q̆
(m)

and

i⋆m ∈ argmaxi∈Na
tr{Q̆

(m)

ii }. The following result holds.
Proposition 11: Consider that the anchors’ locations follow

a homogeneous PPP restricted to A + B with density µb.

The error evolution {Q̆
(m)

}m≥1 satisfying (44) and Condition
2 is bounded for the opportunistic and random scheduling
strategies in the following sense,

q̆M ≤ Na

ζb

(
ρM,L +

√
ρ2M,L + 4ζb εLρM,L

)
, ∀M ≥ 1 (53)

where ζb is given by (33) and

ρM,L =
2Naδ

L
+

1

M
E
{
tr{Q̆

(1)
}
}
.

Furthermore, for the opportunistic scheduling strategy,

q̆⋆M ≤ 1

ζb

(
ρM,L +

√
ρ2M,L + 4ζb εLρM,L

)
, ∀M ≥ 1. (54)

Proof: See Appendix V-B.
The bounds in (53) and (54) are in the same form of those

in (32) and (35) with an additional parameter L. From (53),
we have

lim sup
M→∞

q̆M ≤ 2Na

ζb

(
Naδ

L
+

√
(Naδ)2

L2
+ 2ζb εL

Naδ

L

)

(55)

where the upper bound is Θ(N2
a ) for fixed L.

C. Error Lower Bound and Optimal Error Scaling

Using arguments similar to those in Appendix IV, a univer-
sal lower bound on the NLE is given as follows.

Proposition 12: For given anchors’ locations and selected
measurement pairs, there exists an ML such that the error
evolution satisfying (44) and (50) is lower bounded as

1

M

M∑

m=1

tr{Q̆(m)} ≥
⌊M −ML

L

⌋ (N2
a − 2Na − 1)

2M
δ (56)

for all M ≥ ML and all scheduling strategies.
Proof: See Appendix V-C.

Proposition 12 together with (52) implies that

lim inf
M→∞

q̆M ≥ N2
a − 2Na − 1

2L
δ . (57)

With L being fixed, both the upper bound (55) and lower
bound (57) on the asymptotic time-averaged NLE scale
quadratically with the number of agents Na. Therefore, the
optimal scaling of the asymptotic time-averaged NLE with
respect to Na is Θ(N2

a ), i.e., the quadratic error scaling holds
for any fixed multiplexing factor.
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D. Effect of Resource Sharing

In this part, the question of whether allocating the wireless
resources to a single measurement pair (i.e., L = 1) or sharing
them among multiple measurement pairs (i.e., L > 1) is
answered. Consider that multiple pairs of nodes can perform
inter-node measurements in a time interval via time division
multiple access (TDMA) or frequency division multiple access
(FDMA).

• TDMA: A time interval is divided into L time slots.
• FDMA: The frequency band in a time interval is divided

into L subbands.

Here an RB corresponds to a time slot or subband in TDMA
or FDMA, respectively.

Suppose that the lth time slot or subband is allocated to the
measurement pair (i, j) in [ tn, tn+1) for TDMA or FDMA,

respectively. The inter-node measurement error ε
(n)
ij between

nodes i and j satisfies

ε
(n)
ij ∝ 1

β2
l SNR

(n)
ij,l

(58)

where

βl =

[∫∞
−∞ f2|Sl(f)|2df∫∞
−∞ |Sl(f)|2df

]1/2
(59)

is the effective bandwidth of the signal with Sl(f) being the

spectrum, and SNR
(n)
ij,l is the received SNR [23], [60].

Consider that the total amount of wireless resources (du-
ration or bandwidth) in a time interval is fixed. Then the
relationship between the multiplexing factor and the inter-node
measurement error is given as follows.

• TDMA: The received SNR can be increased by repeat-
edly sending the signal for inter-node measurements. In

particular, consider that SNR
(n)
ij,l increases linearly with

the number of signal repetitions that is proportional to
the duration of a time slot. Also, the total duration of a
time interval is equally divided into L time slots. Then
the duration of a time slot is proportional to 1/L. As

a result, SNR
(n)
ij,l is proportional to 1/L, which together

with (58) implies that ε
(n)
ij is proportional to L.

• FDMA: Consider that the shape of Sl(f) is a rectangle
with the width being the bandwidth of the lth subband.18

Then with the total bandwidth being fixed,
∑L

l=1 β
2
l is

constant by (59). Consider that the bandwidth is divided
in such a way that β2

l ’s are equal. Then β2
l is proportional

to 1/L, which together with (58) implies that ε
(n)
ij is

proportional to L.

Recall that ε in (14) and εL in (48) are upper bounds
on the expected inter-node measurement error for one and L
measurement pairs per time interval, respectively. Following
the above arguments, we have εL = Lε. Then the upper bound

18Here a sinc function is considered as the baseband waveform for
analytical tractability. In practice, the waveform should be time-limited (e.g.,
a truncated sinc function).

in (55) can be written as

lim sup
M→∞

q̆M ≤ 2Na

ζb

(
Naδ

L
+

√
(Naδ)2

L2
+ 2ζb εNaδ

)

. (60)

Note that both the upper bound (60) and lower bound (57)
on the asymptotic time-averaged NLE decrease with the
multiplexing factor L. Furthermore, the error scaling with
the number of agents Na can be reduced by increasing the
multiplexing factor L with Na. For example, by choosing
L = Na, the inequalities (60) and (57) become

lim sup
N→∞

q̆N ≤ 2Na

ζb

(
δ +

√
δ
2
+ 2ζb εNaδ

)
(61)

lim inf
N→∞

q̆N ≥
(Na

2
− 1− 1

2Na

)
δ (62)

where the scalings of the upper bound in (61) and lower
bound in (62) with respect to Na are Θ(Na

√
Na) and Θ(Na),

respectively. In particular, the scaling Θ(Na

√
Na) of the upper

bound results from the term 2ζb εNaδ inside the square root in
(61); while the scaling Θ(Na) of the lower bound is due to the
zero measurement error in the reference evolution (introduced
to derive the lower bound (57)) in Appendix V-C. Thus,
the error scaling is at most Θ(Na

√
Na) for L = Na. For

comparison, the optimal error scaling with fixed L is Θ(N2
a )

as shown in Section VI-C.

Remark 9: Intuitively, more flexibility in allocation of
resources (time slots or subbands) offered by increasing the
multiplexing factor L leads to a performance improvement.
Note that the error evolution for L = 1 is a special case of that
for L > 1 with all the time slots or subbands being allocated to
a single measurement pair. Thus, the performance with L > 1
is no worse than that with L = 1.

VII. DISCUSSIONS

In the following, the results from the analytical framework
are specified for a concrete example, and the extension of the
results to 3-D navigation networks is introduced.

A. Case Study

To obtain insights from the analysis in Sections II–VI,
consider a navigation network as in Section II-A with the
following measurement models.

• The inter-node measurement z
(n)
ij between nodes i and j

in [ tn, tn+1) is a range measurement, given by

z
(n)
ij = d(n)ij + w

(n)
ij (63)

where d(n)ij =
∥∥p(n)

i − p
(n)
j

∥∥ and w
(n)
ij ∼ N (0, ε).

• The intra-node measurement z
(n+1)
ii of agent i in

[ tn, tn+1) is a displacement measurement, given by

z
(n+1)
ii = p

(n+1)
i − p

(n)
i +w

(n+1)
ii (64)

where w
(n+1)
ii ∼ N (02, δiI2).

The results for the non-Bayesian case with one measurement
pair per time interval are considered as an example.
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1) Error Evolution: For the inter-node measurement model
in (63), we have

f
(
z(n)ij

∣∣ d(n)ij

)
= N

(
z(n)ij ; d(n)ij , ε

)
.

By substituting the above PDF into (73) and (5), the matrix

C
(n)
ij is given by (4b) with ε(n)ij = ε. For the intra-node

measurement model in (64), we obtain

f
(
z
(n)
ii

∣∣p(n)
i − p

(n−1)
i

)
= N

(
z
(n)
ii ; p(n)

i − p
(n−1)
i , δiI2

)
.

By substituting the above PDF into (74), we obtain D(n) =
∆−1 with

∆ = diag
{
δ1I2, δ2I2, . . . , δNaI2

}
.

Then following the derivations in Section II-C, the error

evolution is given by (8) with ε(n)ij = ε and ∆(n) = ∆.
Therefore, for measurement models (63) and (64), the inter-
node measurement error and error increase are equal to the
error covariances.

2) Error Analysis: The inequalities (14), (15), and (16) are
satisfied with ε = ε, δ =

∑Na

i=1 δi/Na, and δ = min{δi}Na

i=1.
Then the time-averaged NLE for the opportunistic and random
scheduling strategies is upper bounded by (32), and the
time-averaged largest individual error for the opportunistic
scheduling strategy is upper bounded by (35), with ε = ε
and δ =

∑Na

i=1 δi/Na. Furthermore, the universal lower bound

(41) holds with δ = min{δi}Na

i=1. Therefore, the optimal error
scaling is Θ(N2

a ), which can be achieved by both the oppor-
tunistic and random situation-aware scheduling strategies.

B. Extension to 3-D Networks

We now extend the analysis in Sections II–VI to 3-D
networks.

1) Error Evolution: Similar to the derivation of (4a), by
first taking the second derivative of f in (73) with respect

to d(k)ij and then taking the derivative of d(k)ij with respect to

p
(k)
a , the matrix C

(n)
ij for 3-D networks can be expressed in

the form of (4b) with u
(
ϕ(n)
ij

)
being replaced by

u
(n)
ij =

1

d(n)ij

(
p
(n)
i − p

(n)
j

)

i.e., the unit direction vector from node j to node i. Following
the derivations in Sections II-B and II-C, the error evolution
for 3-D networks is given by (8) with u

(
ϕ(n)
ij

)
being replaced

by u
(n)
ij .

2) Sufficient Condition for Boundedness: For 3-D networks,
the inequality (15) is replaced by

1

N

N∑

n=1

tr{∆(n+1)} ≤ 3Naδ , ∀N ≥ 1 .

Then the sufficient condition for boundedness in Proposition
3 holds for 3-D networks with 2Naδ being replaced by 3Naδ.

3) Error Analysis: According to the proof of Proposition 6
in Appendix III, lower bounds on the expected error reduction
in the form of (18) are needed to develop upper bounds on
the time-averaged NLE and largest individual error. For 3-D

networks, let u
(n)
i be the eigenvector of Q

(n)
ii corresponding

to the largest eigenvalue. Suppose that there exist a r > 0 and
a ζr > 0 such that for all n ≥ 1, we have

P
{∣∣u(n)T

i⋆n
u
(n)
i⋆nj

∣∣ ≥ r
}
≥ ζr (65)

for a j ∈ N
(n)
b,i⋆n

(i⋆n is given by (13)), i.e., with a positive
probability the direction between agent i⋆n and one of its

neighboring anchor is not orthogonal to u
(n)
i⋆n

. Then, lower

bounds on E{tr{Υ(n)
injn

} |Q(n)} similar to (39) and (40) can
be obtained for the opportunistic and random scheduling
strategies, which together with the sufficient condition for
boundedness in Proposition 3 lead to upper bounds on the
time-averaged NLE. The derivations are similar to the proof of
Proposition 6 and are therefore omitted. Following arguments
similar to those in Section IV-C, the inequality (65) can be
satisfied in 3-D networks, for example, if 1) the projections of
anchors’ locations onto the x−y plane follow a homogeneous
PPP or are deterministically placed on a grid, and 2) the
heights of the anchors are set in a way that the neighboring
anchors of an agent are not always on the same plane.

VIII. NUMERICAL RESULTS

This section provides simulation results to show the effects
of the number of agents, multiplexing factor, and anchor
density on the time-averaged NLE for situation-aware schedul-
ing strategies. Due to the unified structure (8) of the error
evolution for both the non-Bayesian and Bayesian estimations,
the simulations focus on the non-Bayesian case, and the results
in the Bayesian case are similar.

Consider a group of agents moving in a region A of 30m×
30m. The trajectory of each agent is drawn from a random
walk reflected in A,19 which is characterized by the following
dynamic model (take agent i for example)

p
(n+1)
i = γ

(
p
(n)
i +w

(n+1)
i

)

where {w(n+1)
i }n≥1 are independent identically distributed

2× 1 Gaussian random vectors, and γ(·) reflects its argument
within A. The anchors’ locations follow a homogeneous PPP
with density µb restricted to A+B, where B is a circle centered
at the origin with the radius being the communication range
R = 30m. A scenario with eight agents is illustrated in Fig. 3.

The inter-node measurement error in (58) is simulated
using the channel model of IEEE 802.15.4a [82], and the
error increase matrix due to the uncertainty in intra-node
measurements is δ I2Na with δ = 0.1m2. The total amount
of the wireless resources is fixed, and the averaged received
SNR is set to be 35 dB at 1m when the multiplexing factor
L = 1. The initial IFIM is Q(0) = 5 I2Na m2. The time-
averaged localization error per agent, defined as

qa,N =
1

Na
qN (66)

19The trajectory of an agent is reflected when the agent reaches the
boundary of A as shown in Fig. 3.
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A

anchor agent at tn agent at tn+1

Fig. 3. An instantiation of the scenario with eight agents, where anchors’
locations are drawn from a homogeneous PPP.

is evaluated in the following simulation results for N = 200.
Both dense and sparse anchor deployments with µb = 5 ×
10−4 m−2 and µb = 5×10−5 m−2 are considered for evaluat-
ing the effects of the number of users Na and the multiplexing
factor L on the time-averaged NLE.20 In the following figures,
dense and sparse refer respectively to scenarios with dense and
sparse anchor deployments.

Fig. 4 shows the time-averaged localization error per agent
as a function of the number of agents Na with the multiplexing
factor L = 1. The markers are the simulated time-averaged
localization error per agent for the opportunistic and random
scheduling strategies, respectively, and these simulation results
are fitted with linear functions (i.e., the dashed lines). The
results together with (66) validate the optimal scaling Θ(N2

a )
of the time-averaged NLE qN in Section V-B and Section
VI-C. While the error can be reduced by increasing the
multiplexing factor L as will be shown in the following
simulation results, the optimal error scaling Θ(N2

a ) holds
for any fixed L as shown in Section VI-C. Fig. 4 also
shows that the time-averaged localization error per agent for
the opportunistic scheduling strategy is smaller than that for
the random scheduling strategy. Therefore, measurement pair
selections with the exploitation of the network states can
reduce the time-averaged NLE.

Fig. 5 shows the time-averaged localization error per agent
as a function of the multiplexing factor L with the number of
agents Na = 30, and the curves are zoomed in from L = 10
to L = 20. The resources are divided as in Section VI-D. It

20The two anchor densities are chosen for the purpose of illustration. On
average 1.4 and 0.14 anchors are within the communication range of an agent
for dense and sparse anchor deployments, respectively.
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Fig. 4. Time-averaged localization error per agent as a function of Na for
L = 1.
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Fig. 5. Time-averaged localization error per agent as a function of L for
Na = 30. The curves are zoomed in from L = 10 to L = 20.

can be seen that, with the same amount of total resources,
the time-averaged localization error per agent decreases as L
increases. Thus, instead of allocating all the resources to one
measurement pair, the localization accuracy can be improved
by sharing the resources among multiple measurement pairs,
which provides more freedom in resource allocation.

Fig. 6 shows the time-averaged localization error per agent
as a function of the number of agents Na with the multiplexing
factor L = Na. The squares and circles are simulated time-
averaged localization errors per agent for the opportunistic
and random scheduling strategies, respectively, and these
simulation results are fitted with functions in the form of
f(x) = axb + c (i.e., the dashed curves) to quantify the
error scaling. Since the error scaling is an asymptotic behavior,
only the results for Na ≥ 30 are used for curve fitting, and
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Fig. 6. Time-averaged localization error per agent as a function of Na for
L = Na.

the results for Na = 10 may deviate from the curves. The
exponential b is −0.02, 0.50, −0.46, and 0.77 respectively
for the “Opportunistic scheduling dense”, “Random schedul-
ing dense”, “Opportunistic scheduling sparse”, and “Random
scheduling sparse” curves. In contrast, the scaling of the time-
averaged localization error per agent for fixed L is linear as
shown in Fig. 4. This agrees with the result on the reduction
of the error scaling by increasing the multiplexing factor L
with the number of agents Na in Section VI-D.

Fig. 7 shows the time-averaged localization error per agent
as a function of the anchor density µb with the number
of agents Na = 10 and the multiplexing factor L = 1.
The expected number of the candidate measurement pairs
increases with µb (more candidate node pairs with an agent
and an anchor). The benefit of such increase can be exploited
in the opportunistic scheduling strategy as shown by the
decrease of the corresponding time-averaged localization error
per agent with µb in Fig. 7. More specifically, the opportunistic
scheduling strategy achieves a “diversity gain” provided by
multiple candidate measurement pairs by selecting the ones
providing the largest error reductions. This is similar to the
multi-user diversity gain in opportunistic communication [83],
where the links with the best channel qualities are selected
for transmission. On the other hand, the random scheduling
strategy cannot effectively achieve such “diversity gain” since
it uniformly selects measurement pairs at random. Further-
more, for large anchor densities, agents perform inter-node
measurements with anchors most of the time under the random
scheduling strategy, while the error reduction from the inter-
node measurements between two agents can be larger than that
between an agent and an anchor for some network topologies.
As a result, the random scheduling strategy loses the potential
advantage of inter-node measurements between agents as the
anchor density increases.
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Fig. 7. Time-averaged localization error per agent as a function of µb for
Na = 10 and L = 1.

IX. CONCLUSION

This paper developed a framework to devise situation-aware
scheduling strategies for network navigation and determine the
localization error evolution for different scheduling strategies
and network settings. Both sufficient and necessary conditions
for the boundedness of the error evolution are provided,
and bounds on the time-averaged NLEs for the proposed
opportunistic and random scheduling strategies are derived.
Furthermore, the optimal scaling of the time-averaged NLE
with the number of agents is determined. We showed that the
random scheduling strategy without exploiting the network
states can achieve the optimal error scaling, and that the
opportunistic scheduling strategy can further reduce the time-
averaged NLE by exploiting the network states. Moreover, we
showed the reduction of the error scaling by increasing the
multiplexing factor under fixed total wireless resources. These
results provide insights into the effects of scheduling strategies
and network settings on the error evolution, leading to the
design of techniques for efficient network operation.

APPENDIX I
PROOFS OF RESULTS IN SECTION II

A. Proof of Proposition 1

For n ≥ 2, J(n) can be decomposed as

J(n) = E
(n)
1,1 ⊗ J(1) + F (n) . (67)

The first term E
(n)
1,1 ⊗J(1) in (67) is the FIM about p

(1:n)
a (non-

Bayesian) and p
(1:n)
a (Bayesian) from the initial measurements

(and from the prior knowledge about p
(1)
a for the Bayesian

case), where E
(n)
i,j is an n×n matrix with all zeros except a 1

on the (i, j)th entry. The second term F (n) in (67) is described
in the following.
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J(n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J(1) +C
(1)
i1j1

+D(2) −D(2) O2Na · · · O2Na O2Na

−D(2) D(2) +C
(2)
i2j2

+D(3) −D(3) · · · O2Na O2Na

O2Na −D(3) D(3) +C
(3)
i3j3

+D(4) · · · O2Na O2Na

...
...

...
. . .

...
...

O2Na O2Na O2Na · · · D(n−1) +C
(n−1)
in−1jn−1

+D(n) −D(n)

O2Na O2Na O2Na · · · −D(n) D(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(72)

• In the non-Bayesian case, F (n) is the FIM about p
(1:n)
a

from the measurements in z(1:n−1), given by

F (n) = E

{
ȷb̄m
(
z(1:n−1),p(1:n)

a ,p(1:n)
a

)}
(68)

noting that f
(
z(1:n);p(1:n)

a

)
can be factorized as

f
(
z(1:n−1);p(1:n)

a

)
=

n−1∏

k=1

f
(
z
(k)
ikjk

; d(k)ikjk

)

×
n∏

k=2

∏

i∈Na

f
(
z
(k)
ii ;p(k−1:k)

i

)

(69)

by the independence of the measurements.

• In the Bayesian case, F (n) is the FIM about p
(1:n)
a from

the measurements in z(1:n−1) and the prior knowledge

about p
(2:n)
a , given by

F (n) =E

{
ȷbm
(
z(1:n−1), p(1:n)a , p(1:n)

a

)}

+E

{
ȷbp
(
p(2:n)

a , p(1)a , p(1:n)
a

)}
(70)

noting that f
(
p
(2:n)
a

∣∣p(1)
a

)
can be factorized as

f
(
p(2:n)

a

∣∣p(1)
a

)
=

n∏

k=2

f
(
p(k)

a

∣∣p(k−1)
a

)
(71)

according to (1), and that f
(
z(1:n−1)

∣∣p(1:n)
a

)
can be

factorized as in (69).

Following (67)–(71), the FIMs J(n) for n ≥ 2 in both the
non-Bayesian and Bayesian cases have a diagonally-striped
structure given by (72) at the top of this page, which can be

written as (2). The matrices C
(k)
ij and D(k) are explained in

the following.

• In the non-Bayesian case, the matrix C
(k)
ij is given by

C
(k)
ij = E

{
ȷb̄m
(
z
(k)
ij , d(k)ij ,p(k)

a

)}
(73)

and (4a) is obtained using the chain rule, by first taking

the second derivative of f in (73) with respect to d(k)ij and

then taking the derivative of d(k)ij with respect to p
(k)
a .

The matrix D(k) is given by

D(k) =
∑

i∈Na

E

{
ȷb̄m
(
z
(k)
ii ,p(k)

i − p
(k−1)
i ,p(k)

a

)}
. (74)

• In the Bayesian case,

C
(k)
ij = E

{
ȷbm
(
z
(k)
ij , d(k)ij , p(k)

a

)}

= E

{
E

{
ȷbm
(
z
(k)
ij , d(k)ij , p(k)a

) ∣∣∣p(k)
a

}}

where the second equality is by the double expectation
formula, leading to (7) using (73) and (4a).
The matrix D(k) is given by

D(k) =
∑

i∈Na

E

{
ȷbm
(
z
(k)
ii , p(k)

i − p
(k−1)
i , p(k)

a

)}

+ E

{
ȷbp
(
p(k)

a , p(k−1)
a , p(k)

a

)}
(75)

where the first term represents the contribution from intra-
node measurements and the second term represents the
contribution from prior knowledge.

B. A Toy Example

Consider the network with two agents and three anchors
as illustrated in Fig. 1. In this case, we have Na = {1, 2},

Nb = {3, 4, 5}, and p
(k)
a =

[
p
(k)T
1 p

(k)T
2

]T
.

• For k = n, agent 1 performs inter-node measurements
with anchor 3. Following (73),

C
(k)
13 =

1

ε(k)13

[
u
(
ϕ(k)
13

)
uT
(
ϕ(k)
13

)
O2

O2 O2

]

=
1

ε(k)13

[
I2
O2

]
u
(
ϕ(k)
13

)
uT
(
ϕ(k)
13

) [
I2 O2

]

which is in the form of (4a) by (4b) and (6).
• For k = n+1, agent 1 performs inter-node measurements

with agent 2. Following (73),

C
(k)
12 =

1

ε(k)12

[
u
(
ϕ(k)
12

)
uT
(
ϕ(k)
12

)
−u
(
ϕ(k)
12

)
uT
(
ϕ(k)
12

)

−u
(
ϕ(k)
12

)
uT
(
ϕ(k)
12

)
u
(
ϕ(k)
12

)
uT
(
ϕ(k)
12

)

]

=
1

ε(k)12

[
I2
−I2

]
u
(
ϕ(k)
12

)
uT
(
ϕ(k)
12

) [
I2 −I2

]

which is in the form of (4a) by (4b) and (6).

C. Proof of Proposition 2

The proof uses the following lemma.
Lemma 1: Suppose that an invertible matrix F ∈ Rn×n is

in the form of

F =

[
A BT

B C

]
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where C ∈ Rm×m with m < n. Then the last m×m principal
submatrix of [F ]−1 is given by (C −BA−1BT)−1.

Remark 10: The matrix (C − BA−1BT) is the Schur
complement of A [84].

We now prove Proposition 2. According to (72), the matrix
J(n+1) for n ≥ 1 can be partitioned as

J(n+1) =

[
A(n) B(n+1)T

B(n+1) D(n+1)

]

where A(n) ∈ R2nNa×2nNa is in the form of

A(n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

G(1) −D(2) O2Na · · · O2Na O2Na

−D(2) G(2) −D(3) · · · O2Na O2Na

O2Na −D(3) G(3) · · · O2Na O2Na

...
...

...
. . .

...
...

O2Na O2Na O2Na · · · G(n−1) −D(n)

O2Na O2Na O2Na · · · −D(n) G(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(76)

and B(n+1) ∈ R2Na×2nNa is in the form of

B(n+1) =
[
O2Na O2Na O2Na · · · O2Na D(n+1)

]
.

(77)

The IFIM Q(n+1) is the (n + 1)th 2Na × 2Na principal
submatrix of [J(n+1)]−1. Then by Lemma 1, we have

Q(n+1) =
(
D(n+1) −B(n+1)[A(n)]−1B(n+1)T

)−1

=
(
D(n+1) −D(n+1)Ψ (n)D(n+1)T

)−1
(78)

where Ψ (n) is defined as the nth 2Na × 2Na principal subma-
trix of [A(n)]−1. The expression of Ψ (n) is given as follows.

• For n = 1, A(1) = G(1) we have

Ψ (1) = [G(1)]−1

=
(
[Q(1)]−1 +C

(1)
i1j1

+D(2)
)−1

(79)

where (79) is by (76) and the definition of Ψ (n); (79) is
by (3) and the fact that Q(1) = [J(1)]−1.

• For n > 1, we have

Ψ (n) =
(
G(n) −B(n)[A(n−1)]−1B(n)T

)−1
(80a)

=
(
D(n)−D(n)Ψ (n−1)D(n)+C

(n)
injn

+D(n+1)
)−1

(80b)

=
(
[Q(n)]−1 +C

(n)
injn

+D(n+1)
)−1

(80c)

where (80a) is by Lemma 1 noting that

A(n) =

[
A(n−1) B(n)T

B(n) G(n)

]

by (76) and (77); (80b) is by (3) and the definition of
Ψ (n); (80c) is by (78).

Therefore, (80c) holds for all n ≥ 1. By substituting (80c)
into (78), applying the matrix inversion lemma [85], and using
∆(n) = [D(n)]−1, we obtain

Q(n+1) =
(
[Q(n)]−1 +C

(n)
injn

)−1
+∆(n+1) (81)

for all n ≥ 1. Finally,

• for the non-Bayesian case, (8) and (9) are obtained
by substituting (4a) into (81) and applying the matrix

inversion lemma [85] on ([Q(n)]−1 +C
(n)
injn

)−1;
• for the Bayesian case, (8) and (10) are obtained by

substituting (7) into (81).

APPENDIX II
PROOFS OF RESULTS IN SECTION III

A. Proof of Proposition 3

By taking trace on both sides of (8) and reorganizing terms,
we have

tr{Q(n+1)}− tr{Q(n)} = − tr{Υ(n)
injn

}+ tr{∆(n+1)}

noting that the selected measurement pair (in, jn) is random.
By taking the expectation on both sides of the equation above
conditioned on Q(n) and using (18), we have

E
{
tr{Q(n+1)}

∣∣Q(n)}− tr{Q(n)}
= − E

{
tr{Υ(n)

injn
}
∣∣Q(n)}+ tr{∆(n+1)}

≤ −g
(
υ(Q(n))

)
+ tr{∆(n+1)} .

By taking the expectation with respect to Q(n) on both sides
of the above inequality, we obtain

E
{
tr{Q(n+1)}

}
− E

{
tr{Q(n)}

}

≤ −E
{
g
(
υ(Q(n))

)}
+ tr{∆(n+1)} . (82)

Then by taking the arithmetic mean over the first N time
intervals on both sides of the inequality above, using (15),
and applying the Jensen’s inequality on the convex function
g, we have

1

N
E
{
tr{Q(N+1)}

}
− 1

N
E
{
tr{Q(1)}

}

≤ − 1

N

N∑

n=1

E
{
g
(
υ(Q(n))

)}
+ 2Naδ

≤ −g(υN ) + 2Naδ (83)

where

υN "
1

N

N∑

n=1

E
{
υ(Q(n))

}
. (84)

After reorganizing (83) and using the fact that Q(N+1) ∈
S
2Na
+ ,

g(υN ) ≤ 2Naδ +
1

N
E
{
tr{Q(1)}

}
− 1

N
E
{
tr{Q(N+1)}

}

≤ 2Naδ +
1

N
E
{
tr{Q(1)}

}
(85)

which together with (20) and (84) implies (19). Furthermore,
since limx→∞ g(x) = ∞, there exists an xN < ∞ such that

g(x) > 2Naδ +
1

N
E
{
tr{Q(1)}

}

for all x ≥ xN . Then by (20), we have BN ≤ xN < ∞.
Finally, since E{tr{Q(1)}} < ∞, for any N1, N2 ≥ 1 with

N1 < N2, we have

2Naδ +
1

N1
E
{
tr{Q(1)}

}
> 2Naδ +

1

N2
E
{
tr{Q(1)}

}
.
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Thus,
{
x : g(x) ≤ 2Naδ +

1

N2
E
{
tr{Q(1)}

}}

⊆
{
x : g(x) ≤ 2Naδ +

1

N1
E
{
tr{Q(1)}

}}

which together with (20) implies BN2
≤ BN1

. Therefore,
{BN} is non-increasing.

B. Proof of Corollary 1

The proof is similar to that in Appendix II-A. By taking the
expectation on both sides of (8), applying (17), and using the

fact that Υ
(k)
ikjk

∈ S
2Na
+ , we have

E
{
tr{Q(k+1)}

}
≤ E

{
tr{Q(k)}

}
+ 2Naδ (86)

for all k ≥ 1. For any positive integer n0 and n > n0, by
summing (86) from k = n0 to n− 1, we obtain

E
{
tr{Q(n)}

}
≤ E

{
tr{Q(n0)}

}
+ 2(n− n0)Naδ .

For N ≥ n0, by summing the above inequality from n = n0

to N , we have

N∑

n=n0

E
{
tr{Q(n)}

}
≤ (N − n0 + 1)E

{
tr{Q(n0)}

}

+ 2(1 + 2 + · · ·+N − n0)Naδ

= (N − n0 + 1)E
{
tr{Q(n0)}

}

+ (1 +N − n0)(N − n0)Naδ . (87)

By applying (82) with υ(Q(n)) = tr{Q(n)} and using (17),
we have

E{tr{Q(n+1)}}− E{tr{Q(n)}}
≤ −E

{
g(tr{Q(n)})

}
+ 2Naδ (88)

for n = kNr with k ≥ 1; from (86), we have

E{tr{Q(n+1)}}− E{tr{Q(n)}} ≤ 2Naδ (89)

for n ̸= kNr with k ≥ 1. By summing (88) and (89) from
n = 1 to KNr with K ≥ 1, dividing both sides by K , and
applying the Jensen’s inequality on g, we have

1

K
E
{
tr{Q(KNr+1)}

}
− 1

K
E
{
tr{Q(1)}

}

≤ − 1

K

K∑

k=1

E
{
g
(
tr{Q(kNr)}

)}
+ 2NrNaδ

≤ −g

(
1

K

K∑

k=1

E
{
tr{Q(kNr)}

})
+ 2NrNaδ

which together with the fact that Q(KNr+1) ∈ S
2Na
+ implies

g

(
1

K

K∑

k=1

E
{
tr{Q(kNr)}

})
≤ 2NrNaδ +

1

K
E
{
tr{Q(1)}

}
.

Thus, we have

1

K

K∑

k=1

E
{
tr{Q(kNr)}

}
≤ B̆K , ∀K ≥ 1 (90)

where B̆K is given by (24) and is non-increasing with K .

For N ≥ 1, let KN = ⌊N/Nr⌋. We have

N∑

n=1

E{tr{Q(n)}}

≤
(KN+1)Nr−1∑

n=1

E{tr{Q(n)}} (91a)

=
Nr−1∑

n=1

E{tr{Q(n)}}+
KN∑

k=1

(k+1)Nr−1∑

n=kNr

E{tr{Q(n)}}

≤ (Nr − 1)E{tr{Q(1)}}+ (Nr − 1)(Nr − 2)Naδ

+
KN∑

k=1

[
Nr E{tr{Q(kNr)}}+Nr(Nr − 1)Naδ

]
(91b)

≤ (Nr − 1)E{tr{Q(1)}}+ (Nr − 1)(Nr − 2)Naδ

+NrKN B̆KN
+KNNr(Nr − 1)Naδ (91c)

≤ (Nr − 1)E{tr{Q(1)}}+ (Nr − 1)(Nr − 2)Naδ

+NB̆KN
+N(Nr − 1)Naδ (91d)

where (91a) uses the fact that N ≤ (KN+1)Nr−1, (91b) is by
(87), (91c) is by (90), and (91d) uses the fact that NrKN ≤ N .
Thus, we have qN ≤ BN for all N ≥ 1, where BN is given
by (23). Finally, since B̆KN

is non-increasing with KN and
KN is non-decreasing with N , B̆KN

is non-increasing with
N , which together with (23) implies that BN is non-increasing
with N .

C. Proof of Proposition 4

We first introduce the following lemma.

Lemma 2: If the nonnegative sequence {an}n≥1 satisfies

lim sup
N→∞

1

N

N∑

n=1

an < ∞ (92)

then

lim inf
N→∞

aN
N

= 0 . (93)

Proof: The proof is by contradiction. Suppose that

lim inf
N→∞

aN
N

= a > 0 .

Thus, there exists an N1 such that an

n ≥ a
2 for all n ≥ N1.

Then for all N > N1,

1

N

N∑

n=1

an ≥ 1

N

N∑

n=N1

an =
1

N

N∑

n=N1

n · an
n

≥ a

2N

N∑

n=N1

n =
(N +N1)(N −N1 + 1)

4N
a

which grows to infinity as N → ∞. This contradicts (92).
Therefore, we have (93).

We now prove Proposition 4. By taking the trace, the
arithmetic mean over N time intervals, and the expectation
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on both sides of (8), we obtain

1

N

N∑

n=1

E
{
tr{Υ(n)

injn
}
}
=

1

N

N∑

n=1

tr{∆(n+1)}

+
1

N
E
{
tr{Q(1)}

}
− 1

N
E
{
tr{Q(N+1)}

}
.

(94)

Since E
{
tr{Q(1)}

}
< ∞ according to Condition 1, we have

lim
N→∞

1

N
E
{
tr{Q(1)}

}
= 0 . (95)

Also, lim supN→∞ qN < ∞ since qN ≤ B for all N ≥ 1. By
(11) and Lemma 2, we have

lim inf
N→∞

1

N
E
{
tr{Q(N+1)}

}

= lim inf
N→∞

N + 1

N

1

N + 1
E
{
tr{Q(N+1)}

}
= 0 . (96)

Then by taking lim infN→∞ on both sides of (94) and using
(26), (95), and (96), we obtain

lim inf
N→∞

1

N

N∑

n=1

E
{
tr{Υ(n)

injn
}
}
= 2Naδ .

Furthermore, by taking lim supN→∞ on both sides of (94),

using the fact that E{tr{Q(N+1)}} ≥ 0 (since Q(N+1) ∈
S
2Na
++ ), and applying (26), we have

lim sup
N→∞

1

N

N∑

n=1

E
{
tr{Υ(n)

injn
}
}
≤ 2Naδ .

Therefore, (27) holds.

D. Proof of Proposition 5

According to (8), we have

aTQ(n+1)a = aTQ(n)a− aT
Υ

(n)
injn

a+ aT∆(n+1)a (97)

for any a ∈ R2Na . By taking the arithmetic mean over the first
N time intervals and the expectation on both sides of (97), we
obtain

1

N

N∑

n=1

aT
E{Υ(n)

injn
}a =

1

N

N∑

n=1

aT∆(n+1)a

+
1

N
aT

E{Q(1)}a− 1

N
aT

E{Q(N+1)}a . (98)

Equation (28) implies

lim
N→∞

1

N

N∑

n=1

aT∆(n+1)a = aT∆a .

Since Q(1) and Q(N) are positive definite, (95) and (96) imply

lim
N→∞

1

N
aT

E{Q(1)}a = 0

lim inf
N→∞

1

N
aT

E{Q(N+1)}a = 0

respectively. Thus, by taking lim infN→∞ on both sides of
(98), we have

lim inf
N→∞

1

N

N∑

n=1

aT
E{Υ(n)

injn
}a = aT∆a . (99)

Furthermore, by taking lim supN→∞ on both sides of (98)

and using the fact that aT E{Q(N+1)}a ≥ 0 (since Q(N+1) ∈
S
2Na
++ ), we have

lim sup
N→∞

1

N

N∑

n=1

aT
E{Υ(n)

injn
}a ≤ aT∆a . (100)

From (99) and (100), and using the linearity of expectation,
we have

lim
N→∞

1

N

N∑

n=1

E
{
aT
Υ

(n)
injn

a
}
= aT∆a . (101)

Thus, for all b ∈ R2Na and c = a+ b, we have

lim
N→∞

1

N

N∑

n=1

E{bT
Υ

(n)
injn

b} = bT∆b (102)

lim
N→∞

1

N

N∑

n=1

E{cT
Υ

(n)
injn

c} = cT∆c . (103)

By subtracting (101) and (102) from (103), we have

lim
N→∞

1

N

N∑

n=1

E{aT
Υ

(n)
injn

b}+ 1

N

N∑

n=1

E{bT
Υ

(n)T
injn

a}

= aT∆b+ bT∆Ta . (104)

The matrix Υ
(n)
injn

is symmetric by (9) and (10), and the matrix
∆ is symmetric since it is the limit of a sequence of symmetric
matrices as in (26). Thus, (104) implies

lim
N→∞

1

N

N∑

n=1

E{aT
Υ

(n)
injn

b} = aT∆b .

Finally, we obtain (29) by choosing a and b as vectors with
all zeros except a 1 on the ith and jth entry, respectively, for
all i, j = 1, 2, . . . , 2Na.

E. Proof of Corollary 3

The proof is by contradiction. Suppose there exists a
B < ∞ such that qN < B for all N ≥ 1. Then by taking
lim infN→∞ on both sides of (94) and using (96), we have

lim inf
N→∞

1

N

N∑

n=1

E
{
tr{Υ(n)

injn
}
}
= lim inf

N→∞

1

N

N∑

n=1

tr{∆(n+1)}

which contradicts (30).



20 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. Y, MONTH 2017

APPENDIX III
PROOF OF PROPOSITION 6

The main idea of the proof is to obtain a lower bound on

the expected error reduction E
{
tr{Υ(n)

injn
}
∣∣Q(n)} and apply

the sufficient condition for boundedness in Proposition 3. The
following lemma will be used.

Lemma 3: Let H be a 2 × 2 positive definite symmetric
matrix. If φ follows the uniform distribution on [ 0, 2π), then

E

{
u(φ)uT(φ)

uT(φ)H u(φ)

}
=

H− 1

2

tr{H 1

2 }
. (105)

Proof: The SEDs of H and H
1

2 are given by

H =
2∑

l=1

λlu(ψl)u
T(ψl) (106a)

H
1

2 =
2∑

l=1

√
λlu(ψl)u

T(ψl) (106b)

where ψl = ψl(H) and λl = λl(H) for l = 1, 2. For unitary
matrix U = [u(ψ1) u(ψ2) ], we have

UT u(φ) = u(α) (107a)

u(φ) = U u(α) (107b)

where α = φ− ψ1.

Substituting (106a) and (107) into the left-hand side of (105)
gives

E

{
u(φ)uT(φ)

uT(φ)H u(φ)

}
= E

{
Uu(α)uT(α)UT

λ1 cos2(α) + λ2 sin
2(α)

}
(108)

where the expectation is with respect to α, which follows the
uniform distribution on

[
−ψ1, 2π − ψ1

)
, and

u(α)uT(α) =

[
cos2(α) cos(α) sin(α)

cos(α) sin(α) sin2(α)

]
.

The expectation on the right-hand side of (108) involves the
following identities

∫ 2π−ψ1

−ψ1

1

2π

cos2(α)

λ1 cos2(α) + λ2 sin
2(α)

dα =
1√

λ1(
√
λ1 +

√
λ2)

∫ 2π−ψ1

−ψ1

1

2π

sin2(α)

λ1 cos2(α) + λ2 sin
2(α)

dα =
1√

λ2(
√
λ1 +

√
λ2)

∫ 2π−ψ1

−ψ1

1

2π

cos(α) sin(α)

λ1 cos2(α) + λ2 sin
2(α)

dα = 0 .

Using them together with (106) and (108) proves the lemma.

Now we begin to prove Proposition 6 for both the non-
Bayesian and Bayesian cases. Since the following steps are
applied for the nth time interval, the superscript (n) is omitted
in the proof for notational convenience.

A. Non-Bayesian Case

We first provide the following result. Recall that Nb,i is the
index set of anchors within the communication range of agent
i.

Lemma 4: For i ∈ Na and j being randomly selected from
Nb,i, we have

E{tr{Υij} |Q} ≥ ζb(tr{Qii})2

2(tr{Qii}+ 2ε)
(109)

where ζb is given by (33).
Proof: Since |Nb,i| is independent of Q, we have

E{tr{Υij} |Q}

=
∞∑

K=1

P{|Nb,i| = K} E{ tr{Υij} |Q, |Nb,i| = K } (110)

where the expectation is with respect to pb. Let Bij = QAij.
We have

E
{
tr{Υij}

∣∣Q, |Nb,i| = K
}

= E

{
tr{Bij u(φij)uT(φij)B

T
ij}

uT(φij)(εijI2 +Qii)u(φij)

∣∣∣∣Q, |Nb,i| = K

}

(111a)

≥ E

{
tr{Bij u(φij)uT(φij)B

T
ij}

uT(φij)(ε I2 +Qii)u(φij)

∣∣∣∣Q, |Nb,i| = K

}
(111b)

=
tr{Bij (ε I2 +Qii)−

1

2 BT
ij}

tr{(ε I2 +Qii)
1

2 }
. (111c)

The equality in (111a) follows (9). The inequality in (111b)
is obtained by recognizing that

tr
{
Bij u(φij)uT(φij)B

T
ij

}

uT(φij)(εijI2 +Qii)u(φij)
(112)

is a convex function of εij, and by taking the expectation in
(111a) first with respect to φij and then with respect to εij.
Finally, by moving the inner expectation inside over εij in
the denominator of (112), applying the Jensen’s inequality,
and using (14), we have (111b). The equality in (111c) is by
first exchanging the order of expectation and trace, and then
applying Lemma 3 using the fact that φij given {|Nb,i| =
K, Q} follows uniform distribution on [ 0, 2π).21

By substituting Bij = QAij into (111c) and using (6), we
obtain

E
{
tr{Υij}

∣∣Q, |Nb,i| = K
}

≥
Na∑

m=1

tr
{
Qmi (ε I2 +Qii)−

1

2 QT
mi

}

tr
{
(ε I2 +Qii)

1

2

}

≥
tr
{
Qii (ε I2 +Qii)−

1

2 QT
ii

}

tr
{
(ε I2 +Qii)

1

2

} (113a)

=
2∑

l=1

λ2l (Qii)

λl(Qii) + ε+
√
(λ1(Qii) + ε)(λ2(Qii) + ε)

(113b)

21Note that φij is a function of pi (which is part of pa) and pj (which is
part of pb). Since pb follows a homogeneous PPP that is independent of Q,
and anchor j is randomly selected from Nb,i, φij given {|Nb,i| = K, Q} is
uniformly distributed on [ 0, 2π).
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≥
2∑

l=1

λ2l (Qii)

λl(Qii) + 2ε+ tr{Qii}/2
(113c)

= 2× 1

2

2∑

l=1

λ2l (Qii)

λl(Qii) + 2ε+ tr{Qii}/2
(113d)

≥
(
tr{Qii}

)2

2
(
tr{Qii}+ 2ε

) . (113e)

The equality in (113b) is obtained by substituting the SED

Qii =
2∑

l=1

λl(Qii)u(ψl(Qii))u
T(ψl(Qii))

and the SED

ε I2 +Qii =
2∑

l=1

(ε+ λl(Qii))u(ψl(Qii))u
T(ψl(Qii))

into (113a). The inequality in (113c) is due to the fact that

x1x2 ≤
(x1 + x2

2

)2
, ∀x1, x2 ≥ 0 .

The inequality in (113e) is obtained by applying the Jensen’s
inequality on (113d) using the fact that ax2/(x+b) with a > 0
and b ≥ 0 is a convex function of x.

By substituting (113e) into (110), we have

E{tr{Υij} |Q} ≥ ζb(tr{Qii})2

2(tr{Qii}+ 2ε)

where ζb =
∑∞

K=1 P{|Nb,i| = K}. Since Nb,i is the set of
anchors within a circle centered at pi with radius R, and
the anchors’ locations in pb follow a homogeneous PPP with
density µb, |Nb,i| follows a Poisson distribution with parameter
πR2µb. Thus,

ζb = 1− P{|Nb,i| = 0} = 1− e−πR
2µb

which agrees with (33).

1) Opportunistic Scheduling Strategy: Let (in, jn) be the
measurement pair selected by the opportunistic scheduling
strategy, and let j be the index of an anchor randomly selected
from Nb,i⋆n with i⋆n given in (13). We have

E{tr{Υinjn} |Q} ≥ E{tr{Υi⋆nj
} |Q} (114a)

≥
ζb(tr{Qi⋆n i

⋆
n
})2

2(tr{Qi⋆ni
⋆
n
}+ 2ε)

(114b)

where (114a) follows the policy of the opportunistic schedul-
ing strategy and (114b) is by Lemma 4. Since

g1(x) "
ζbx2

2(x+ 2ε)
(115)

is convex and strictly increasing in R≥0 (which implies
limx→∞ g1(x) = ∞), the condition in Proposition 3 is satis-
fied with υ(Q) = tr

{
Qi⋆ni

⋆
n

}
and g = g1. Thus, (19) holds with

BN given by (21). Then by solving for g−1
1 from (115), we

obtain (35). Finally, (32) holds since tr{Q} ≤ Na tr{Qi⋆ni
⋆
n
}.

2) Random Scheduling Strategy: Let (in, jn) be the mea-
surement pair selected by the random scheduling strategy, and
let ji be the index of an anchor randomly selected from Nb,i.
We have

E{tr{Υinjn} |Q} ≥ 1

Na

Na∑

i=1

E{tr{Υiji} |Q} (116a)

≥ ζb

2Na

Na∑

i=1

(tr{Qii})2

tr{Qii}+ 2ε
(116b)

≥ ζb(tr{Q})2

2Na(tr{Q}+ 2Naε)
(116c)

where the inequality in (116a) follows the policy of the random
scheduling strategy without considering the cases of inter-
node measurements between two agents (only the inter-node
measurements between an agent and an anchor are taken
into account), (116b) follows Lemma 4, and (116c) uses the
Jensen’s inequality by moving the average over i in (116b)
inside a convex function. Since

g2(x) "
ζbx2

2Na(x+ 2ε)
(117)

is convex and strictly increasing in R≥0 (which implies
limx→∞ g2(x) = ∞), the condition in Proposition 3 is

satisfied with υ(Q(n)) = tr{Q(n)} and g = g2. Thus, (19)
holds with BN given by (21). Then by solving for g−1

2 from
(117), we obtain (32).

B. Bayesian Case

For the Bayesian case, we first derive the following lower
bound on the error reduction matrix Υij .

Lemma 5: For every i ∈ Na and j ∈ Na ∪Nb \ {i},

Υij ! Υij

= Epa

{
QAiju(φij)uT(φij)AT

ijQ

uT(φij)(εijI2 +AT
ijQAij)u(φij)

}
. (118)

Proof: From (10), we have

Υij = Q−
(
[Q ]−1 + Epa

{
Ξij(φij , εij)

})−1

! Q− Epa

{(
[Q ]−1 +Ξij(φij , εij)

)−1}
(119a)

= Epa

{
Q−

(
[Q ]−1 +Ξij(φij , εij)

)−1}
= Υij (119b)

where (119a) is by the convexity of matrix inverse in the set of
positive definite matrices [86], and (119b) is by applying the

matrix inversion lemma [85] on
(
[Q ]−1 + Ξij(φij , εij)

)−1
.

Now we start the proof for the Bayesian case. For i ∈ Na

and K > 0, let j be the index of a randomly selected anchor
from Nb,i. We have

E
{
tr{Υij}

∣∣Q
}

= Epa

{
Epb

{
QAiju(φij)uT(φij)AT

ijQ

uT(φij)
(
εijI2 +Qii

)
u(φij)

∣∣∣∣Q
} ∣∣∣∣Q

}

(120a)

≥ Epa

{
ζb(tr{Qii})2

2(tr{Qii}+ 2ε)

∣∣∣∣Q
}

=
ζb(tr{Qii})2

2(tr{Qii}+ 2ε)
(120b)
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where (120a) follows (118) by exchanging the order of ex-
pectations with respect to pb and pa; (120b) follows Lemma
4 noting that the expression inside the inner expectation of
(120a) is in the form of the non-Bayesian error reduction
matrix (9) and that the expectation in (109) is with respect
to pb.

1) Opportunistic Scheduling Strategy: Let (in, jn) be the
measurement pair selected by the opportunistic scheduling
strategy, and let j be the index of an anchor randomly selected
from Nb,i⋆n with i⋆n given in (13). We have

E
{
tr{Υinjn}

∣∣Q
}
≥ E

{
tr{Υi⋆nj

}
∣∣Q
}

(121a)

≥ E
{
tr{Υi⋆nj

}
∣∣Q
}

(121b)

≥
ζb

(
tr{Qi⋆ni

⋆
n
}
)2

2
(
tr{Qi⋆n i

⋆
n
}+ 2ε

) (121c)

= g1
(
tr{Qi⋆ni

⋆
n
}
)

where (121a) follows the policy of the opportunistic schedul-
ing strategy, (121b) is by Lemma 5, (121c) is by (33) and
(120b), and g1(x) is given by (115). Therefore, the condition

in Proposition 3 is satisfied with υ(Q(n)) = tr
{
Q

(n)
i⋆ni

⋆
n

}
and

g = g1. Thus, (19) holds with BN given by (21). Then by
solving for g−1

1 from (115), we obtain (35). Finally, (32) holds

since tr{Q(n)} ≤ Na tr
{
Q

(n)
i⋆ni

⋆
n

}
.

2) Random Scheduling Strategy: Let (in, jn) be the mea-
surement pair selected by the random scheduling, and let ji be
the index of a randomly selected anchor from Nb,i. We have

E
{
tr{Υinjn}

∣∣Q
}
≥ E

{
tr{Υinjn

}
∣∣Q
}

(122a)

≥ 1

Na

Na∑

i=1

E
{
tr{Υiji}

∣∣Q
}

(122b)

≥ ζb

2Na

Na∑

i=1

(
tr{Qii}

)2

tr{Qii}+ 2ε
(122c)

≥
ζb

(
tr{Q}

)2

2Na

(
tr{Q}+ 2Naε

) (122d)

= g2(tr{Q})

where (122a) is by Lemma 5, the inequality in (122b) follows
the policy of random scheduling strategy by removing the
cases of inter-node measurements between two agents, (122c)
is by (33) and (120b), (122d) is by the Jensen’s inequality, and
g2(x) is given by (117). Therefore, the condition in Proposition

3 is satisfied with υ(Q(n)) = tr{Q(n)} and g = g2. Thus, (19)
holds with BN given by (21). Then by solving for g−1

2 from
(117), we obtain (32).

APPENDIX IV
PROOF OF PROPOSITION 7

The main idea of the proof is to construct a converging
matrix evolution that provides a lower bound for the error evo-
lution (8). We first introduce a reference evolution {Γ (n)}n≥1

with Γ (2) = δ I2Na , and let Γ
(n)
ij be the (i, j)th 2×2 block of

Γ (n). Recall that (in, jn) is the selected measurement pair
in [ tn, tn+1). The reference evolution is described in the
following. For n ≥ 2,

• if in, jn ∈ Na, then Γ
(n+1)
inin

= Γ
(n+1)
jnjn

= δ I2, Γ
(n+1)
injn

=

Γ
(n+1)
jnin

= O2, and Γ
(n+1)
ii = Γ

(n)
ii + δ I2, ∀ i ̸= in, jn;

• if in ∈ Na and jn ∈ Nb, then Γ
(n+1)
inin

= δ I2 and

Γ
(n+1)
ii = Γ

(n)
ii + δ I2, ∀ i ̸= in.

In the reference evolution, we have Γ (n) =
diag

{
Γ

(n)
11 , Γ (n)

22 , . . . , Γ (n)
NaNa

}
for all n ≥ 2. Also, the

principal submatrices
{
Γ

(n)
ii

}Na

i=1
can be ordered by ! since

they are multiples of δ I2.

Next, based on the reference evolution, we introduce the
one-step optimal scheduling as follows. If Na > 1, then in and
jn are selected as the indices of two most positive semidefinite
2×2 principal submatrices of Γ (n) (by A being more positive
semidefinite than B we mean A ! B). If Na = 1, then in = 1
and jn is randomly selected from Nb. Let {Γ (n)}n≥1 be the
reference evolution for the one-step optimal scheduling. Note
that if Na = 1, then Γ (n) = Γ (n) for all n ≥ 2.

We now introduce a lemma that will be used in the proof.

Lemma 6: Let {Q(n)
I } and {Q(n)

II } be two error evolu-

tions satisfying (8) with error increase matrices ∆
(n+1)
I and

∆
(n+1)
II , respectively. For the same (in, jn) and p

(n)
b for all

n ≥ 1, if Q
(n0)
I ! Q

(n0)
II for an n0 ≥ 1 and ∆

(n+1)
I ! ∆

(n+1)
II

for n ≥ n0, then Q
(n)
I ! Q

(n)
II for all n ≥ n0.

Proof: Note that the recursive equation (8) can be equiv-

alently expressed as (81). Suppose that Q
(n)
I ! Q

(n)
II for an

n ≥ n0. Then by (81) and the fact that ∆
(n+1)
I ! ∆

(n+1)
II ,

we have

Q
(n+1)
I =

(
[Q(n)

I ]−1 +C
(n)
injn

)−1
+∆

(n+1)
I

!
(
[Q(n)

II ]−1 +C
(n)
injn

)−1
+∆

(n+1)
II = Q

(n+1)
II .

Also, Q
(n0)
I ! Q

(n0)
II . By induction, Q

(n)
I ! Q

(n)
II for all

n ≥ n0.

Now we begin to prove Proposition 7 via four steps:

1) prove that {Γ (n)} provides a lower bound for {Q(n)};

2) prove that {Γ (n)} provides a lower bound for {Γ (n)};
3) prove the convergence of {Γ (n)}; and

4) derive universal lower bound on NLE based on {Γ (n)}.

1) {Γ (n)} Provides Lower Bound for {Q(n)}: We start by
proving the following lemma.

Lemma 7: Consider the error evolution {Q(n)}n≥1 satis-
fying (8) and the reference evolution {Γ (n)}n≥1. For the
same sequence of selected measurement pairs {(in, jn)}n≥1,
Q(n) ! Γ (n) for all n ≥ 2.

Proof: Suppose Q(n) ! Γ (n) for an n ≥ 2. Let

Q̃(n+1) =
(
[Γ (n)]−1 +C

(n)
injn

)−1
+ δ I2Na .

Then by Lemma 6 with ∆
(n+1)
I = ∆

(n+1)
II = δ I2Na , we have

Q(n+1) =
(
[Q(n)]−1 +C

(n)
injn

)−1
+ δ I2Na ! Q̃(n+1) .

Consider that in, jn ∈ Na. Then following the reference evo-
lution, Q̃(n+1) −Γ (n+1) is a matrix with the same (in, in)th,
(in, jn)th, (jn, in)th, and (jn, jn)th blocks as those of the ma-

trix
(
[Γ (n)]−1 +C

(n)
injn

)−1
, and zero blocks elsewhere. Since
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(
[Γ (n)]−1+C

(n)
injn

)−1
is positive definite, Q̃(n+1)−Γ (n+1) is

positive semidefinite, i.e., Q̃(n+1) ! Γ (n+1). Thus, we have

Q(n+1) ! Q̃(n+1) ! Γ (n+1).

Following a similar argument, the above relationship also
holds for in ∈ Na and jn ∈ Nb. Moreover, we have
Q(2) ! ∆(2) ! δ I2Na = Γ (2) according to (81). By
induction, we have Q(n) ! Γ (n) for all n ≥ 2.

2) {Γ (n)} Provides Lower Bound for {Γ (n)}: Let Γ
(n)
(1) !

Γ
(n)
(2) ! · · · ! Γ

(n)
(Na)

and Γ
(n)
(1) ! Γ

(n)
(2) ! · · · ! Γ

(n)
(Na)

be

the ordered 2 × 2 principal submatrices of Γ (n) and Γ (n),
respectively. Then we have the following result.

Lemma 8: For any sequence of selected measurement pairs
{(in, jn)}n≥1, the reference evolution {Γ (n)}n≥1 satisfies

Γ
(n)
(i) ! Γ

(n)
(i) for all i ∈ Na and n ≥ 2.

Proof: Suppose Γ
(n)
(i) ! Γ

(n)
(i) for all i ∈ Na and an

n ≥ 2. Starting from the matrix Γ (n), follow the reference
evolution for one time interval with the selected measurement
pair (in, jn), and let Γ̃ be the resulting matrix with ordered

2× 2 principal submatrices Γ̃(1) ! Γ̃(2) ! · · · ! Γ̃(Na).
Then, by following the update rules in the reference evo-

lution and using the hypothesis Γ
(n)
(i) ! Γ

(n)
(i) for all i ∈ Na,

we have Γ
(n+1)
(i) ! Γ̃(i) for all i ∈ Na. Furthermore, follow-

ing the policy of the one-step optimal scheduling, we have

Γ̃(i) ! Γ
(n+1)
(i) for all i ∈ Na. Thus, Γ

(n+1)
(i) ! Γ̃(i) ! Γ

(n+1)
(i)

for all i ∈ Na. We also have Γ
(2)
(i) = Γ

(2)
(i) = δ I2 for all

i ∈ Na. Then by induction, we have Γ
(n)
(i) ! Γ

(n)
(i) for all

i ∈ Na and n ≥ 2.
3) Convergence of {Γ (n)}: Following the reference evolu-

tion for the one-step optimal scheduling,

• if Na is even, then for n ≥ Na/2+1, the ordered principal

submatrices of Γ (n) are

Naδ

2
I2,

Naδ

2
I2,

(Na − 2)δ

2
I2,

(Na − 2)δ

2
I2, . . . ,

δ I2, δ I2 (123)

• if Na is odd, then for n ≥ (Na + 1)/2 + 1, the ordered

principal submatrices of Γ (n) are

(Na + 1)δ

2
I2,

(Na − 1)δ

2
I2,

(Na − 1)δ

2
I2,

(Na − 3)δ

2
I2,

(Na − 3)δ

2
I2, . . . , δ I2, δ I2 . (124)

From (123) and (124), we have

tr{Γ (n)} =

{(N2

a

2 +Na

)
δ, ∀n ≥ Na

2 + 1, Na is even
1
2 (Na + 1)2δ, ∀n ≥ Na+1

2 + 1, Na is odd.

Thus,

tr{Γ (n)} ≥
(N2

a

2
+Na

)
δ , ∀n ≥

⌈Na

2

⌉
+ 1 . (125)

4) Universal Lower Bound on NLE: For any sequence of
selected measurement pairs {(in, jn)}, we have tr{Q(n)} ≥
tr{Γ (n)} for all n ≥ 2 by Lemma 7, and tr{Γ (n)} ≥
tr{Γ (n)} for all n ≥ 2 by Lemma 8. These results imply

that tr{Q(n)} ≥ tr{Γ (n)} for all n ≥ 2, which together with
(125) leads to (41).

APPENDIX V
PROOFS OF RESULTS IN SECTION VI

A. Proof of Proposition 9

Following (44), we have

Q̆(2) = Q̆(1) − Ῠ
(1)
i1j1

+ ∆̆(2) . (126)

By (46), (47), (4a), and (7), following the definitions of ϕ̆(m)
imjm

,

ε̆(m)
imjm

, and ∆̆(m), and by applying the matrix inversion lemma
[85] (for the non-Bayesian case), we have

Q̆(2) =
(
[ Q̆(1)]−1 +C

(1)
i1,1j1,1

)−1
.

Similarly, we have

Q̆(3) =
(
[ Q̆(2)]−1 +C

(1)
i1,2j1,2

)−1

=
(
[ Q̆(1)]−1 +C

(1)
i1,1j1,1

+C
(1)
i1,2j1,2

)−1
.

Following this procedure and using (45), we have

Q̆(L+1) =
(
[ Q̆(1)]−1 +

∑L

l=1
C

(1)
i1,lj1,l

)−1
+∆(2) . (127)

Since Q̆(1) = Q(1), we have Q̆(L+1) = Q(2) by (127) and
(43). Following similar argument as above, we have Q̆(m) =
Q(n) for m = (n− 1)L+ 1 and n ≥ 1.

B. Proof of Proposition 11

Following derivations similar to those in Appendix III and
using (48), we can show that the expected error reduction can
be lower bounded as

E
{
tr{Ῠimjm}

∣∣ Q̆
}
≥

ζb

(
tr{Q̆i⋆mi⋆m

}
)2

2
(
tr{Q̆i⋆mi⋆m

}+ 2εL
)

for the opportunistic scheduling strategy and

E
{
tr{Ῠimjm}

∣∣ Q̆
}
≥ ζb(tr{Q̆})2

2Na(tr{Q̆}+ 2NaεL)

for the random scheduling strategy, which together with

Proposition 10 with υ(Q̆
(m)

) = tr{Q̆
(m)

i⋆n i
⋆
n
} and υ(Q̆

(m)
) =

tr{Q̆
(m)

} lead to (54) and (53), respectively.

C. Proof of Proposition 12

The proof is similar to that in Appendix IV, and a sketch
is provided here. We first modify the reference evolution
provided in Appendix IV as follows. Let Γ (1) = O2Na . For
m = kL with k ≥ 1,

• if im, jm ∈ Na, then Γ
(m+1)
imim

= Γ
(m+1)
jmjm

= δ I2,

Γ
(m+1)
imjm

= Γ
(m+1)
jmim

= O2, and Γ
(m+1)
ii = Γ

(m)
ii + δ I2,

∀ i ̸= im, jm;

• if im ∈ Na and jm ∈ Nb, then Γ
(m+1)
imim

= δ I2 and

Γ
(m+1)
ii = Γ

(m)
ii + δ I2, ∀ i ̸= im.

For other m ≥ 1,

• if im, jm ∈ Na, then Γ
(m+1)
imim

= Γ
(m+1)
jmjm

= Γ
(m+1)
imjm

=

Γ
(m+1)
jmim

= O2, and Γ
(m+1)
ii = Γ

(m)
ii , ∀ i ̸= im, jm;

• if im ∈ Na and jm ∈ Nb, then Γ
(m+1)
imim

= O2 and

Γ
(m+1)
ii = Γ

(m)
ii , ∀ i ̸= im.
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TABLE II
ORDERED 2× 2 PRINCIPAL SUBMATRICES OF {Γ (m)}

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 · · ·

O2 O2 δ I2 δ I2 δ I2 δ I2 · · ·

O2 O2 δ I2 δ I2 δ I2 δ I2 · · ·

O2 O2 δ I2 O2 δ I2 O2 · · ·

O2 O2 δ I2 O2 δ I2 O2 · · ·

Next, let {Γ (m)}m≥1 be the reference evolution for the
one-step optimal scheduling introduced in Appendix IV. Fol-
lowing arguments similar to those in Appendix IV, we have
tr{Γ (m)} ≤ tr{Γ (m)} ≤ tr{Q̆(m)} for all m ≥ 2 and
all sequences of selected measurement pairs {im, jm}m≥1.
Furthermore, following the update rules in the reference
evolution and the policy of the one-step optimal scheduling,
{tr{Γ (m)}}m≥1 becomes a periodic sequence with period L
after finite number of steps, which leads to the lower bound
in Proposition 12.

The reason that {tr{Γ (m)}}m≥1 converges to a periodic
sequence with period L is that the update rule in the above
reference evolution for m = kL with k ≥ 1 is different from
that for other m ≥ 1. For example, the ordered 2×2 principal
submatrices of {Γ (m)}m≥1 for Na = 4 and L = 2 are shown
in Table II. Starting from m = 3, the sequence of the ordered
2 × 2 principal submatrices become periodic with period 2.
Thus, {tr{Γ (m)}}m≥1 converges to a periodic sequence with
period 2.
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