
SoftwareX 12 (2020) 100586

a

b

(

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

GOPY: A tool for building 2D graphene-based computationalmodels
Sebastian Muraru a,∗, Jorge S. Burns a, Mariana Ionita a,b
Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania

a r t i c l e i n f o

Article history:
Received 25 March 2020
Received in revised form 30 August 2020
Accepted 1 September 2020

Keywords:
Graphene
Graphene derivatives
Computational models
PDB

a b s t r a c t

GOPY is a free and open-source Python tool specifically written to automate the generation of 2D
graphene-based molecular models such as pristine graphene (PG) and several graphene derivatives
i.e. graphene oxide (GO), reduced graphene oxide (rGO), aminated polyethylene glycol functionalised
reduced graphene oxide (rGO-PEG-NH2), and N-doped graphene (NG) in the Protein Data Bank file
format (PDB). These models are generally built manually, but the process can become lengthy and
cumbersome. That is especially the case when investigating larger molecules such as those used in
Molecular Dynamics (MD) simulations. Using GOPY significantly speeds up the process from hours to
minutes, reducing potential bias that may come with the manual placement of functional groups on a
graphene layer. Moreover, the building procedure becomes effortless for the researcher, granting the
possibility of producing larger and more complex molecular models than one would be able to build
manually. Of its more intensive tasks, the generation of a 4 x 4 nm2 rGO-PEG-NH2 layer takes about
9 min on a CodeOcean capsule. Each model is generated in the PDB format, which is easily convertible
to a wide array of other molecular formats.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current Code version 1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_144
Legal Code License GPL
Code Versioning system used none
Software Code Language used Python 3.6
Compilation requirements, Operating environments & dependencies Numpy, Scipy
If available Link to developer documentation/manual https://github.com/Iourarum/GOPY/blob/master/README.md
Support email for questions sebmuraru@gmail.com

Software metadata

Current software version 1.0
Permanent link to executables of this version https://github.com/Iourarum/GOPY
Legal Software License GPL
Computing platform/Operating System Microsoft Windows, Linux, OS X
Installation requirements & dependencies Numpy, Scipy (Python 3.6)
If available Link to user manual — if formally published include a reference to
the publication in the reference list

https://github.com/Iourarum/GOPY/blob/master/README.md

Support email for questions sebmuraru@gmail.com

∗ Corresponding author.
E-mail addresses: sebmuraru@gmail.com (S. Muraru), jpjsburns@gmail.com

J.S. Burns), mariana.ionita@polimi.it (M. Ionita).

1. Motivation and significance

Graphene, among novel 2D materials, exhibits exceptional
electronic, magnetic, optical, mechanical and thermal proper-
ties [1–6]. This is essentially due to its unique 2D sp2 hybridised
https://doi.org/10.1016/j.softx.2020.100586
2352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100586
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100586&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_144
https://github.com/Iourarum/GOPY/blob/master/README.md
mailto:sebmuraru@gmail.com
https://github.com/Iourarum/GOPY
https://github.com/Iourarum/GOPY/blob/master/README.md
mailto:sebmuraru@gmail.com
mailto:sebmuraru@gmail.com
mailto:jpjsburns@gmail.com
mailto:mariana.ionita@polimi.it
https://doi.org/10.1016/j.softx.2020.100586
http://creativecommons.org/licenses/by/4.0/


S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

n
a
o
f
s
u

g
i

etwork of carbon atoms arranged in a honeycomb lattice. The
ddition of different functional groups on its surface, the creation
f holes or the doping of the graphene layer are some modi-
ications that can critically alter the properties of a graphenic
heet [7]. All of these aspects make graphene and its derivatives
seful in a wide array of scenarios [7,8].
Besides being intensely used in wet laboratory research,
raphene is receiving significant attention in computational stud-
es, which complement experimental techniques. In silico ap-
proaches, such as Molecular Dynamics (MD) simulations, are
used to provide unique perspectives unachievable through ex-
perimental means alone. They allow researchers to study the
interactions occurring between molecules of interest at a nano-
scale viewpoint. This aspect makes both the design and testing
of molecular systems more accessible when compared to setting
up laboratory experiments, while also allowing for finer tuning.
Resulting insights can highlight what may otherwise remain
undetectable in an experimental setting and improve laboratory
protocols.
Graphene has been involved in a multitude of MD studies in

diverse areas such as graphene-based biosensors [9–12], sepa-
ration membranes [13–18], hybrid materials [19,20] and inves-
tigations of other phenomena [21–29]. A necessary step before
running any MD simulation involves building the molecular mod-
els of interest. Thus far, we are not aware of an existing solution
for automatically generating models of graphene-based 2D mate-
rials beyond pristine graphene (PG), e.g. the NanoTube plugin of
VMD [30]. We assume most computational models of graphene
oxide (GO), reduced graphene oxide (rGO) and other forms of
graphene used in computational research were built manually
using software similar to Avogadro [31]. Unfortunately, manually
adding functional groups to a graphene-layer is a time-consuming
process, subject to potential bias and unsuitable for the gen-
eration of larger and more complex models. Considering these
limitations, we have developed GOPY, which has been used in
our previous work [12] to generate graphene-based molecular
models, and made it available at https://github.com/Iourarum/
GOPY. GOPY can be used to generate files of pristine graphene,
graphene oxide, reduced graphene oxide, aminated polyethylene
glycol functionalised reduced graphene oxide (rGO-PEG-NH2) and
N-doped graphene (NG) in the Protein Data Bank file format
(PDB). We foresee our tool providing a smarter alternative to
manually building graphene-based computational models.

2. Software description

2.1. Software architecture

Overview
GOPY is written in Python 3 and makes use of the scipy and

numpy libraries. The tool can be used to generate one of the fol-
lowing five molecular models: pristine graphene, graphene oxide,
reduced graphene oxide, aminated polyethylene glycol function-
alised reduced graphene oxide and N-doped graphene. The main
logical approach behind each of the five different functionalities
is pivoted on two classes, called Atom() and Typical_Bond(), and
the identify_bonds function.
Atom() class: Each object instance of this class contains the

usual information stored in a PDB file, thus the following instance
attributes: atom_number, atom_name, residue_name, residue_
number and the X, Y and Z coordinates of the atom.
Typical_Bond() class: Each object instance of this class has a

length and an identity instance attributes. Object instances are
supposed to describe a bond that can form between two atomic
species in terms of the bond’s typical length. The identity at-
tribute is made from the corresponding atom and residue names

of the two species and helps in selecting appropriate distances to
determine whether a bond is formed, based on the atomic species
involved.
Importing a PDB file: GOPY allows one to import a PDB file

containing either a PG or a GO layer through the read_in_graphene
and read_in_GO functions. Formatting of the PDB files should
respect the guidelines shown in Fig. 1: atoms making up the
graphene layer are expected to be named ‘‘CX’’ or ‘‘CY’’ and
belong to a residue named ‘‘GGG’’. Similarly, when importing
a GO layer, atoms belonging to carboxyl, epoxy and hydroxyl
groups should also respect the naming rules shown in Fig. 1 and
belong to residues named ‘‘C1A’’ for carboxyl, ‘‘E1A’’ for epoxy
and ‘‘H1A’’ for hydroxyl groups. If the PG layer was generated
using VMD, GOPY will by default consider ‘‘C ␣␣␣GRA ␣X’’ to
be ‘‘CX ␣␣GGG ␣␣‘‘. Only the recognised atoms are going to be
imported and become new object instances of the Atom class.
The identify_bonds function describes the main approach used

in determining whether placement of new atoms, such as when
adding functional groups to the graphenic surface, can be con-
sidered valid or is rather incorrect and must be dropped. Given
an Atom() object, together with a list containing all Atom() ob-
jects, the function is initially used to compile a list of all the
neighbouring atoms within a certain Euclidean distance larger
than all values of the Typical_Bond() objects. The bond that may
form between the Atom() object given as input and each of its
neighbours is then compared to existing Typical_Bond() objects,
looking both at the identity and length attributes. Should these
match, the bond is considered ‘identified’ and is appended to a list
returned by the function. In GOPY, new atoms are placed one by
one and thus the identify_bonds function is essentially expected
to return a list containing only one element for a placement to
be considered successful. The only case where two elements are
expected is at the addition of epoxy groups.
To aid in the process of better understanding and using GOPY,

the user may seek a quick introduction by typing ‘‘python
GOPY.py help’’ or look through the comments in our code avail-
able at: https://github.com/Iourarum/GOPY. Furthermore, both
flowcharts (Supplementary Figure 1) and function charts (Sup-
plementary Figure 2) are available as supplementary materials.

Pristine Graphene Generation
Pristine graphene represents a single layer of sp2 carbon atoms

arranged in a honeycomb lattice [4]. Relying on the function gen-
erate_pristine_graphene, GOPY provides the option of generating
a PG layer given as input the desired X and Y dimensions. The al-
gorithm behind this feature is rather straightforward, generating
a set of coordinates corresponding to the carbon atoms, which
are later written to a PDB file. The bond length between carbon
atoms is considered fixed at 1.418 Åand all atoms will be placed
at coordinate 0.000 on the Z-axis. Therefore, as shown in Fig. 2,
on the X-axis, a new carbon atom is found every 1.228 Å, while
on the Y axis it is found either after 0.709 Åor 1.418 Å. By dividing
the desired length on the X-axis by 1.228 Åand rounding the
result, one obtains the number of ‘‘halves’’ of a hexagonal ring
necessary to reach it. Similarly, the desired Y-length is divided
by 2.127 Å, the sum of 0.709 Åand 1.418 Å, to find the number
of complete hexagons that can be placed vertically. Thus, when
coordinates of one atom in the graphene sheet are known, the
positions of all other atoms should be easily determinable.
The function used to generate the sheet, generate_pristine_

graphene, relies on two other functions: fill_hexagon and fill_row.
Given the number of hexagon ‘‘halves’’, the latter repeatedly calls
on fill_hexagon to fill up one row. The function fill_hexagon is used
to return the coordinates of the vertices of a regular hexagon
given the coordinates of one atom.
Regardless of the values offered as input, the first row is placed

without the atom numbered 6 as a first step (for numbering of
2

https://github.com/Iourarum/GOPY
https://github.com/Iourarum/GOPY
https://github.com/Iourarum/GOPY
https://github.com/Iourarum/GOPY


S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

a
3
n
e
p
r

v
r
a
t
g
i

G

e
a
i
f
o

Fig. 1. Formatting of the expected PDB files that GOPY can use as input, the expected atom and residue names in the case of PG and GO layers containing carboxyl,
epoxy and hydroxyl functional groups.

Fig. 2. Distances observed in a PG layer on the X and Y axis, together with the
numbering of the carbon atoms in a hexagonal ring. In GOPY, all carbon atoms
in a PG layer are placed at coordinate 0.000 on the Z-axis.

toms see Fig. 2). For each row added on top, atoms numbered 2,
and 4 become the ones numbered 1, 5 and 6 on the additional,
ew row. Each new row adds 2.127 Åin height (Y-axis) to the
xisting structure and thus all complete hexagons that can be
laced vertically will be placed as a second step, filling up each
ow to the desired length.
At the end, by dividing the input value of Y to 2.127 Å, the
alue of the decimals is analysed: if closer to 1, an entire new
ow is added; if closer to 0.66 a new row is added without its
tom number 3 or if closer to 0.33, atom number 6 is added on
he first row. Thus, following these steps, the dimensions of the
enerated layer will be as close as possible to the ones given as
nput.

raphene Oxide Generation
Graphene oxide represents chemically modified graphene with
xtensive oxidative modification of the basal plane resulting in
structure comprising a large number of oxygen functionalities,
ncluding carboxyl (-COOH), hydroxyl (-OH) and epoxide (-O-)
unctional groups, with a C/O atomic ratio subject to the method
f synthesis [32].

Generation of a GO model relies on the create_GO function. The
function requires as input the path to a PDB file, describing a PG
layer, and the desired number of carboxyl, epoxy and hydroxyl
groups to be added. Addition of the functional groups on the
PG layers is performed using a simple, geometrical approach.
This technique is dependent on known bond lengths, stored as
objects in the Typical_Bond() class and known molecular angles
formed between the atoms of the functional groups. The atoms
are added randomly, either above or below the PG layer, one at a
time. Placement is considered successful if a newly added atom is
found to have only one bond, determined distance-wise using the
identify_bonds function. The epoxy group is an exception, as two
bonds are expected for successful placement. Carboxyl groups are
only placed on the carbon atoms at the edges of the PG layer,
which are supposed to have at most two detectable bonds and
should not already be connected to a functional group. Hydroxyl
and epoxy groups are placed everywhere on the PG layer. The
epoxy group requires two available carbon atoms, the second
being chosen randomly out of those bonded to the first.
For illustrative purposes, placement of a (-COOH) or (-OH)

functional group follows the following steps: (1) initially, a func-
tional group is chosen from a list containing all functional groups
that still have to be added; (2) a carbon atom on the graphene
layer is picked randomly from those compatible with the selected
functional group; (3) the first atom of the functional group is
added according to typical bond lengths and molecular angles;
a test on whether the new atom forms only one valid bond
with the carbon atom picked at step (2) is performed using the
identify_bonds function; if false, everything goes back to step (2)
for a maximum of 50 times; (4) the rest of the atoms of the
functional group are added in a similar manner, one by one;
(5) when all atoms of a functional group have been successfully
placed then those atoms are added to the list of Atom() objects.
Placement of an epoxy group is executed following similar steps,
though it requires two valid bonds to two carbon atoms that also
form a bond between themselves.
The functional groups, the distances between the correspond-

ing atoms and a 3 nm x 3 nm generated GO layer are shown in
Fig. 3.

Aminated Polyethylene Glycol Functionalised Reduced Graphene Ox-
ide Generation
Aminated polyethylene glycol-functionalised reduced

graphene oxide is a form of functionalisation that introduces a
PEG spacer to keep the amino group away from the GO surface
and alter physiochemical properties [33]. Obtaining a rGO-PEG-
NH2 molecule involves reduction of GO, partly restoring proper-
ties of pristine graphene by removing oxygen-containing groups
from its surface [34].
Using GOPY, chains with the formula –NH-(C2H4O)2-C2H4-NH2

can be placed as functional groups on a graphenic layer. In this
3



S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

d
f

s
s
G
s

t
a
c
c
a
a
t

c
p
a
e
s
l
s
i
e
t
w
i

Fig. 3. 3D visualisations of A. carboxyl group B. epoxy group C. hydroxyl group and D. graphene ring. Schematic representations and corresponding inter-atomic
istances of E. carboxyl group, F. epoxy group, G. hydroxyl group and H. graphene ring; I. 3D visualisation of a 3 x 3 nm2 GO layer and the corresponding regions
rom which A.-D. were generated.

cenario, these molecules are 25 atoms long and display a linear
tructure. Thus, using the same placing strategy as in the case of
O, based purely on known bond lengths and angles, was found
uboptimal in terms of accuracy.
Given that this graphene derivative is obtained in the labora-

ory starting off with a GO molecule, the main function
dd_NH_PEG_NH2 relies on a GO layer to be imported before pro-
eeding to the generation of the rGO-PEG-NH2 molecule. The per-
entages of carboxyl, epoxy and hydroxyl groups to be removed
re required as input. All removed epoxy and hydroxyl groups
re replaced with the linear molecules that were mentioned in
he first paragraph.
Each atom of the linear molecule is placed one at a time,
hecking that it forms only one identifiable bond to the atom
laced beforehand. To maximise the chances for valid placements
nd optimise the speed of the process, the following strategy was
mployed: knowing the already existing atom that the new one is
upposed to bind to, and the typical bond length between them, a
arge number of random points are uniformly distributed on the
urface of a sphere. The coordinates of the centre of the sphere are
dentical to the coordinates of the existing atom and its radius is
qual to the typical bond length, see Fig. 4A. This is done through
he hydrogen_coord_gen function, which places one random point
ith the coordinates X, Y and Z on the surface of a sphere centred
n X0, Y0, Z0 with radius r:

θU (0, 2π) cosαU (−1, 1) X = X0 + r × cosθ × sinαY
= Y0 + r × sinθ × sinαZ = Z0 + r × cosα

One of the many points is picked at random and its coordi-
nates would be used for the new atom. However, in order to
prevent it from being too close to nearby atoms, points that are
within a certain distance of neighbours, correlated to typical bond
lengths, are first removed leading to point distributions as shown
in Fig. 4A. The validity of placing the new atom at the same
coordinates as the chosen point is tested using the identify_bonds
function, expecting only one bond. Better placement success rates
were achieved when adding the H atoms afterwards of the C,
O and N atoms making up the skeleton of the linear molecules.
Figs. 4B and C display 3D visualisations of a successfully gener-
ated 3 nm x 7.5 nm rGO-PEG-NH2 molecule, while examples of
resulting chain geometries can be seen in Fig. 4D. Visualisations
of point distributions on a sphere were drawn using Mayavi [35].
The strategy described in this case can be improved by consid-

commonly used in an energy minimisation step in MD, further
cropping down the initial point distribution. With the current
implementation, GOPY can generate a 4 x 4 nm2 rGO-PEG-NH2
molecule with 106 chains of 25-atoms in about 9 min on a
CodeOcean capsule.
In a typical run, the first atom of the linear chain, called N2,

is placed following the steps: (1) a carbon atom previously con-
nected to a functional group is chosen at random; (2) all carbon
atoms bound to the atom from step (1) are found and placed
in a list; (3) a large number of random points are distributed
uniformly on the surface of a sphere, with its centre at the atom
from step (1) and its radius defined as the typical bond length
between the N2 atom and the carbon atom; (4) spheres with their
centres at the atoms from step (2) and radii defined as the typical
bond lengths between N2 and carbon atoms; (5) all points placed
at (3) situated within the volumes of at least two spheres are
removed and a point is picked at random out of those left; (6)
the atom N2 is placed at this location if the chosen point respects
the above or below placement of the removed functional group
previously bound to the carbon atom from step (1) and has only
one identifiable bond when using the identify_bonds function. The
rest of the atoms making up the chain are placed in a similar
manner.

Hole generation
The function hole_generation takes as input the path to a PG

layer in the PDB format, the desired number of holes and an
interval describing their sizes in terms of the number of atoms to
be removed. In addition, one should also specify whether the hole
should grow in an uni-directional or multi-directional manner
and whether it should be allowed to fuse with other holes or not
touch the edges of the layer or other existing holes, as shown in
Fig. 5. The size of the hole is chosen randomly from the given
interval, while the first atom to be removed in order to create a
new hole is also picked randomly. All small pieces of the graphene
layer made of less than six atoms that do not form any bonds with
the rest of the layer, at the end of the hole generation process, are
removed.
Creating a hole in a PG layer involves the following steps:

(1) a list of all available carbon atoms is generated using the
get_map_anywhere function; (2) a list of the carbon atoms sit-
uated on the edges of the graphene layer or existing holes is
generated using the get_contour function; (3) one atom is selected
according to the preferences specified in the input: if the holes
ering parameters such as bond and dihedral angles, which are are allowed to fuse then the atom can be found in the list from

4



S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

t
r
a
r

d
l

(
d

Fig. 4. A. A large number of uniformly distributed random points on the surface of a sphere (C1 , R1) with its centre at the existing atom and the radius equal to
he typical bond length between the existing atom and the new atom that has to be placed. The dotted arrow points to a similar example of uniformly distributed
andom points on the surface of a sphere (C2 , R2) with a part of the points removed due to the intersection with another out-of-plane sphere (C3 , R3) with its centre
t a nearby atom and radius equal to the typical bond length between the nearby atom and the one that has to be placed; B.-C. 3D visualisations of a generated
GO-PEG-NH2 layer from different angles; D. 3D visualisations of resulting geometries of –NH-(C2H4O)-C2H4-NH2 chains.

Fig. 5. A.-D. Examples of generated holes in PG layers A.-B. Holes were generated by taking out only one neighbour of the most recently removed atom (uni-
irectional), leading to more linear looking holes; C.-D. Holes were generated by taking out multiple neighbours of recently removed atoms (multi-directional),
eading to more oval-shaped holes; Holes in A. and C. were allowed to touched edges when growing, while B. and D. were not.

2), otherwise it should only be found in (1); its neighbours are
etermined using the identify_bonds function; (4) growing the
hole is done according to the specified criteria: ‘‘uni-directional’’
randomly picks one of the neighbours of the atom from (3);
‘‘multi-directional’’ will pick all available neighbours; ‘‘interior’’
will prevent the removal of atoms found in the list at step (2);
‘‘exterior’’ allows for any atom from the list of neighbours to be
picked to enlarge the hole; (5) removed atoms become the atom
at step (3) and the process is repeated until the required number
of atoms is removed.

N-Doped Generation
In N-doped graphene, the spin density and charge distribu-

tion of carbon atoms is influenced by the neighbouring nitrogen
dopants, which induces the ‘‘activation region’’ on the molecule’s
surface, thus making it suitable to a different set of applications
compared to other forms of graphene [36]. The three bonding
configurations that an N atom may adopt on a graphene layer are
known as N-Graphitic, N-Pyridinic and N-Pyrrolic [36,37] and can
be observed in Fig. 6.
The function generate_N_doping requires as input the path to a

PG or GO layer in the PDB format and the desired numbers of N-
Pyridinic, N-Pyrrolic and N-Graphitic N atoms. The carbon atoms
making up the graphene layer and not connected to a functional
group are filtered based on the number of bonds they form in the
following manner: if forming three bonds then the carbon atom
can be replaced by an N-graphitic N atom. Otherwise, if only two
bonds are identified then it can be replaced by an N-Pyridinic
N atom. In the special case in which one of its neighbours can
only form two bonds too, as identified by the identify_bonds
function, then the atom can be replaced by an N-Pyrrolic N atom.
Atoms are then replaced randomly until the desired number of
N atoms is reached. N-Graphitic and N-Pyridinic atoms replace
the carbon atom at exactly the same spatial coordinates. For N-
Pyrrolic atoms, we take into account the centre of geometry of the
6-atom graphene ring and the centre of geometry of the polygon
formed by the four atoms left when removing the two with only
two bonds each. Placement of the N atom is within 0.3–0.6 Åof

the centre of geometry of the 6-atom ring, while the centre of
geometry of the 4-atom polygon is useful in determining the
direction of placement, away from the 6-atom ring’s centre of
geometry.

3. Illustrative examples

Illustrative examples of generated atomistic models are shown
in Fig. 7. PG layers are shown on the first row, GO layers on
the second, rGO-PEG-NH2 on the third and N-doped layers on
the fourth. The dimensions of the graphenic layer in each of
the columns are 2 x 2 nm2, 3 x 3 nm2, 5 x 5nm2 and 10
x 10 nm2 in the last two. The GO layers were generated ac-
cording to the formula C20(OH)2(-O-)2(COOH)1 meaning that for
each 20 carbon atoms of the pristine graphene layer, two hy-
droxyl, two epoxy and one carboxyl groups were added ran-
domly above or below the layer. Carboxyl groups were added
only on the edges, while hydroxyl and epoxy groups were dis-
tributed throughout the whole surface of the graphenic layer.
The rGO-PEG-NH2 molecules were generated starting off with the
GO molecules by removing two thirds of the existing carboxyl
groups and replacing all hydroxyl and epoxy groups with the
NH-(C2H4O)2-C2H4-NH2chains. The resulting seemingly random
orientation of the chains is a result of the method described in
the manuscript. N-doped graphene molecules were created using
the generated PG layers. Some of the molecules presented are
shown to have holes. These were generated following PG model
generation and then corresponding steps of GO, rGO-PEG-NH2
and N-doped generation were taken. The molecules are shown for
illustrative purposes of the capabilities of the presented software
tool, GOPY.

4. Impact

GOPY contributes by providing a simple and easy to use
Python implementation for quickly generating computational

models of graphene-based 2D molecules in the PDB format. The

5



S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

l
G

f
c
.

t
p
m
s
t
c

N
a
a
m
o
m

i
c
d
t
m
s
s

Fig. 6. 3D visualisations of N-doped graphene layers containing A. N-Graphitic atoms B. N-Pyridinic atoms and C. N-Pyrrolic atoms. N atoms are shown in blue.

Fig. 7. Set of illustrative examples showcasing generated PG layers on the first row, GO layers on the second, rGO-PEG-NH2 on the third and N-doped graphene
ayers on the fourth. The dimensions of the presented layers vary according to the column they were placed in. Some of the layers contain holes generated using
OPY.

ormat was chosen because of being both widely used and easily
onvertible into a multitude of other formats such as .mol, .xyz,
gro etc. through tools such as Avogadro [31].
Due to the limited availability of similar tools, we suspect

hat models used in previous computational chemistry studies,
articularly MD, may have been built manually. Building the
odels manually, however, is time-consuming and potentially
ubject to bias. On top of that, it is inefficient and may lead one
o generally avoid building large and complex systems, as is the
ase with the rGO-PEG-NH2 molecule.
Essentially, GOPY can generate PG, GO, rGO, rGO-PEG-NH2 and
-doped graphene models. For each of its functionalities, the tool
llows for plenty of flexibility and can generate a new model in
matter of seconds or up to a few minutes for the larger and
ore complex scenarios. The algorithms involved, especially the
ne used for rGO-PEG-NH2, could be extended to a wide array of
olecules meant to act as functional groups on a 2D surface.
We plan on further developing GOPY with the purpose of mak-

ng it a go-to tool for generating both simple and very complex
omputational models of 2D materials and their derivatives. The
esign of a graphical user interface (GUI) for providing even bet-
er accessibility to researchers not yet confident in using the com-
and line will also be implemented. As a future functionality, the
oftware may be expanded and include an energy minimisation

Thus, through GOPY we aimed to facilitate the use of large
and complex graphene-based molecules by reducing the time
spent when building even complicated functionalisation models
to minutes, minimising potential bias and replacing the laborious
part of the work with a short waiting time when generating
multiple models.

5. Conclusions

GOPY is an open source and simple to use command-line
tool written in Python, implemented for generating graphene-
based molecular models in the PDB format. Using this tool, as
opposed to manually building computational models, aims to
minimise potential bias and replace the gargantuan task of gen-
erating large, multiple and complex models with a short waiting
time of a few minutes. Generating multiple, unique models of
the desired graphene-derivatives becomes an easily approachable
undertaking. We believe GOPY and the underlying molecule-
building strategies presented will be of significant help to future
computational studies, in particular for those exploring graphene
tep, commonly performed in most MD simulations. functionalisation and molecular dynamics simulations.

6



S. Muraru, J.S. Burns and M. Ionita SoftwareX 12 (2020) 100586

D

c
t

A

s
1
o
2
t
m

A

o

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work was supported by a grant of the Ministry of Re-
earch and Innovation, Operational Program Competitiveness Axis
—Section E, Program co-financed from European Regional Devel-
pment Fund under the project number 154/25.11.2016, P_37_
21/2015, ‘‘A novel graphene biosensor testing osteogenic po-
ency; capturing best stem cell performance for regenerative
edicine’’ (GRABTOP).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.softx.2020.100586.

eferences

[1] Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, et al. Recent develop-
ments in membranes for efficient hydrogen purification. J Membr Sci
2015;495:130–68. http://dx.doi.org/10.1016/j.memsci.2015.08.010.

[2] Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene
and graphene-based nanocomposites. Prog Mater Sci 2017;90:75–127.
http://dx.doi.org/10.1016/j.pmatsci.2017.07.004.

[3] Geim AK, Novoselov KS. The rise of graphene. Nature Mater 2007;6:183–
91. http://dx.doi.org/10.1038/nmat1849.

[4] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The new
two-dimensional nanomaterial. Angew Chem Int Ed 2009;48:7752–77.
http://dx.doi.org/10.1002/anie.200901678.

[5] Tiwari SK, Sahoo S, Wang N, Huczko A. Graphene research and their
outputs: Status and prospect. J Sci: Adv Mater Dev 2020;5(1):10–29.
http://dx.doi.org/10.1016/j.jsamd.2020.01.006.

[6] Almonti D, Ucciardello N. Improvement of thermal properties of micro
head engine electroplated by graphene: experimental and thermal simula-
tion. Mater Manuf Process 2019;34(14):1612–9. http://dx.doi.org/10.1080/
10426914.2019.1594263.

[7] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene-based
materials: Synthesis, characterization, properties, and applications. Small
2011;7:1876–902. http://dx.doi.org/10.1002/smll.201002009.

[8] Mohan VB, Lau K-T, Hui D, Bhattacharyya D. Graphene-based materials
and their composites: A review on production, applications and product
limitations. Composites B 2018;142:200–20. http://dx.doi.org/10.1016/j.
compositesb.2018.01.013.

[9] Xu Z, Lei X, Tu Y, Tan Z-J, Song B, Fang H. Dynamic cooperation of hydrogen
binding and π stacking in ssdna adsorption on graphene oxide. Chem Eur
J 2017;23:13100–4. http://dx.doi.org/10.1002/chem.201701733.

[10] Zeng S, Chen L, Wang Y, Chen J. Exploration on the mechanism of DNA
adsorption on graphene and graphene oxide via molecular simulations. J
Phys D: Appl Phys 2015;48:275402. http://dx.doi.org/10.1088/0022-3727/
48/27/275402.

[11] Chen J, Chen L, Wang Y, Chen S. Molecular dynamics simulations of the
adsorption of DNA segments onto graphene oxide. J Phys D: Appl Phys
2014;47:505401. http://dx.doi.org/10.1088/0022-3727/47/50/505401.

[12] Muraru S, Samoila CG, Slusanschi EI, Burns JS, Ionita M. Molecular dy-
namics simulations of DNA adsorption on graphene oxide and reduced
graphene oxide-PEG-NH2 in the presence of Mg2+ and Cl− ions. Coatings
2020;10(3):289. http://dx.doi.org/10.3390/coatings10030289.

[13] Giri AK, Teixeira F, Cordeiro MNDS. Salt separation from water using
graphene oxide nanochannels: A molecular dynamics simulation study.
Desalination 2019;460:1–14. http://dx.doi.org/10.1016/j.desal.2019.02.014.

[14] Lin H, Gong K, Ying W, Chen D, Zhang J, Yan Y, et al. CO2 -philic separation
membrane: Deep eutectic solvent filled graphene oxide nanoslits. Small
2019;15:1904145. http://dx.doi.org/10.1002/smll.201904145.

[15] Chen Y, Zhu Y, Ruan Y, Zhao N, Liu W, Zhuang W, et al. Molecular
insights into multilayer 18-crown-6-like graphene nanopores for K+/Na+
separation: A molecular dynamics study. Carbon 2019;144:32–42. http:
//dx.doi.org/10.1016/j.carbon.2018.11.048.

[16] Liu Q, Wu Y, Wang X, Liu G, Zhu Y, Tu Y, et al. Molecular dynamics
simulation of water-ethanol separation through monolayer graphene oxide
membranes: Significant role of O/C ratio and pore size. Sep Purif Technol
2019;224:219–26. http://dx.doi.org/10.1016/j.seppur.2019.05.030.

[17] Ye H, Li D, Ye X, Zheng Y, Zhang Z, Zhang H, et al. An adjustable permeation
membrane up to the separation for multicomponent gas mixture. Sci Rep
2019;9:7380. http://dx.doi.org/10.1038/s41598-019-43751-0.

[18] Jiao S, Xu Z. Selective gas diffusion in graphene oxides membranes:
A molecular dynamics simulations study. ACS Appl Mater Interfaces
2015;7:9052–9. http://dx.doi.org/10.1021/am509048k.

[19] Yu Z, Feng Y, Feng D, Zhang X. Thermal conductance bottleneck of a
three-dimensional graphene–CNT hybrid structure: a molecular dynamics
simulation. Phys Chem Chem Phys 2020;22:337–43. http://dx.doi.org/10.
1039/C9CP05228C.

[20] Rama P, Bhattacharyya AR, Bandyopadhyaya R, Panwar AS. Tunable energy
barrier for intercalation of a carbon nanotube into graphene nanosheets:
A molecular dynamics study of a hybrid self-assembly. J Phys Chem C
2019;123:1974–86. http://dx.doi.org/10.1021/acs.jpcc.8b10958.

[21] Yang L, Xu H, Liu K, Gao D, Huang Y, Zhou Q, et al. Molecular dynamics
simulation on the formation and development of interlayer dislocations
in bilayer graphene. Nanotechnology 2020;31:125704. http://dx.doi.org/10.
1088/1361-6528/ab5c7e.

[22] Kandezi MK, Lakmehsari MS, Matta CF. Electric field assisted desalina-
tion of water using b- and n-doped-graphene sheets: A non-equilibrium
molecular dynamics study. J Molecular Liquids 2020;302:112574. http:
//dx.doi.org/10.1016/j.molliq.2020.112574.

[23] Huang Y-R, Chen C-L, Tseng Y-H, Chang Chien C-T, Liu C-W, Tai C-C, et al.
Graphene wrinkles affect electronic transport in nanocomposites: Insight
from molecular dynamics simulations. J Mol Graph Model 2019;92:236–42.
http://dx.doi.org/10.1016/j.jmgm.2019.07.016.

[24] Poorsargol M, Alimohammadian M, Sohrabi B, Dehestani M. Dispersion of
graphene using surfactant mixtures: Experimental and molecular dynamics
simulation studies. Appl Surf Sci 2019;464:440–50. http://dx.doi.org/10.
1016/j.apsusc.2018.09.042.

[25] Ebrahim-Habibi M-B, Ghobeh M, Mahyari FA, Rafii-Tabar H, Sasanpour P.
An investigation into non-covalent functionalization of a single-walled
carbon nanotube and a graphene sheet with protein G:A combined
experimental and molecular dynamics study. Sci Rep 2019;9:1273. http:
//dx.doi.org/10.1038/s41598-018-37311-1.

[26] Molla A, Li Y, Mandal B, Kang SG, Hur SH, Chung JS. Selective adsorption
of organic dyes on graphene oxide: Theoretical and experimental analysis.
Appl Surf Sci 2019;464:170–7. http://dx.doi.org/10.1016/j.apsusc.2018.09.
056.

[27] Ai Y, Liu Y, Huo Y, Zhao C, Sun L, Han B, et al. Insights into the adsorption
mechanism and dynamic behavior of tetracycline antibiotics on reduced
graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci:
Nano 2019;6:3336–48. http://dx.doi.org/10.1039/C9EN00866G.

[28] Yuan R, Ju P, Wu Y, Ji L, Li H, Chen L, et al. Silane-grafted graphene
oxide improves wear and corrosion resistance of polyimide matrix:
molecular dynamics simulation and experimental analysis. J Mater Sci
2019;54:11069–83. http://dx.doi.org/10.1007/s10853-019-03672-9.

[29] Jin Y, Sun Y, Chen Y, Lei J, Wei G. Molecular dynamics simulations reveal
the mechanism of graphene oxide nanosheet inhibition of Aβ1−−42 peptide
aggregation. Phys Chem Chem Phys 2019;21:10981–91. http://dx.doi.org/
10.1039/C9CP01803D.

[30] Humphrey W, Dalke A, Schulten K. VMD – VIsual molecular dynamics. J
Mol Graph 1996;14:33–8. http://dx.doi.org/10.1016/0263-7855(96)00018-
5.

[31] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR.
Avogadro: an advanced semantic chemical editor, visualization, and anal-
ysis platform. J Cheminform 2012;4:17. http://dx.doi.org/10.1186/1758-
2946-4-17.

[32] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and
electrochemical applications. Chem Rev 2012;112(11):6027–53. http://dx.
doi.org/10.1021/cr300115g.

[33] Chen J, Liu H, Zhao C, Qin G, Xi G, Li T, et al. One-step reduction
and pegylation of graphene oxide for photothermally controlled drug
delivery. Biomaterials 2014;35(18):4986–95. http://dx.doi.org/10.1016/j.
biomaterials.2014.02.032.

[34] Pei S, Cheng H-M. The reduction of graphene oxide. Carbon
2012;50(9):3210–28. http://dx.doi.org/10.1016/j.carbon.2011.11.010.

[35] Ramachandran P, Varoquaux G. Mayavi: 3D visualization of scientific data.
IEEE Comput Sci Eng 2011;13(2):40–51. http://dx.doi.org/10.1109/MCSE.
2011.35.

[36] Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-
doped graphene: Synthesis, characterization, and its potential applications.
ACS Catal 2012;2(5):781–94. http://dx.doi.org/10.1021/cs200652y.

[37] Xu H, Ma L, Jin Z. Nitrogen-doped graphene: Synthesis, characterizations
and energy applications. J Energy Chem 2018;27:146–60. http://dx.doi.org/
10.1016/j.jechem.2017.12.006.
7

https://doi.org/10.1016/j.softx.2020.100586
http://dx.doi.org/10.1016/j.memsci.2015.08.010
http://dx.doi.org/10.1016/j.pmatsci.2017.07.004
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1002/anie.200901678
http://dx.doi.org/10.1016/j.jsamd.2020.01.006
http://dx.doi.org/10.1080/10426914.2019.1594263
http://dx.doi.org/10.1080/10426914.2019.1594263
http://dx.doi.org/10.1080/10426914.2019.1594263
http://dx.doi.org/10.1002/smll.201002009
http://dx.doi.org/10.1016/j.compositesb.2018.01.013
http://dx.doi.org/10.1016/j.compositesb.2018.01.013
http://dx.doi.org/10.1016/j.compositesb.2018.01.013
http://dx.doi.org/10.1002/chem.201701733
http://dx.doi.org/10.1088/0022-3727/48/27/275402
http://dx.doi.org/10.1088/0022-3727/48/27/275402
http://dx.doi.org/10.1088/0022-3727/48/27/275402
http://dx.doi.org/10.1088/0022-3727/47/50/505401
http://dx.doi.org/10.3390/coatings10030289
http://dx.doi.org/10.1016/j.desal.2019.02.014
http://dx.doi.org/10.1002/smll.201904145
http://dx.doi.org/10.1016/j.carbon.2018.11.048
http://dx.doi.org/10.1016/j.carbon.2018.11.048
http://dx.doi.org/10.1016/j.carbon.2018.11.048
http://dx.doi.org/10.1016/j.seppur.2019.05.030
http://dx.doi.org/10.1038/s41598-019-43751-0
http://dx.doi.org/10.1021/am509048k
http://dx.doi.org/10.1039/C9CP05228C
http://dx.doi.org/10.1039/C9CP05228C
http://dx.doi.org/10.1039/C9CP05228C
http://dx.doi.org/10.1021/acs.jpcc.8b10958
http://dx.doi.org/10.1088/1361-6528/ab5c7e
http://dx.doi.org/10.1088/1361-6528/ab5c7e
http://dx.doi.org/10.1088/1361-6528/ab5c7e
http://dx.doi.org/10.1016/j.molliq.2020.112574
http://dx.doi.org/10.1016/j.molliq.2020.112574
http://dx.doi.org/10.1016/j.molliq.2020.112574
http://dx.doi.org/10.1016/j.jmgm.2019.07.016
http://dx.doi.org/10.1016/j.apsusc.2018.09.042
http://dx.doi.org/10.1016/j.apsusc.2018.09.042
http://dx.doi.org/10.1016/j.apsusc.2018.09.042
http://dx.doi.org/10.1038/s41598-018-37311-1
http://dx.doi.org/10.1038/s41598-018-37311-1
http://dx.doi.org/10.1038/s41598-018-37311-1
http://dx.doi.org/10.1016/j.apsusc.2018.09.056
http://dx.doi.org/10.1016/j.apsusc.2018.09.056
http://dx.doi.org/10.1016/j.apsusc.2018.09.056
http://dx.doi.org/10.1039/C9EN00866G
http://dx.doi.org/10.1007/s10853-019-03672-9
http://dx.doi.org/10.1039/C9CP01803D
http://dx.doi.org/10.1039/C9CP01803D
http://dx.doi.org/10.1039/C9CP01803D
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1186/1758-2946-4-17
http://dx.doi.org/10.1186/1758-2946-4-17
http://dx.doi.org/10.1186/1758-2946-4-17
http://dx.doi.org/10.1021/cr300115g
http://dx.doi.org/10.1021/cr300115g
http://dx.doi.org/10.1021/cr300115g
http://dx.doi.org/10.1016/j.biomaterials.2014.02.032
http://dx.doi.org/10.1016/j.biomaterials.2014.02.032
http://dx.doi.org/10.1016/j.biomaterials.2014.02.032
http://dx.doi.org/10.1016/j.carbon.2011.11.010
http://dx.doi.org/10.1109/MCSE.2011.35
http://dx.doi.org/10.1109/MCSE.2011.35
http://dx.doi.org/10.1109/MCSE.2011.35
http://dx.doi.org/10.1021/cs200652y
http://dx.doi.org/10.1016/j.jechem.2017.12.006
http://dx.doi.org/10.1016/j.jechem.2017.12.006
http://dx.doi.org/10.1016/j.jechem.2017.12.006

	GOPY: A tool for building 2D graphene-based computational models
	Motivation and significance
	Software description
	Software architecture

	Illustrative examples
	Impact
	Conclusions 
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


