

Article

Supplementary Materials: Oligonucleotide Detection and Optical Measurement with Graphene Oxide in the Presence of Bovine Serum Albumin Enabled by Use of Surfactants and Salts

Florentin R. Nitu, Jorge S. Burns * and Mariana Ionită *

Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; florentinnitu@hotmail.com

* Correspondence: jpjsburns@gmail.com (J.S.B.); mariana.ionita@polimi.it (M.I.); Tel.: +40-722-241234 (J.S.B.); +40-21-4022709 (M.I.)

Received: 30 March 2020; Accepted: 20 April 2020; Published: date

Decreasing free FAM-ssDNA and FAM-dsDNA amount.

Figure S1. FAM-ssDNA and FAM-dsDNA separation by electrophoresis on 5% agarose gel. The FAM-ssDNA concentration during hybridization was 100 nM × L⁻¹, the buffer: 10 mM Tris-HCl, pH 8.0, 10 μ g/mL graphene oxide, 23 °C, 1 h incubation time for hybridization, then 1 hour incubation with GO. FAM-ssDNA: cDNA molar ratio 1:1. At concentrations higher than 0.1 mM MgCl₂, both single stranded FAM-ssDNA and double stranded FAM-dsDNA were bound to GO.

Table S1. FAM-ssDNA and FAM-dsDNA relative quantitation by densitometry. Quantity One software from Bio-Rad, (data from Figure S1).

	FAM-DNA	MgCl ₂	Area	Volume	Adj. Vol.	% Adj. Vol	ds band + ss Band
		(mM)	(mm²)	$INT \times mm^2$	$INT \times mm^2$	-	Total Amount
2	ds band	0	2390	211,820.6	44,424.2	10.96	-
3	ds band	0.1	2390	208,765.4	41,369.0	10.20	-
4	ds band	1	2390	199,616.2	32,219.8	7.95	-
5	ds band	10	2390	193,285.2	25,888.8	6.38	-
2	ss band	0	2390	210,297.9	42,901.5	10.58	21.54
3	ss band	0.1	2390	198,728.4	31,332.0	7.73	17.93
4	ss band	1	2390	190,127.5	22,731.1	5.61	13.55
5	ss band	10	2390	183,833.2	16,436.8	4.05	10.44
	Background	_	2390	167,396.4	0.0	N/A	-

www.mdpi.com/journal/coatings

Figure S2. FAM-DNA binding to GO in the presence of SDS, BSA and NaCl. (**A**) Plot of relative fluorescence units when using 8 nM L⁻¹ FAM-ssDNA, (FAM-ssDNA:cDNA, probe:target molar ratio = 1:1) initially in the presence of 6 mM NaCl, 0.065% SDS, 0.1% BSA, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0 and 5 μ g/mL GO. Arrow indicates time point of addition of 60 mM NaCl (**B**) Plot of fluorescence quenching as FAM-DNA binds GO upon addition of 60 mM NaCl. Data for B after t = 0 min equivalent to values in (**A**) after t 30 min.

Figure S3. FAM-DNA binding to GO in the presence of SDS, BSA and NaCl, FAM-DNA+cDNA hybridization control. Plot of relative fluorescence units when using 8 nM L⁻¹ FAM-ssDNA (FAM-ssDNA:cDNA, probe:target molar ratio = 1:1), in the presence of 40 mM NaCl, 0.1% SDS, 0.1% BSA, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0 and 5 μ g/mL GO, at 23 °C. Arrow indicates time point when GO was added. Prior reduction of fluorescence reflected oligonucleotide hybridization detected by photoinduced electron transfer (PET).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).