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Abstract

This is a sequel to a previous paper [1] where a novel approach was presented to the 2-
D Boundary Element analysis of steady incompressible viscous flow. Here the method
is extended to three dimensions. NURBS basis functions are used for describing the
geometry of the problem and for approximating the unknowns. In addition, the arising
volume integrals are treated differently to published work and volumes are described
by bounding NURBS surfaces instead of cells and only one mapping is used. The
advantage of the present approach is that complex boundary shapes can be described
with very few parameters and that no generation of cells is required. For the solution
of the non-linear equations full and modified Newton-Raphson methods are used. A
comparison of the two methods is made on the classical example of a forced cavity
flow, where accurate two-dimensional solutions are available in the literature. Finally,
it is shown on a practical example of an airfoil how more complex boundary shapes
can be approximated with few parameters and a solution obtained with a small number
of unknowns.

Keywords: BEM, isogeometric analysis, flow, incompressible

1. Introduction

Numerous approaches to numerically solve incompressible viscous flow problems
can be found in the literature. Most publications use domain methods such as Finite
Difference, Finite Elements or Finite Volumes ( see for example [2]). A classical exam-
ple to test published numerical methods is the forced flow in a cavity and very accurate
solutions are available for comparison. In [3] for example an extremely fine finite
difference mesh is used for the solution. We will use these solutions to compare our
results.

Here we use the Boundary Element method (BEM). The advantage of this method
is that, for linear problems, unknowns only exist on the boundary and that the solution
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inside the domain satisfies the governing differential equations exactly. For nonlinear
problems, such as the one discussed here, volume integrals arise which need to be dealt
with and this will be discussed in more detail in the successive sections.

1.1. The Boundary Element method for viscous flow
The governing differential equations for steady incompressible viscous flow can

be developed from the laws governing the conservation of mass and momentum and
assume the following differential forms:

∂u j

∂x j
= 0

µ
∂ 2ui

∂x j∂x j
− ∂ p

∂xi
−ρu j

∂ui

∂x j
= 0

(1)

where xi is an Eulerian coordinate, ui is a velocity vector, p is the pressure, ρ the mass
density and µ the viscosity.

The requirement for the BEM is the existence of fundamental solutions of the dif-
ferential equations. These solutions can be found for the nonlinear equations (1) only
if we consider the non-linear terms as body forces. We rewrite the equations as:

∂u j

∂x j
= 0 (2)

µ
∂ 2ui

∂x j∂x j
− ∂ p

∂xi
+ fi = 0

with

fi =−ρu j
∂ui

∂x j
(3)

Fundamental solutions of equations (2) can now be obtained for an infinite domain
by substituting the Dirac-Delta function for the body force.

We define fluid stresses as:

σi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
(4)

and the resulting tractions on boundary S:

ti = σi j n j− pni (5)

where ni is the unit vector normal to the boundary. Using the reciprocal theorem, the
following integral equation is obtained (see for example [4] and [5]):

ci j(y) u̇ j(y) =
∫

S

[Ui j(y,x) t j(x)−Ti j(y,x) u̇ j(x)]dS(x) (6)

+
∫

V0

Ui j(y, x̄) f j(x̄)dV0(x̄)

2
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where ci j(y) is an integral free term, depending on the shape of the boundary, V0 is the
subdomain where body forces are present and S0 is its boundary. x̄ specifies a point
inside V0 and u̇i is the velocity perturbation, i.e. the total velocity can be written as:

ui(x) = u̇i(x)+u0
i (x) (7)

with u0
i the free stream velocity. The values associated with body forces are given by:

b0
ik = ρ uk(x̄) u̇i(x̄) (8)

t0
i = b0

ik nk

Ui j(y,x) and Ti j(y,x) are fundamental solutions for the velocity and traction at point x
due to a source at point y.

In Equation (6) f j involves derivatives of velocities. As has been shown in [6] these
derivatives can be computed by using finite differences or by taking derivatives of an
approximation of the velocity field. In both cases additional computational work needs
to be done and errors are introduced.

Alternatively, the requirement of computing derivatives can be eliminated by ap-
plying the divergence theorem to the volume integral of Equation (6) resulting in 1:

ci j(y) u̇ j(y) =
∫

S

[Ui j(y,x) t j(x)−Ti j(y,x) u̇ j(x)]dS (9)

−
∫

S0

Ui j(y,x) t0
j (x)dS0 +

∫

V0

Ui j,k(y, x̄)b0
jk(x̄)dV0

where Ui j,k(y,x) is the k-th derivative of Ui j(y,x) listed in the Appendix. This is the
approach used here.

1.2. Previous work and novelty of our approach

Internal cells were used in most published methods for the evaluation of the volume
integrals. Cells are basically like finite elements with the subtle difference that they are
only used for evaluating integrals and not for approximating the unknowns (fundamen-
tal solutions, that satisfy the linear differential equation are used to approximate the
unknowns inside the domain). In [5] Equation (9) was used and therefore the compu-
tation of derivatives of velocities was avoided. Solving the forced cavity flow problem
it was found that a very accurate integration scheme and a fine mesh of cells had to be
used to obtain good results. For higher Reynolds numbers it was necessary to use a full
Newton-Raphson method, where the left hand side is updated at every iteration step, to
get results that converge to the right solution. Results for Reynolds numbers up to 1000
are presented, but details on how the tangent operator was determined are missing. In
[7] the same approach as in [5] is used. A solution of the problem with the BEM can
also be found in [6], where Equation (6) is used and the derivatives of velocities are

1Details are presented in [4]

3
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computed using either finite differences or by taking the derivatives of basis functions
that approximate the solution inside cells. A modified Newton-Raphson method with
relaxation is used and good results are obtained for Reynolds numbers up to 1000. All
these solutions are for plane problems only. In [8] the method is extended to three di-
mensions. Results for the forced cavity flow problem are only presented for Reynolds
numbers up to 100.

Isogeometric analysis [9] has gained significant popularity in the last decade be-
cause of the fact that geometry data can be taken directly from Computer Aided Design
(CAD) programs, potentially eliminating the need for mesh generation. The novelty
of our approach is that instead of Lagrange polynomials, that are used in the quoted
published work, NURBS basis functions are used for describing the geometry and the
variation of the unknowns. The use of these functions means that fewer parameters
are needed to describe complex geometries accurately. Using NURBS to approximate
values at the boundary also provides greater flexibility with respect to refinement op-
tions. The geometry independent field approximation method, that has already been
used successfully in [10] and [11], means that approximation of the unknown is uncou-
pled from the geometry definition. Another novelty is that instead of cells, a mapping
method that was first introduced in [12, 13], is used, abolishing the requirement of gen-
erating a cell mesh. Finally, it is shown how the tangent operator is computed and a
comparison between the modified and full Newton-Raphson methods is presented.

2. Numerical implementation

As in majority of previous work on the isogeometric BEM [10, 11, 14, 15, 16, 17,
18, 19, 20] we use the collocation method, i.e. we write the integral equations for a
finite number (N) of source points at locations yn. Changing to matrix notation, the
integral equations are re-written as:

c(yn) u̇(yn) =
∫

S

U(yn,x) t(x)dS−
∫

S

T(yn,x) u̇(x)dS

−
∫

S0

U(yn, x̄) t0 (x̄)dS0 +
∫

V0

U′ (yn, x̄)b0 (x̄)dV0

(10)

with n = {1, . . . ,N}. In the above c(yn) is a matrix containing integral free terms, u̇(x)
and t(x) are vectors containing velocity perturbations and tractions at point x on the
boundary. U(yn,x) and T(yn,x) are matrices containing fundamental solutions listed
in the Appendix. b0 (x̄) is a body force vector at points x̄ inside V0.

Using the Einstein summation convention we can write for the last integrand in
Equation (9):

Ui j,k(y, x̄)b0
jk(x) =U ′i11 b0

11 +U ′i12 b0
12 +U ′i13 b0

13 (11)

+U ′i21 b0
21 +U ′i22 b0

22 +U ′i23 b0
23

+U ′i31 b0
31 +U ′i32 b0

32 +U ′i33 b0
33

4
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With the fundamental solution U ′i jk listed in the Appendix this can be converted into a
matrix multiplication involving the matrix

U′ =




U ′111 U ′112 U ′113 U ′121 U ′122 U ′123 U ′131 U ′132 U ′133
U ′211 U ′212 U ′213 U ′221 U ′222 U ′223 U ′231 U ′232 U ′233
U ′311 U ′312 U ′313 U ′321 U ′322 U ′323 U ′331 U ′332 U ′333


 (12)

and the vector

b0(x̄) =
(

b0
11 b0

12 b0
13 b0

21 b0
22 b0

23 b0
31 b0

32 b0
33
)T (13)

The initial traction vector is given by:

t0 = Nb0 (14)

where

N =




nx ny nz 0 0 0 0 0 0
0 0 0 nx ny nz 0 0 0
0 0 0 0 0 0 nx ny nz


 (15)

The integrals over the domain V0 and boundary S0 need only be evaluated if the
body force term is not zero. In practice this means that volume integration can be
avoided if the body force is negligible, i.e. the integration will usually be restricted to
an area near the boundary.

2.1. Discretization

For the discretization of the surface integrals over S we divide the boundary into
patches and use a geometry independent field approximation approach for each patch,
i.e. we use different basis functions for the description of the geometry and for the field
values.

xe =
I

∑
i=1

J

∑
j=I

Ri j(s, t)xe
i j

u̇e =
Iu

∑
i=1

Ju

∑
j=I

Ru
i j(s, t) u̇e

i j

te =
It

∑
i=1

Jt

∑
j=I

Rt
i j(s, t) te

i j

(16)

In above equations the superscript e refers to the number of the patch, Ri j, Ru
i j and Rt

i j

are NURBS basis functions2 with respect to the local coordinates s, t for defining the
geometry and for approximating velocities and tractions respectively. xe

i j specify the
location of control points and u̇e

i j and te
i j are the parameters for velocities and tractions.

2Considering the vastly increasing literature on isogeometric analysis we refrain from presenting the
equations for NURBS. The interested reader is referred to [21]

5
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I, Iu, It are the number of parameters for each patch in s-direction and J, Ju, Jt are the
number of parameters in t-direction.

2.2. Discretized integral equations
For establishing the system of equations it is convenient to simplify the description

of the boundary values by introducing one subscript instead of two:

u̇e =
Ku

∑
k=1

Ru
k(s, t) u̇e

k

te =
Kt

∑
k=1

Rt
k(s, t) te

k

(17)

where the parameter points are numbered consecutively first in s and then t direction
and Ku,Kt refers to the total number of parameters.

Inserting the approximations into the integral equations and applying the rigid body
trick for eliminating the free term and singular integration involving Kernel T as out-
lined in detail in [21] the following discretized integral equations can be obtained:

E

∑
e=1

Kt

∑
k=1
4Ue

nkte
k =

E

∑
e=1

Ku

∑
k=1
4Te

nku̇e
k−Tn

Ku

∑
k=1

Ru
k(sn, tn) u̇en

k (18)

+
∫

S0

U(yn, x̄) t0 (x̄)dS0−
∫

V0

U(yn, x̄)b0 (x̄)dV0

for n = 1,2,3 · · ·N

with en specifying the patch that contains the collocation point n and E the total number
of patches. Equation (18) can be re-written as:

E

∑
e=1
4Ue

nte =
E

∑
e=1

[4Te
nu̇e−Te

n0] u̇e (19)

+
∫

S0

U(yn, x̄) t0 (x̄)dS0−
∫

V0

U(yn, x̄)b0 (x̄)dV0

where

4Ue
n =

(
4Ue

n1 4Ue
n2 · · ·

)
(20)

4Te
n =

(
4Te

n1 4Te
n2 · · ·

)

and

Te
n0 =

(
Tn Ru

1(sn, tn) Tn Ru
2(sn, tn) · · ·

)
(21)

if n ∈ e

Te
n0 =

(
0 0 · · ·

)

otherwise

6
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The coefficients of the sub-matrices are given by:

4Ue
nk =

1∫

0

1∫

0

U(yn,x
e(s, t))Rt

k(s, t)J dsdt (22)

4Te
nk =

1∫

0

1∫

0

T(yn,x
e(s, t))Ru

k(s, t)J dsdt

Tn =
E

∑
e=1

1∫

0

1∫

0

T(yn,x
e(s, t)) J dsdt (23)

In the above J is the Jacobian of the transformation from local s, t to global x,y,z
coordinate systems.

After assembly the following system of equations

[U]{t}= ([T]− [T]0){u̇}+{F}0 (24)

is obtained, where [U], [T] are matrices assembled from patch contributions (22) and
{t}, {u̇} are vectors that collect all traction and perturbation velocity components on
points yn. [T]0 is a matrix relating to rigid body modes and {F}0 relates to the integrals
involving body forces. Either t or u must be known on the boundary, so for a mixed
boundary problem we have

[L]{a}= {F}+{F}0 (25)

where [L] contains a mixture of [U], [T] coefficients and {a} contains a mixture
of unknown tractions and velocities. {F} is a vector computed with known boundary
values.

2.3. Evaluation of boundary integrals
The boundary integrals are evaluated efficiently using Gauss Quadrature. To reduce

the number of Gauss points a Quadtree method is used. Details can be found in [13].

3. Basic approach for dealing with volume terms

The basic approach is to solve the problem in an iterative way. First the linear
problem is solved. Then the solution is modified to account for the presence of body
forces.

The procedure can be summarized as follows:
1. Solve the linear problem and determine the velocity perturbation v̇ inside V0.
2. Determine the increment in body force b0 from Equation (8).
3. Compute new right hand side F0 by evaluating the arising volume integral.
4. If full Newton-Raphson, compute a new left hand side
5. Solve for the new right hand side and compute a new increment of velocity per-

turbation v̇.
6. Repeat 2. to 5. until b0 is sufficiently small.

7
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Figure 1: Example of the geometry definition of V0 with the proposed approach. Left: V0 in the global
coordinate system. The bounding surfaces are colour coded and the associated control points depicted by
coloured and numbered hollow squares. Right: the local map. Note that in contrast to the cell based approach
no discretization and only one map is involved.

4. Geometry definition of V0

The first task is the description of the geometry of the subdomain V0. The geometry
of the domain is defined by two NURBS surfaces and a linear interpolation between
them as explained in detail in [13].

We establish a local coordinate system s = (s, t,r)ᵀ = [0,1]3 as shown in Figure 1
and perform the integration in this system and then map it to the global (x,y,z)-system.
The global coordinates of a point x with the local coordinates s are given by

x(s, t,r) = (1− r)xI(s, t)+ r xII(s, t) (26)

where

xI(s, t) =
KI

∑
k=1

RI
k(s, t)xI

k and xII(s, t) =
KII

∑
k=1

RII
k (s, t)xII

k . (27)

The superscript I relates to the bottom (red) surface and II to the top (green) surface
and xI

k, xII
k are control point coordinates. KI and KII represent the number of control

points, RI
k(s, t) and RII

k (s, t) are NURBS basis functions.
Remark 1: It should be noted that in this mapping approach the bottom and top sur-
faces may have a different number of control points.

8
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The derivatives are given by

∂x(s, t,r)
∂ s

= (1− r)
∂xI(s, t)

∂ s
+ r

∂xII(s, t)
∂ s

∂x(s, t,r)
∂ t

= (1− r)
∂xI(s, t)

∂ t
+ r

∂xII(s, t)
∂ t

∂x(s, t,r)
∂ r

= −xI(s, t)+ xII(s, t)

(28)

where for example:

∂xI(s, t)
∂ s

=
KI

∑
k=1

∂RI
k(s, t)
∂ s

xI
k and

∂xII(s, t)
∂ s

=
KII

∑
k=1

∂RII
k (s, t)
∂ s

xII
k . (29)

The Jacobian matrix of this mapping is

J =




∂x
∂ s

∂y
∂ s

∂ z
∂ s

∂x
∂ t

∂y
∂ t

∂ z
∂ t

∂x
∂ r

∂y
∂ r

∂ z
∂ r




(30)

and the Jacobian is J(s) = |J|.

5. Computation of {F}0

Here we discuss the computation of the right hand side during iteration. This in-
volves the evaluation of the integrals in Equation (10) over S0 and V0. In order to limit
the number of internal point evaluations we propose to compute results on grid points
inside V0 and to interpolate to the required Gauss point locations using either linear or
quadratic interpolation (for details see [13]).

5.1. Computation of the surface integral over S0

For the computation of the surface integral the surface is divided into integration
regions, based on the location of the grid points. For it’s evaluation the same procedures
as explained in 2.3 are used. Gauss point values on the surface are extrapolated from
internal points.

5.2. Computation of the volume integral over V0

Here the volume is divided into Ns integration regions. Two adjacent grid points
define the edges of an integration region. For integration region ns the transformation

9
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from s coordinates to ξ = (ξ ,η ,ζ )ᵀ = [−1,1]3 is given by

s = ∆sn
2 (1+ξ )+ sns (31)

t = ∆tn
2 (1+η)+ tns

r = ∆rn
2 (1+ζ )+ rns

where ∆sn×∆tn×∆rn denotes the size of the integration region and sn, tn,rn are the
edge coordinates. The Jacobian of this transformation is Jn

ξ = 1
8 ∆sn ∆tn ∆rn.

The sub vector of {F}V0
0 related to collocation point n can be written as:

FV0
0n =

Ns

∑
ns=1

1∫

−1

1∫

−1

1∫

−1

U′ (yn, x̄(ξ ,η ,ζ )) ḃ0 (x̄(ξ ,η ,ζ ))J(s)Jns
ξ dξ dη dζ (32)

where J(s) is the Jacobian of the mapping between s and x coordinate systems.
Applying Gauss integration we have:

FV0
0n ≈

Ns

∑
ns=1

M

∑
m=1

L

∑
l=1

K

∑
k=1

U′ (yn, x̄(ξm,ηl ,ζk)) ḃ0 (x̄(ξm,ηl ,ζk))J(s)Jns
ξ Wm Wl Wk (33)

where M,L and K are the number of integration points in ξ ,η and ζ directions respec-
tively. To determine the number of Gauss points necessary for an accurate integration
we consider that, whereas there is usually a moderate variation of body force, the Ker-
nel U isO(r−1) so the number of integration points has to be increased if yn is close to
V0.

If the integration region includes the collocation point yn, then the integrand tends
to infinity as the point is approached. To deal with the integration involving the weakly
singular Kernel we perform the integration in a local coordinate system, where the
Jacobian tends to zero as the singularity point is approached. For this we divide the
integration region into tetrahedral sub-regions. The transformation from the local ξ
coordinate system, in which the Gauss coordinates are defined, to global coordinates
involves the following transformation steps:

1. from ξ to a local system (σ ,τ,ρ)ᵀ = [0,1]3

2. from (σ ,τ,ρ) to s
3. from s to x

Steps 1 and 3 have already been discussed, so we concentrate on explaining the second
step. Referring to Figure 2 we assume that the singular point is an edge point of the
integration region.

For this case the transformation is as follows: First we determine the local coordi-
nates s1 to s5 of the edge points of the tetrahedron, with 5 being the singularity point.
Next we define the bottom surface using NURBS using points 1 to 4 as control points

10
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Figure 2: Singular volume integration, showing a tetrahedral subregion and the mapping from the local
σ ,τ,ρ system to the s coordinate system. A point with the local coordinates σ = τ = ρ = 0.5 (i.e. ξ = η =
ζ = 0) is shown.

and map the coordinates of the point (σ ,τ) onto this surface:

s0(σ ,τ) =
4

∑
i=1

Ri(σ ,τ)si (34)

where Ri(σ ,τ) are linear basis functions. The final map is obtained by interpolation in
the ρ direction:

s(σ ,τ,ρ) = (1−ρ)s0(σ ,τ)+ρ s5 (35)

The Jacobian matrix of this transformation is given by:

J =




(1−ρ) ∂ s0
∂σ

(1−ρ) ∂ s0
∂τ

s5− s0


 (36)

The Jacobian of this transformation tends to zero as the singular point is approached.
Since the right hand side has to be evaluated for every iteration step it is convenient

to precompute matrices that multiply with the values of b0 at grid points. The value of
body force at any location s, t,r can then be computed using:

b0(s, t,r) =
K

∑
k=1

Mk(s, t,r)b0k (37)

where Mk(s, t,r) are either linear or quadratic interpolation functions, K is the number
of grid points and b0k are values of body force at grid points. With this the following
matrix equation can be written:

{F0}= [B]{b0} (38)

where {b0} is a vector of body force values at grid points and [B] =
(
[B]S− [B]V

)
, the

11
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sub-matrices of which are given by

BS
nk =

∫

S0

U(yn, x̄)Mk NdS0 (39)

and
BV

nk =
∫

V0

U′ (yn, x̄)Mk dV0 (40)

6. Computation of results inside V0

The solution algorithm requires the evaluation of velocity perturbations inside the
inclusion V0. The perturbation velocity vector v̇ at any internal point yi can be com-
puted by3

v̇(yi) =
∫

S

U(yi,x) t(x)dS−
∫

S

T(yi,x) u̇(x)dS (41)

−
∫

S0

U(yi, x̄) t0 (x̄)dS0 +
∫

V0

U′ (yi, x̄)b0 (x̄)dV0

The above equation can be written in matrix notation as:

{v̇}= [A] {t}− [C] {u̇} +[D]{b0} (42)

where matrices [A] and [C] are assembled from element contributions of Kernel basis
function products and [D] =

(
[D]V − [D]S

)
where [D]V and [D]S are computed as shown

in equation (39) and (40) and replacing yn with yi.

7. Iterative procedure

There are two possibilities for the iterative procedure: modified Newton-Raphson
or full Newton-Raphson. In the former the left hand side of the system of equations is
not changed and only a new right hand side is computed at each iteration, whereas in
the latter the left hand side is changed at every iteration.

7.1. Modified Newton-Raphson

The iterative procedure for modified Newton-Raphson is shown in Algorithm 1.
For the first iteration the unknown are computed by

[L]{a}0 = {F} (43)

3The velocities at internal points are referred to as v̇ to distinguish them from the boundary velocities u̇.
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INITIALIZATION;
solve for unknowns {a}0 using Equation (43);
compute velocities at internal points {v̇}0 using Equation (45);
compute body forces {b0}0 using Equation (8);
compute vector {F}0

0 using Equation (38);
k = 1;
ITERATION;
while residual > Tolerance do

solve for unknowns {a}k using Equation (44);
set {a}= β {a}k +(1−β ){a}k−1;
compute velocities at internal points {v̇}k using Equation (46);
set {v}= β {v}k +(1−β ){v}k−1;
compute body forces {b0}k using Equation (8);
compute vector {F}k

0 using Equation (38);
compute residual;
k = k+1

end
Algorithm 1: Modified Newton-Raphson

For the subsequent iteration we have

[L]{a}k = {F}+{F}k−1
0 (44)

where k is an iteration counter.
The velocities at internal points are computed by:

{v}0 = [A] {t}0− [C] {u̇} (45)

for the first iteration and

{v}k = [A] {t}− [C] {u̇}+[D] {b0}k−1 (46)

for the subsequent iterations.
To ensure convergence for higher Reynolds numbers we apply a relaxation scheme:

{a} = β {a}k +(1−β ){a}k−1 (47)
{b}0 = β {b}k

0 +(1−β ){b}k−1
0

where β is a relaxation coefficient (0 < β ≤ 1).

7.2. Full Newton-Raphson

The iterative procedure for full Newton-Raphson is shown in Algorithm 2.
For the first iteration the unknowns and the velocities are computed by the same

equations of the modified Newton Raphson approach, that is by Equation (43) and

13
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INITIALIZATION;
solve for unknowns {a}0 using Equation (43);
compute velocities at internal points {v}0 using Equation (45);
compute body forces {b0}0 using Equation (8);
compute vector {F}0

0 using Equation (38);
k = 1;
ITERATION;
while residual > Tolerance do

compute
[

∂{b0}
∂{a}

]k
and

[
∂{b0}
∂{v}

]k
and update the tangent operator in Equation

(49);
solve the system of equations (49) to compute {∆a}k+1 and {∆v}k+1;
update the unknowns by Equation (52a);
update the velocities by Equation (52b);
compute body forces {b0}k using Equation (8);
compute vector {F}k

0 using Equation (38);
compute the residuals {Ra} and {Rv} by Equations (48);
k = k+1

end

Algorithm 2: Full Newton-Raphson

Equation (45), respectively. For the subsequent iterations we introduce the following
residuals:

{Ra}k = − [L]{a}k +{F}+{F}k−1
0 (48a)

{Rv}k = −{v}k +[A]{t}k− [C] {u̇}+[D] {b0}k−1 (48b)

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The boundary unknown and velocity increments are computed by solving the fol-
lowing first-order Taylor expansions:

−




{Ra}

{Rv}





k

=



− [L]+ [B]

[
∂{b0}
∂{a}

]
[B]
[

∂{b0}
∂{v}

]

[A]+ [D]
[

∂{b0}
∂{a}

]
[D]
[

∂{b0}
∂{v}

]
− [I]




k


{∆a}

{∆v}





k+1

(49)

where

[
∂{b0}
∂{α}

]
=




∂{b0}
∂{α} (X1) {0} · · · {0}

{0} ∂{b0}
∂{α} (X2) · · · {0}

...
...

...

{0} · · · · · · ∂{b0}
∂{α} (XN̄)




(50)

N̄ = NS = Number of boundary nodes if α = a (and the remaining rows are all
zero) and N̄ = NV0 = Number of internal nodes if α = v.

The derivatives of b0 are given by:

∂{b0}
∂{α} (Xi) =




λ1(2u̇1(Xi)+u0
1(Xi)) 0 0

λ1u2(Xi) λ2u̇1(Xi) 0

λ1u3(Xi) 0 λ3u̇1(Xi)

λ1u̇2(Xi) λ2u1(Xi) 0

0 λ2(2u̇2(Xi)+u0
2(Xi)) 0

0 λ2u3(Xi) λ3u̇2(Xi)

λ1u̇3(Xi) 0 λ3u1(Xi)

0 λ2u̇3(Xi) λ3u2(Xi)

0 0 λ3(2u̇3(Xi)+u0
3(Xi))




(51)
For α = a, λi = 1 if the ith boundary condition component is of Neumann type, 0

else, and Xi = x ∈ S.
For α = v, λi = 1 always, and Xi = x̄ ∈V0 but with Xi 6∈ S.
The total updated unknowns and velocities are:

{a}k+1 = {a}k +{∆a}k+1 (52a)
{v}k+1 = {v}k +{∆v}k+1 (52b)

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8. Numerical results

The implementation of the theory is tested here on the classical example of a driven
cavity which has become a standard test problem for fluid dynamics codes. However,
nearly all solution published in the literature are for plane geometry.

The problem is described as follows: An incompressible fluid of uniform viscosity
(µ = 1) is confined within a square region of dimension H = 1×1. The fluid velocities
on the bottom, left and right are fixed at zero, while a unit uniform horizontal velocity
(U) is specified at the top, which is tapered off to zero very near the corners. The
Reynolds number is defined as Re = ρ U H/µ . The example is tested for three different
Reynolds numbers ( 0,100, 400) by changing the value of ρ . We compare the variation
of the horizontal velocity component along a vertical line at y=0.5 with an extremely
accurate plane solution published in [3] (termed reference solution).

To be able to compare with the plane solution there are two possibilities for the def-
inition of the 3-D problem. One is to extend the discretisation into the third dimension
for a distance and then truncate it. In this case errors will be introduced due to the trun-
cation. The other possibility is to define a closed box of dimension 1×1×0.25 and to
apply slip boundary conditions on the two surfaces in the third direction. This approach
was taken in [8] and has the advantage of not producing any truncation error. However,
this approach results in a significantly higher number of degrees of freedom (d.o.f) as
compared with the first approach. In the following we compare the two approaches
with respect to accuracy and d.o.f.

8.1. Truncated geometry

8.1.1. Description of geometry
In this approach we extend the geometry in the x-direction and truncate it without

producing a closed surface. The geometry is defined by 4 linear patches with 4 control
points each as shown in Figure 3. We investigate the error introduced by the truncation
by extending the truncation distance.

Using a geometry independent field approximation, the non-zero Dirichlet bound-
ary condition along the top NURBS patch was defined using the following Knot vectors
for the basis function Ru

i j(s, t)

Ξ = [0,0,0.05,0.95,1,1] (53)
H = [0,1]

with all weights equal to 1. The parameters were specified as:

u̇e =




0 0 0 0
0 1 1 0
0 0 0 0


 (54)

This means that the velocity vector at the top is constant in the x-direction and tapered
off to zero very near to the corners.
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Figure 3: Forced cavity flow: definition of the geometry and boundary conditions for the truncated mesh

x
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z

x
y

z

Figure 4: Approximation/refinement of the unknown: Location of collocation points (filled squares) achieved
by order elevation (from linear to quadratic) and by 3 (mesh1) and 7 (mesh 2) knot insertions in the local
s-direction for each patch. Also shown are the internal points (crosses) for computing the body forces. Red
lines indicate the limits of the integration regions.

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8.1.2. Approximation of the unknown and refinement
The approximation of the boundary unknown (in this case t) was achieved by in-

serting knots and by order elevating the basis functions for describing the geometry
(from linear to quadratic) in the local s-direction. In the t-direction (in the direction of
truncation) the order was reduced (from linear to constant). Two different refinements
were investigated and the resulting locations of collocation points computed using Gre-
ville abscissa [22] are shown in Figure 4.

reference

Figure 5: Convergence of the solution for Re=0 for different distances of the truncated boundary. Plotted is
the magnitude of the horizontal velocity component along a vertical line through the middle.

8.1.3. Approximation of body forces inside domain
The domain for the volume integration was defined by 2 NURBS surfaces which

were identical to the top and bottom patches for defining the problem geometry. The
refinement of the boundary values was accompanied by an increased number of internal
points as shown in Figure 4. Quadratic interpolation between the points was assumed.

8.1.4. Results for Re=0
To ascertain the errors introduced by truncation we compute the results for Re=0

first and compare with a reference plane solution [3]. The convergence of the solution
is shown for mesh 1 as a function of the distance of the truncation. It can be seen that
for truncating the mesh at a distance of 3 a fairly good agreement can be obtained.
Next we investigate the influence of the discretisation on the results. It can be seen in
Figure 6 that the results for mesh 2 (7 knot insertions) agree well with the reference
curve. Mesh 1 has 96 and mesh 2 has 192 d.o.f.

8.1.5. Results for Re=100
In Figure 7 we show the results for the mesh truncated at a distance of 3 and for

mesh 1 and mesh 2. A fairly good agreement can be seen with the reference solution
for all meshes and either modified or full Newton-Raphson (referred to as NR in the
Figure).
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reference

Figure 6: Convergence of the solution for Re=0 for two different discretisations.

Reference

Figure 7: Vertical velocity profile for Re=100 with relaxation and full Newton-Raphson (NR)
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Reference

Figure 8: Vertical velocity profile for Re=400 using relaxation and full Newton-Raphson (NR)

8.1.6. Results for Re=400
In Figure 8 we show the results for the mesh truncated at a distance of 3 and for

mesh 2. It can be seen that the results do not agree well with the reference solution,
with the full Newton-Raphson being closer to it.
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Figure 9: Geometry description for non-truncated problem.

8.2. Non-truncated geometry

In this approach the geometry is not truncated and 2 surfaces are included parallel
to the y-z plane at a distance of 0.25.

8.2.1. Geometry description and boundary conditions
The geometry is described by 6 linear NURBS patches as shown in Figure 9.
The following Boundary conditions are applied:

Patch 1: Dirichlet BC with ux = 0,uy = 1,uz = 0
Patches 2 to 4: Dirichlet BC with ux = 0,uy = 0,uz = 0
Patches 5 and 6: Mixed BC with ux = 0, ty = 0, tz = 0

For patch 1 the velocities were tapered off towards the corner as shown for the
truncated mesh.

8.2.2. Approximation of the unknown and refinement
The approximation of the boundary unknowns was achieved by inserting knots

and by order elevating the basis functions for describing the geometry (from linear to
quadratic) in the s-direction. In the t-direction the basis functions for describing the
geometry were used for patches 1 to 4. For patches 5 and 6 the same refinement as in
s-direction was used for the t-direction. Two different refinements were investigated
and the resulting locations of collocation points computed using Greville abscissa are
shown in Figure 10. The meshes 1 and 2 have 486 and 1734 d.o.f respectively. Mesh
3, that has one additional knot inserted, has 2166 d.o.f.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

x

y

z

x

y

z

Figure 10: Location of collocation points for the two refinements. Left: mesh 1, right: mesh 2

reference

Figure 11: Vertical velocity profile for Re=0 and comparison with plane reference solution.
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Reference

Figure 12: Vertical velocity profile for Re=100 and comparison with plane reference solution.

8.2.3. Results for Re=0
The results for Re=0 are compared with the plane reference solution in Figure 11

and good agreement can be found .

8.2.4. Results for Re=100
In Figure 12 we show the results for Re=100 for the modified and full Newton-

Raphson method. All results are in good agreement.

Reference 

Figure 13: Vertical velocity profile for Re=400 and comparison with plane reference solution.

8.2.5. Results for Re=400
In Figure 13 we show the results for Re=400. For this Reynolds number the mod-

ified Newton Raphson method requires a high number of iterations with a very low
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Figure 14: Velocity vectors for (left) Re=100 and (right) Re=400.

relaxation factor. As can be seen the results are not good. For meshes 2 and 3 with
full Newton-Raphson convergence is achieved with few iterations and the results are
much better. It can be seen that as the number of unknowns is increased the reference
solution is approached. The resulting velocity vectors are shown in Figure 14.

9. Example

The example shown here is mainly designed to demonstrate that the method also
works with more complex geometries and that these can be described with few parame-
ters if NURBS functions are used. It relates to an airfoil in an infinite domain subjected
to a horizontal flow of 1. The geometry of the NACA0018 airfoil was taken from the
internet (www.airfoiltools.com). It was found that a NURBS function of order 2 and
only 5 control points can represent this geometry with good accuracy.

9.1. Description of geometry

Figure 15 shows the description of the boundary with 2 NURBS patches with order
2 in s direction and order 1 in t direction. The mesh is truncated at a distance of 2, to
simulate plane conditions.

9.2. Description of the unknown

Following the geometry independent field approximation philosophy we refine the
NURBS basis functions in the s-direction by inserting 7 knots at (0.25, 0.375, 0.65,
0.75, 0.85, 0.91, 0.95). In the t direction we decrease the order from 1 to 0 (constant
variation). The resulting collocation points are shown in Figure 16. The model has
only 66 d.of.
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Figure 15: Example: Description of the geometry with 2 NURBS patches, showing control points.
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Figure 16: Example: Location of collocation points.
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Figure 17: Example: Definition of V0 with 2 NURBS surfaces.

x y

z

Figure 18: Example: Location of grid points in V0.

9.3. Description of V0

The volume near the airfoil, where we assume nonlinear effects are significant, is
described by NURBS surfaces as shown in Figure 17. The location of the grid points
that were used to determine the Gauss point values with a linear interpolation are shown
in Figure 18.

9.4. Results

For this relatively coarse discretisation of V0, the simulation only converges for a
low Reynolds number. The results velocity vectors for Re=10 are shown in Figure 19.
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Figure 19: Example: Flow vectors for Re=10.

10. Summary and Conclusions

A novel approach to the simulation of steady incompressible viscous flow problems
with the Boundary Element method was presented. For the definition of the geometry
of the problem, NURBS basis functions were used. These functions were refined for
the approximation of the unknowns by order elevation and knot insertion. A unique
feature of our approach is that this refinement is independent of the definition of the
geometry. For the evaluation of the arising volume integrals only one mapping is used
and this contrasts with published methods using cells.

To test the accuracy of the method it was applied to a standard test example, where
accurate plane solutions are available in the literature. Two approaches to simulate the
plane conditions in 3-D were used. One where the mesh is truncated and one where the
domain is closed in the third dimension. For the solution of the non-linear equations
a modified Newton-Raphson (NR) scheme (where the left hand side is not changed)
and a full NR method is used. Good agreement with the reference solution was found
for moderate Reynolds numbers (up to 100) but it was found that for higher Reynolds
numbers the modified NR requires a relaxation scheme to converge and a large num-
ber of iterations. For a Reynolds number of 400 a full NR, using the non-truncated
geometry, was the only method that gave results that were converging to the reference
solution. On an example it was shown that the method also works for more complex
geometry. The main features of our approach are: An accurate geometry description
can be attained with few parameters and no mesh. With the geometry independent field
approximation results can be obtained with a small number of unknowns. The descrip-
tion of the volume, where non-linear effects are assumed to be significant, is simplified.
Finally,it should be noted that computation times for large problems can be significant
but can be reduced considerably using fast methods (see for example [23])

Appendix A. Fundamental solutions

The fundamental solutions for equations (2) for the velocity at point x due to point
sources or forces at y is

U(y,x) = c(R+ I) (A.1)
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with c = 1
32π µ r , I is the identity matrix and

R =




r1 r1 r1 r2 r1 r3
r2 r1 r2 r2 r2 r3
r3 r1 r3 r2 r3 r3


 (A.2)

For the tractions acting on a boundary S:

T(y,x) =−c2 R cosθ (A.3)

where with c2 =
3

4π r2 . In the above r is the distance between x and y, ni is a unit vector
normal to S and

ri =
1
r
(xi− yi) (A.4)

cosθ = ri ni

The derived fundamental solution is

U ′i jk =
1

8πµr2

(
−δi j rk +δ jk ri +δik r j−3ri r j rk

)
(A.5)

where δi j is the Kronecker Delta.
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