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Optimal dynamics in a two-sector model with natural resources and

foreign direct investments

Angelo Antocia, Stefania Ragnia,∗, Paolo Russua

aDepartment of Economics and Business

University of Sassari Via Muroni 25, 07100 Sassari, Italy

Abstract

In this paper we analyze the optimal dynamics in an economy with three factors of production
-labor, a renewable natural resource and physical capital- and two sectors -the “industrial sector”
and the “local sector”. External investors invest in the industrial sector as long as the return on
the invested capital is higher than in the other economies. The activity of the industrial sector
generates a negative impact on the environmental resource. In this context, we show that external
investments may generate path-dependent economic dynamics. More specifically, three station-
ary states may coexist, two saddle points and a repellor. Furthermore, the time evolution of the
stock of the environmental resource is monotonic; that is, a U-shaped path (i.e. the environmental
Kuznets curve) cannot be observed along which the stock is initially decreasing and then becomes
definitively increasing.

Keywords: foreign direct investment; two-sector economic growth model; environmental Kuznets
curve; optimal management of environmental resources; optimal control problems.

1. Introduction

Industrialization processes and global integration of economies have increased the exposure of
local rural communities to foreign direct investments. Unlike industrial activities, local production
is usually very dependent on environmental dynamics. For local populations, natural systems
represent means of subsistence or valuable economic services and assets. It has been estimated
that in some large developing countries ecosystem services and other non-marketed goods account
for a part of the source of livelihood of rural and forest-dwelling poor households wich is between
the 47 percent and the 89 percent on the whole. In these frameworks, local activities are exposed to
multiple sources of pollution produced by the external investors. The unsustainable management
of natural resources in local activities can trigger a vicious circle of poverty and environmental
degradation. Indeed, the struggles of local communities against external agents, which threaten
the environment, increase all over the world; that fact suggests that this interaction may not be
insignificant. Many grassroots protests are against environmental degradation caused by extractive,
fishery and agriculture activities of large firms. Case studies of struggles by poor communities, to
gain control over the natural resources and to deal with injustice and environmental degradation
created by the big companies, have been documented for instance in [1] and [2]. Since the late
Eighties, the impact on poverty and deforestation produced by the expansion of large mechanized
agriculture, livestock and timber activities has been analyzed in [3], [4] and, more recently, in
[5]. In other cases, local communities are negatively affected by processes of industrialization and
urbanization. China provides some of the most symbolic examples of rural communities harmed by
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the arrival of new manufacturing firms. Heavy damages to agriculture and fishery sectors caused
by Chinese industrialization have been documented, among the others, by [6], [7] and [8]. Other
examples are provided by textile activities in India. As shown by [9] for Tamil Nadu, the promotion
of investments in this sector is accompanied by a devastating industrial pollution which is causing
an increasing loss of water and agriculture productivity and a reduction in the cultivable area.
One of the possible mechanisms according to which the industrialization processes may negatively
affect local communities has been highlighted by some recent theoretical works focused on the
undesirable effects of the industrialization processes (see, e.g., [10], [11], [12], [13]). According
to this literature, the environmental degradation -caused by the industrial production- may be
an engine of welfare-reducing economic growth. The vicious mechanism can be summarized as
follows: 1) the industrial activities cause environmental degradation and a consequent reduction
in labor productivity in natural resource-dependent sectors (agriculture, tourism and so on); 2)
the reduction in labor productivity in these sectors incentives individuals to work in the industrial
sector as waged workers; this causes a reduction in equilibrium wages in the industrial sector and
a consequent expansion of the industrial activity; 3) the increase in industrial production causes
further environmental degradation which, in turn, gives rise to a further expansion of the industrial
sector and so on.

As a difference with the above cited theoretical literature, our paper focuses on the positive
effects that the external capital inflows may produce, even though these flows encourage the ex-
pansion of an industrial sector which generates a negative impact on environmental resources. We
develop a dynamic model describing the links between local communities and external investments,
including the negative environmental impact and the job effect of external capital inflows. In our
model, the effect of poverty-reduction of external capital flows operates through the labor market
by creating new labor opportunities in the industrial sector. Our work is complementary to that
of [13], where external investment inflows may generate a self-enforcing growth process related
to an increase in local agents’ poverty. Indeed, we analyze an economy with the same features;
however, as a difference with respect to the analysis developed in [13], we assume that individuals’
labor allocation choices are determined by a benevolent social planner who has the objective of
maximizing individuals’ welfare. In this context, we aim at pointing out those conditions which
allow the external investments to generate an increase in welfare. More specifically, we show how
the optimal labor allocation choices are related to the pollution rate of the industrial sector and
to the carrying capacity of the environmental resources. Even though we consider a very simple
framework, the dynamics generated by our model may exhibit multiplicity of saddle point stable
stationary states. This implies that the expansion of the industrial sector, which in our model is
strictly related to the labor allocation choices of the local community, may be a path-dependent
process.

The article is organized as follows. Section 2 presents the model; sections 3 and 4 investigate
the basic properties of dynamics that emerge from the model; section 5 deals with the numerical
methods used to approximate solutions and section 6 provides the results of some numerical tests;
section 7 concludes.

2. The model setup

We study the dynamics of an economy where the production activities depend on three factors
of production: labor, a renewable natural resource and physical capital. In this economy there
are two sectors, the “industrial sector” and the “local sector”, and economic agents belong to two
different communities, the “External Investors” (I-agents) and the “Local Agents” (L-agents). We
assume that I-agents invest in the industrial sector and do not face credit constraints; that is,
they invest in this economy as long as the return on the produced capital is higher than the ones
in the other economies. The I-agents also hire the labor force provided by the L-agents. In this
respect, the L-agents use their own working capacity partly working as employees for the I-agents
and partly in the local sector, where they directly exploit the natural resource. In order to fix our
ideas, the local sector can be considered as the farming one, even though it may include fishery,
forestry or also tourism. On the other hand, the industrial sector includes all the activities which
are intensive in physical capital and generate a negative impact on the environmental resource.
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This is a stylized scenario, but it can represent the main differences among the sets of options
that local populations and external investors can use to generate their income flows and to protect
themselves from environmental degradation. The use of intensive labor techniques, employment of
family labor and constraints in access to credit markets are often crucial features for the production
activities of local communities. For instance, [14] summarizes a review of empirical literature about
the relationship between poverty and natural resource in developing countries by observing that
the rural poor are almost “assetless”. They depend “critically on the use of common-property
and open access resources for their income”, they rely on small plots of lands and on selling their
labor which is their only other asset. As in [15], we model these settings by excluding that the
local agents can accumulate physical capital and by assuming that they can rely on two productive
inputs, namely their labor and natural capital.

By contrast, external investors usually manage intensive capital activities based on the employ-
ment of wage labor and their companies or firms are able to gain access to capital markets. In
addition, their production is characterized by a high degree of mobility; indeed, it relies on wage
labor, which is also available in other economies, and on physical capital, that can be employed
elsewhere. Moreover the external investors can defend themselves against a reduction in capital
returns in the local economy by moving their capital towards other economies.

Both populations of economic agents are represented by a continuum of identical individuals
and the size of each community is equal to 1. In this respect, we may deal with a “representative”
L-agent and a “representative” I-agent. We assume that the production functions of the two sectors
are concave, increasing and homogenous of degree 1 with respect to their inputs. In particular, the
production function of the representative L-agent is given by

YL = EαL1−α,

where E is the stock of the free access environmental resource, L represents the amount of time
the representative L-agent spends on local sector production and the parameter α satisfies the
condition 0 < α < 1.
The production function of the representative I-agent depends on the investment in physical capital
KI and is defined by the following

YI = δKγ
I (1− L)1−γ , (1)

where the term 1−L represents the L-agent’s labor employed by the representative I-agent as wage
work, δ > 0 is a productivity parameter and 1 > γ > 0.
The time evolution of the stock E is described by

·

E = E(E − E)− ηYI , (2)

where η is a positive parameter which measures the environmental impact caused by the indus-
trial output YI . The positive parameter E represents the carrying capacity of the environmental
resource, that is the value that E would approach in absence of the negative effect generated by
the industrial sector. We do not account for the environmental impact of the local sector, since we
focus on those scenarios where the environmental damage of the local agent production is negligible
compared to that of the industrial sector.

In this framework, the representative I-agent chooses her labor demand 1−L and the investment
in physical capital KI in order to maximize the profit function

ΠI = δKγ
I (1− L)1−γ − w(1− L)− rKI ,

where r and w represent the rental rate of KI (which can be also interpreted as an opportunity
cost) and the wage rate, respectively. Both w and r are considered as exogenously determined by
the representative I-agent. By the way, the wage w is endogenously set in the economy under the
assumption that the labor market is always in equilibrium, while r > 0 is considered an exogenous
parameter whose value is determined in the international markets. We assume that the inflow
of KI is potentially unlimited and, as a consequence, the dynamics of KI is not linked to the
I-agents’ savings but only to the productivity of KI (which, in turn, depends on L and KI). More
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specifically, the representative I-agent chooses L and KI in order to maximize, in each instant of
time, her revenues ΠI ; this gives rise to the following first order conditions

∂ΠI

∂(1− L)
= δ(1− γ)Kγ

I (1− L)−γ − w = 0, (3)

∂ΠI

∂KI

= δγKγ−1

I (1− L)1−γ − r = 0. (4)

Notice that, according to equation (4), the following relationship holds

KI =

(
γδ

r

) 1

1−γ

(1− L). (5)

This means that the investment KI of the I-agent in the industrial sector is proportional to the
labor input 1− L.

The revenues of the representative L-agent are given by

ΠL = EαL1−α + w(1− L).

It is not so difficult to prove that the term w can be obtained by means of the other parameters
δ, γ and r, thus the revenues ΠL depends only on terms E and L. Indeed, we notice that the
representative I-agent chooses 1 − L and KI which satisfy the first order conditions (3) and (4);
therefore, we replace (5) into (3) and obtain the value of the equilibrium wage rate w given by

w = δ(1− γ)

(
δγ

r

) γ
1−γ

.

This relationship can be exploited in ΠL in order to have

ΠL(E(t), L(t)) = E(t)αL(t)1−α + a(1− γ)(1− L(t)), (6)

where we set a = δ

(
δγ

r

) γ
1−γ

. In addition, we employ (5) in (2) and obtain

Ė(t) = f(L(t), E(t)),

with f(L,E) := E(E − E) − ηa(1 − L). In this framework, the social planner has to choose the
function L(t), t ∈ [0,+∞), that maximizes the revenues Π := ΠL defined in (6) and solves the
following optimal control problem:

max
L

∫ +∞

0

e−σtΠ(L(t), E(t)) dt, (7)

subject to

Ė(t) = f(L(t), E(t)), t ≥ 0,

0 ≤ L(t) ≤ 1, t ≥ 0,

E(t) ≥ 0, t ≥ 0, E(0) = E0 ≥ 0,

where the parameter σ > 0 represents the discount rate.

3. Optimal economic dynamics

We consider the interval U = [0, 1], which represents the admissible set for the control variable.
According to the sign of function f(L,E) which defines the dynamics for E(t) in correspondence
with each L ∈ U , it is not so difficult to verify that the state variable is bounded from above by
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the constant value C0 = max{E,E0}, i.e.

0 ≤ E(t) ≤ C0, (8)

for each t ≥ 0. We set X = [0, C0]. Moreover, in Appendix A.1 we prove that the following
properties hold:

(P1) For arbitrary T > 0 there is the closed set X such that for any admissible trajectory E(·) of
problem

Ė = f(L,E), L ∈ U,

its values E(t) belong to X for all t ∈ [0, T ].

(P2) There exists the constant value E ≥ 0 such that the product E · f(L,E) satisfies the rela-
tionship

E · f(L,E) ≤ E(1 + E2), for any L ∈ U, E ∈ X.

(P3) For each E ∈ X, the function L → f(L,E) is affine in control variable L, indeed it has the
form

f(L,E) = f0(E) + f1(E)L, for all L ∈ U, E ∈ X,

where f0 : X −→ R and f1 : X −→ R are constinuously differentiable.

(P4) The set U is a convex compactum in R.

(P5) For any fixed E ∈ X, the function L→ Π(L,E) is concave in variable L.

(P6) There exist positive functions ν and ω on [0,+∞) such that ν(t) → 0 and ω(t) → 0 as
t→ +∞ and, for every admissible pair (L(·), E(·)) ∈ U ×X, the following inequalities hold

e−σt max
L∈U

|Π(L,E(t))| ≤ ν(t), for any t ≥ 0,

∫ +∞

T

e−σt|Π(L(t), E(t))| dt ≤ ω(T ), for any T ≥ 0.

The previous conditions (P1)-(P6) assure the existence of an optimal admissible control L in
problem (7) (see Theorem 15 in [16] as properties (P1)-(P6) are equivalent to assumptions (A1),
(A2), (A5) and (A6) in that paper). Moreover, under the same conditions, the “core” of the
maximum principle can be applied in order to provide the necessary optimality conditions (see
Theorem 17 in [16]). More precisely, we define the current value Hamiltonian

H(L,E, λ) = Π(L,E) + λf(L,E),

where λ represents the current value of costate variable. Then, we state necessary conditions for
the optimal trajectories L(t), E(t):

Ė(t) =
∂H
∂λ

(L(t), E(t), λ(t)), (9)

λ̇(t) = σλ(t)− ∂H
∂E

(L(t), E(t), λ(t)), (10)

where control variable L(t) ∈ U , at each time t, is obtained as the solution of the optimization
problem

H(L(t), E(t), λ(t)) = max
L∈U

H(L,E(t), λ(t)). (11)

For the sake of completeness, we also point out that the so-called normal-form stationarity condition
holds

max
L∈U

H(L,E(t), λ(t)) = σ

∫ +∞

t

e−σsΠ(L(s), E(s)) ds,
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for any t ≥ 0. Assuming problem (11) has got an interior admissible solution (i.e. 0 < L(t) < 1 at
each t), then the first order optimality condition

∂H
∂L

(L(t), E(t), λ(t)) = 0,

has to be satisfied; thus we have

(1− α)

(
E(t)

L(t)

)α

− a(1− γ) + ηaλ(t) = 0.

In this respect, the control variable can be obtained as a function of the remaining variables
according to

L(t) =

(
1− α

a(1− γ)− ηaλ(t)

) 1

α

E(t). (12)

The evolution dynamics for the state and the costate variables can be explicitly written as

Ė(t) = E(t)(E − E(t))− ηa(1− L(t)),

λ̇(t) = (σ − E + 2E(t))λ(t)− α

(
L(t)

E(t)

)1−α

,

where the initial condition E(0) = E0 is known for the state E(t) ≥ 0.

Remark 1. As an alternative, in the case when problem (11) is solved by L(t) = 1 for t in a
suitable time interval, then the optimality condition yields

(1− α)E(t)α − a(1− γ) + ηaλ(t) ≥ 0,

and system (9)-(10) is given by

Ė(t) = E(t)(E − E(t)),

λ̇(t) = (σ − E + 2E(t))λ(t)− αE(t)α−1.

Moreover, in the remaining possible case, if L(t) = 0 represents a solution to problem (11) in a
suitable time interval, then it is possible to state the existence of a neighborhood (0, ε) of the origin
where

(1− α)

(
E(t)

l

)α

− a(1− γ) + ηaλ(t) ≤ 0, for all l ∈ (0, ε).

In that case, the dynamic system for the state and costate variables can be written as

Ė(t) = E(t)(E − E(t))− ηa,

λ̇(t) = (σ − E + 2E(t))λ(t).

We would point out that the model we are dealing with is non-concave. It is evident that it
cannot be solved in closed form. In this respect, as a first step, a qualitative analysis of the solution
may be performed; indeed it is possible and convenient investigating the existence and the features
of possible stationary equilibria for the dynamical system which describes the first order optimality
conditions related to the problem. As a second step, the numerical approach represents the only
means to confirm the qualitative results and to develop a quantitative analysis of the model.

4. Qualitative analysis of the stationary states

The long-run behavior of the solution may be analyzed by studying the existence and the nature
of stationary states for the dynamical system (9)-(10), which is related to the necessary optimality
conditions. We focus on the stationary state analysis for inner values of the control variable (i.e.
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0 < L(t) < 1). For the sake of simplicity, we perform a change of variable and set

z(t) =

(
1− α

a(1− γ − λ(t)η)

) 1

α

;

therefore, we have L(t) = z(t)E(t) in (12). It is not so difficult to verify that the dynamics for
E(t) and z(t) are described by equations

Ė(t) = F (z(t), E(t)), (13)

ż(t) = G(z(t), E(t)), (14)

where

F (z, E) = E(E − E)− ηa (1− zE) ,

G(z, E) =
z

α(1− α)

(
(σ − E + 2E)((1− γ)azα − (1− α))− αηaz

)
.

Our interest is focused on the existence of equilibrium points of the previous differential problem;
then, we search for the solutions z∗, E∗ of the nonlinear system

F (z∗, E∗) = 0,

G(z∗, E∗) = 0,

in the admissible region in R
2 where 0 < L(t) < 1 and E(t) > 0. From this requirement, we obtain

z∗ > 0, E∗ > 0, 1− z∗E∗ > 0 and E∗(E − E∗) > 0 (arising from Ė(t) = 0)). These relationships
yield the following result.

Proposition 1. Any inner admissible equilibrium point (z∗, E∗) for system (13)-(14) lies in the
region of the (z, E)-plane defined by

Ω = {(z, E) ∈ R
2 | z > 0, 0 < E < E, 1− zE > 0}.

In this framework, we define CF and CG as the curves in the phase plane (z, E) where F (z, E) = 0
and G(z, E) = 0, respectively. Their crossing points in Ω represent the equilibria of interest.
Therefore, we are going to analyze the shapes for the branches of both CF and CG which lie in the
admissible region Ω. In the sequel, we set

z̄ =

(
1− α

a(1− γ)

) 1

α

, ẑ =
2
√
aη − E

aη
, z̃ =

z̄

1− α
=

(
1

a(1− γ)

) 1

α

,

and we denote by C the curve where 1− zE = 0, which defines Ω.
Furthermore, we recall the economic interpretation of the costate variable λ(t) as the “shadow

price” of the environmental resource stock E(t) at each time t (see, for instance, [16]). For that
reason, we only focus on the non-negative values for λ on the long-run; a negative value of λ would
imply that an increase in the initial stock E(0) = E0 generates a reduction in the maximized value
of the objective function in (7). It follows that, under conditions z∗ > 0, λ(t) > 0 and λ̇(t) = 0 at
the equilibrium, then σ − E + 2E∗ > 0. Therefore, the relationship ż(t) = 0 is exploited and the
admissible region for the stationary states reduces to the following set

Ω = {(z, E) ∈ R
2 | z > z, 0 < E < E, 1− zE > 0},

in the phase plane (z, E). In this respect, we focus on the possible crossing points between CF and
CG in the reduced admissible region Ω. Thus, we are going to discuss some features of both curves:

• As a first step, we notice that CF represents an hyperbola whose asymptotes are featured
by equations E = 0 and E = aηz + E. The branch in Ω has got vertex V with coordinates
z = ẑ and E =

√
aη; moreover, the point with z = 1/E and E = E belongs to both CF and

C. In addition, CF lies always under C in the region Ω, as it is shown in Figure 1, where
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Figure 1: The path of the curve CF in the reduced admissible region for the stationary states, which is represented
by the grey area. On the left-hand side we show the case when the vertex V lies in Ω. In the middle and on the
right side we have other cases when V is outside.

z
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E
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1
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Figure 2: Possible paths of the curve CG in the reduced region Ω, which is represented by the grey area. On the
left-hand side and in the middle we show the case when the local minimum point (z̃, ϕ(z̃)) lies in Ω (i.e. z̃ < 1/E and
ϕ(z̃) < E); on the right side we have the case when the same minimum is outside (i.e. 1/E < z̃ and 1/z̃ < ϕ(z̃) < E).

three different cases are considered. On the left-hand side of the figure the vertex V is in
the admissible region, that happens when z̄ < ẑ and

√
aη < E; the middle part and the

right-hand side of the figure concern other cases when V is outside. Precisely, in the middle
of the figure, we assume that ẑ < z̄ and

√
aη < E; on the right-hand side we suppose that

ẑ < 1/E and E <
√
aη.

• As a second step, we account for the path of the curve CG: we write the variable E as a
function of z and set E = ϕ(z) with

ϕ(z) =
E − σ

2
+

1

2

αηaz

(1− γ)azα − (1− α)
.

It is evident that ϕ(z) is defined for z ≥ 0 and it has got a vertical asymptote in the line
z = z̄. In addition, the function ϕ(z) is featured by a local minimum value, which is reached
for z = z̃ (remark that z̄ < z̃ and ϕ(z̃) = (E − σ + ηaz̃)/2). Then, it is easy to verify that
ϕ(z) is convex and diverges at z → +∞.
In Figure 2 we show how some possible path of CG may be in the reduced admissible region
for the stationary states. On the left-hand side and in the middle of the figure, we have the
local minimum point that lies in Ω. As an alternative, on the right side we assume that
1/z̃ < ϕ(z̃) < E (that also yields 1/E < z̃), then the same minimum point is outside and the
path for CG always decreases.

Under the previous reasoning, we argue it may happen that the curves CF and CG have no
points in common in the region of interest. As the alternative case, assuming that CF crosses CG
in Ω, then we may have up to four crossing points; really, in the next proposition we prove that
the maximum number of stationary states is allowed to be three.

Proposition 2. The optimal control model may have no more than three inner stationary states.
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Proof. It is evident that the curve CF can be splitted into two different branches, which are
described by the equations

E = ϕup(z), E = ϕdw(z), for z ≥ ẑ,

where

ϕup(z) =
E + aηz +

√
(E + aηz)2 − 4aη

2
, ϕdw(z) =

E + aηz −
√
(E + aηz)2 − 4aη

2
.

We notice that the first branch represents the part of the curve which is over the line E =
√
aη;

thus, the second one is the part of CF under the same line. The curve CG may cross both the upper
and the lower branches of CF for z in [z, z̃]. It follows that, the number of possible stationary states
(z∗, E∗) with z < z∗ < z̃ may be not greater than two. It is evident that a necessary condition for
the existence of any stationary state in the strip defined by [z, z̃] (i.e. z < z∗ < z̃) is

ẑ < z̃ <
1

E
, and

√
aη < E. (15)

On the other hand, we are going to prove that the curve CG cannot cross the upper branch of CF
through any point (z, E) with z > z̃, in the case when (15) holds. Indeed, assuming that a crossing
point appears, then it would be unique and the function d(z) = ϕup(z)−ϕ(z) should perform only
one change in its sign for z ∈ [z̃, 1/E]. Notice that d(z) has the same sign of

D(z) = (1− γ)(zα − zα)

(
σ + aηz +

√
(E + aηz)2 − 4aη

)
− αηz, z̃ < z <

1

E
.

In this respect, since z̃α − zα = α/(a(1− γ)), we have

D(z̃) =
α

a

(
σ +

√
(E + aηz̃)2 − 4aη

)
> 0.

Moreover, relationship zα = (1− α)/(a(1− γ)) may be exploited in order to obtain

D

(
1

E

)
= (1− γ)

((
1

E

)α

− zα
)
T (E) + (1− γ)

((
1

E

)α

− 1− α

a(1− γ)

)
aη

1

E
− αη

1

E
,

where we set T (E) = σ +
√
(E + aηE)2 − 4aη > 0. Therefore, the following relationship holds

D

(
1

E

)
= (1− γ)

((
1

E

)α

− zα
)
T (E) +

ηa(1− γ)

E

((
1

E

)α

− z̃α
)
> 0.

It follows that the sign of function d(z) does not change for z ∈ [z̃, 1/E]; as a consequence, no
crossing point may exist between CG and the upper branch of CF in the region of Ω where z > z̃.
Anyway the curve CG may cross the lower branch of CF once in the same region of Ω. Thus, the
result is completely proved.

For the sake of completeness we would remark that, when three equilibria arise, they lie in the
admissible region as it is shown in the plots of Figure 3 and correspond to the points marked as
A, B and C. Two different locations are possible: they are shown in Figures 3(a) and 3(b). In
addition, Figure 3(c) represents the zoom of the red square in Figure 3(b). As it is explained in
the previous proof, it is evident that two points, B and C, are located on the lower branch of CF ;
on the contrary, the first point A may lie either on the upper branch or on the lower part of the
same curve.

In that framework, we provide some sufficient conditions for the existence of stationary states
in the following proposition.
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Figure 3: Possible locations of three equilibria in the admissible region Ω in plots 3(a) and 3(b). Picture 3(c)
represents the zoom of the red square in plot 3(b).

Proposition 3. We assume that

z̃E = 1, (16)

σ = E + ηaz̃, (17)

η <


1−

√
1− (1− α)

1

α

z̃
√
a(1− α)

1

α




2

. (18)

Then three inner stationary states exist in the admissible region Ω.

The proof is developed in Appendix A.2.

4.1. Stability analysis

Concerning the analysis and stability of the stationary points, we consider the Jacobian matrix
of system (13)-(14). Precisely, it is evaluated at any stationary state (z∗, E∗) as

J ∗ =

(
FE(z

∗, E∗) Fz(z
∗, E∗)

GE(z
∗, E∗) Gz(z

∗, E∗)

)
(19)

where
FE(z

∗, E∗) = E − 2E∗ + ηaz∗, Fz(z
∗, E∗) = ηaE,

GE(z
∗, E∗) =

2az∗(1− γ)((z∗)α − zα)

α(1− α)
,

Gz(z
∗, E∗) =

(σ − E + 2E∗)(1− γ)a((α+ 1)(z∗)α − zα)− 2αηaz∗

α(1− α)
.

It is well-known that the study of the eigenvalues of J ∗ is crucial in order to understand the nature
of the stationary state we are accounting for. In this respect, the characteristic polynomial of the
Jacobian matrix is

P(λ) = λ2 − T λ+D,
where T = FE(z

∗, E∗) + Gz(z
∗, E∗) and D = FE(z

∗, E∗)Gz(z
∗, E∗) − Fz(z

∗, E∗)GE(z
∗, E∗) rep-

resent the trace and the determinant of J ∗, respectively.
It is evident that both roots of P(λ) are real1 and their signs depend on the coefficients T and
D. For instance, under the assumption that T > 0 and D > 0, both roots are negative and the
stationary state (z∗, E∗) represents a repellor; whereas, when D < 0, then the roots have opposite
sign and the stationary state is a saddle point.
That kind of analysis can be carried out by investigating the slope of both curves CF and CG at

1It is not so difficult to verify that the discriminant for P(λ) = 0 is d = (FE(z∗, E∗) − Gz(z∗, E∗))2 +
4Fz(z∗, E∗)GE(z∗, E∗) > 0, since Fz(z∗, E∗) > 0 and GE(z∗, E∗) > 0.
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their crossing points in order to evaluate the signs of T and D. The corresponding results are
provided in the following proposition.

Proposition 4. Suppose that three stationary states A(z∗A, E
∗

A), B(z∗B , E
∗

B), C(z
∗

C , E
∗

C) exist, with
z∗A < z∗B < z∗C . Then A and C are saddle points while B is a repellor.

The proof is given in Appendix A.3. We would like to remark that the same argument, which
is developed to prove the previous result, may be employed in order to investigate the stability
when there exist less than three stationary states.

5. Approximation of the solution

Our aim consists of discretizing the continuous model by means of different numerical schemes
in order to approximate the solution and provide some numerical results which may validate the
theoretical analysis we have carried out so far. In addition, the numerical tool represents a means
for analyzing some economical features of the solution, as it will be shown in the next Section 6.

In this respect, we adopt different numerical procedures to solve the problem. Actually, the first
approach consists of finding a solution that satisfies optimality necessary conditions in a classical
way; in that sense, it represents a so-called “indirect method”. It searches for the stable paths of
the stationary states by means of the so-called backward integration. As an alternative, another
numerical approach is also exploited; it is a “direct method” which achieves the solution through
the direct optimization of the objective function. Indeed, the optimal control model is converted
by suitable discretization into a nonlinear programming problem, where the nodal values for the
control parameters represent the optimization variables and the state is recursively approximated
by specific Runge-Kutta methods. In this way, it provides the time evolution of the involved
variables in a direct way. In the sequel, we describe these numerical schemes.
We notice that the methods have different features. For instance, the first one is less expensive since
it requires the numerical integration of a differential system; by contrast, the direct procedure has a
heavier computational cost as it involves the solution of a discrete optimization problem. Anyway,
the indirect approach exploits the necessary optimality conditions which are satisfied by maximizers
and minimizers, as well as points that are not optimizers, then there is no reason, in general, to
expect a solution to be the required optimum. On the other hand, the second method overcomes
this drawback and approximates the time evolution of the involved variables in a direct way.
We would remark that, concerning the numerical simulations we provide in Section 6, the results in
the (z, E) phase-plane obtained by means of both approaches are in agreement. In that sense, the
use of different procedures which provide the same discrete approximations confirms and validates
our results.

5.1. The “indirect method” description

The main idea of the method would be the numerical integration of system (13)-(14) fulfilled
by initial conditions

E(0) = E0, z(0) = z0.

The aim consists of finding the equilibria of the given system and evaluating their stable paths.
In this respect, it is evident that the value E0 is given in the model, but the other value z0 is
not a-priori known. The problem may be solved by means of the method which we are going to
describe and deals with the so-called backward integration (see [17]).

More precisely, we consider a given admissible stationary state (z∗, E∗) and recall that the
evolution dynamics is well approximated by the linearized system

(
Ė(t)
ż(t)

)
= J ∗

(
E(t)
z(t)

)
,

in a suitable neighborhood of the point itself. We assume that the equilibrium (z∗, E∗) represents
a saddle point (Proposition 4 provides the sufficient conditions for the existence of two saddle
points). Then, it is well-known that the invariant sets for the linear system are the eigenspaces
of the Jacobian matrix J ∗. In particular, the stable set is given by the eigenspace Ss of the
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negative eigenvalue and the unstable set is represented by the eigenspace Su related to the positive
eigenvalue of J ∗. It is evident that both spaces are one-dimensional and linear.

As what concerns the more general analysis of the nonlinear system, we denote by

φt(z̆, Ĕ) = (z(t), E(t)),

the flow that transforms the initial state (z̆, Ĕ) into the solution (z(t), E(t)) of (13)-(14) at time
t. The Manifold Theorem (see, among the others, [18], [19], [20]) assures that there exist local
stable and unstable manifolds Ws

loc and Wu
loc, which have the same dimension of Ss and Su and

are tangent to them at (z∗, E∗), such that

Ws
loc =

{
(z̆, Ĕ) ∈ U∗ : lim

t→∞

φt(z̆, Ĕ) = (z∗, E∗), and φt(z̆, Ĕ) ∈ U∗, t ≥ 0
}
,

and

Wu
loc =

{
(z̆, Ĕ) ∈ U∗ : lim

t→−∞

φt(z̆, Ĕ) = (z∗, E∗), and φt(z̆, Ĕ) ∈ U∗, t ≥ 0

}
,

for some neighborhood U∗ of (z∗, E∗).
In this respect, we are interested in integrating system (13)-(14) and simulating the stable

manifold of the stationary state. Since the initial value z0 is not available, integrating forward
in time should require a shooting procedure (see [21], [22]). Anyway it is well-known that, when
the computed value for z0 is not accurate enough, then the discrete solution could exponentially
diverge from the stable manifold.
As an alternative, we adopt another approach which deals with backward integration in time.
Thus, time is reversed and the variables

E(t) := E(−t), z(t) := z(−t),

are considered. The dynamics is given by

Ė(t) = −F (z(t), E(t)), (20)

ż(t) = −G(z(t), E(t)). (21)

The stable manifoldWs
loc, which has been already introduced, is equivalent to the unstable manifold

of this reversed system. Thus, the solution (E(t), z(t)) of (13)-(14) on the stable manifold has a
corresponding solution E(t), z(t) for (20)-(21) on the unstable manifold, with the same trajectory
in reversed direction. In this framework, the method exploits the Manifold Theorem and consists
of the following steps:

• evaluate the saddle point (z∗, E∗);

• choose an initial pair (z0, E0), close to (z∗, E∗) along the tangent direction

z0 =z∗ +
v1s
v2s
ǫ,

E0 =E∗ + ǫ,

where ǫ ∈ R is a given parameter, v1s and v2s are the entries of an eigenvector corresponding
to the negative eigenvalue of the Jacobian J ∗, which generates the eigenspace Ss of the
linearized system;

• approximate the solution of system (20)-(21) on a suitable finite time horizon [0, t] such that
E(t) = E0 and z(t) = z0;

• reverse time again and provide

E(t) = E(−t), z(t) = z(−t).
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This approach can be considered as indirect, since it relies on the integration of the necessary
optimality conditions. The code is implemented in Matlab environment. Precisely, the stationary
state is evaluated by means of the fsolve built-in function with accuracy 10−8 and system (20)-(21)
is solved by the standard integrator ode45. Moreover, we set ǫ = 10−6 in our simulations.

5.2. The “direct method” description

We adopt the numerical algorithm proposed in [23], where a s-stage Runge-Kutta scheme
(akj , bk, ck) is exploited in order to describe the dynamical evolution of the variables. This numerical
algorithm is able to preserve the same qualitative features of the exact solution and to provide a
high order accuracy in the approximation.

The basic idea is to impose that the discrete model preserves the same equilibria of the under-
lying continuous-time problem. In this respect, the presence of the discount term µ(t) := e−σt in
the objective function can represent a challenge for achieving the expected accuracy of the approx-
imated solution; indeed, suitable approximations of the exponential function are required in order
to avoid numerical instability due to possible oscillations arising in the solution itself.

The time horizon is discretized by means of two sets of temporal nodes tn+1 = tn +∆, tnk
=

tn + ck∆ (k = 1, . . . , s) that are obtained by time-step length ∆. As usual, we assume that the
state variable E(t) falls in the neighborhood of one of its stationary equilibria E∗ at t > tN ,
where N is a given index. Under this assumption, the control variable reaches the stationary value
L∗(E∗) = 1 − E∗(E − E∗)/(ηa), for t > tN , arising from condition f(L∗(E∗), E∗) = 0. Thus, it
follows that ∫

∞

tN

e−σtΠ(L(t), E(t)) dt ≈ e−σtN

σ
Π(L∗(E∗), E∗).

As a consequence, the infinite horizon objective function may be approximated by the finite horizon
model

max
L

∫ tN

0

e−σtΠ(L(t), E(t)) dt+
e−σtN

σ
Π(L∗(E∗), E∗),

joint with the dynamic constraint on the state variable. We introduce the set {Lnk
} of nodal

approximations of the control variable at each tnk
; moreover, two sequences {µn} and {µnk

},
different from zero, are defined for approximating the exponential values µ(tn), µ(tnk

). Then the
following discrete model is stated:

max
Lnk

∆

N−1∑

n=0

s∑

k=1

bkµnk
Π(Lnk

, Enk
) +

µN

σ
Π(1− EN (E − EN )/(ηa), EN ), (22)

subject to

En+1 = En +∆
s∑

k=1

bkf(Lnk
, Enk

), n = 0, . . . , N − 1, E0 = E(0),

Enk
= En +∆

s∑

j=1

akjf(Lnj
, Enj

), k = 1, . . . , s,

(23)

with {µn} and {µnk
} given by the recursive formula

µn+1 = µn − σ∆

s∑

k=1

bkµnk
, n = 0, . . . , N − 1, α0 = 1,

µnk
= µn − σ∆

s∑

j=1

âkjµnj
, k = 1, . . . , s,

(24)

where âkj = bj(1 − ajk/bk), for each j, k. It is possible to prove that approximation (24) for the
exponential nodal values is chosen in order to satisfy the so-called steady-state invariance property
(see [24]). More precisely, the following result holds.
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Proposition 5. Suppose bk 6= 0 for each k = 1, . . . , s. Under the assumption that µn and µnk
are

nonzero values, any stationary solution of the continuous-time problem (7) is a stationary solution
of the discrete-time model (22)-(23)-(24).

Proposition 5 can be proved by exploiting the first order optimality conditions for the nonlinear
programming problem (22)-(23)-(24) and analyzing the behavior of its solution at the stationary
equilibrium. Here we omit the proof since it has been developed in [23], where more details can
be found about the method and its features. For the sake of completeness, we would only remark
that the iterative scheme (23)-(24) corresponds to the discretization of the differential system

Ė(t) = f(L(t), E(t)), E(0) = E0,
µ̇(t) = −σµ(t), µ(0) = 1,

by coupling two different Runge-Kutta solvers: the state variable E(t) is discretized by the Runge-
Kutta method (ak, bk, ck) and the exponential approximation is obtained by another Runge-Kutta
scheme (âk, bk, ck), where each coefficient âk satisfies the relationship

âkj = bj(1− ajk/bk),

which is known in literature as “symplecticity condition”. We can also say that a so-called sym-
plectic partitioned Runge-Kutta scheme (ak, bk, ck)-(âk, bk, ck) is adopted for the numerical approx-
imation of variables E(t) and µ(t) in the previous differential system. Some symplectic partitioned
Runge-Kutta integrators have been exploited in the field of the applications to finite horizon opti-
mal control in other papers such as [25] and [26]. Moreover, the theory about the accuracy order
for any symplectic partitioned Runge-Kutta method is well-stated in literature (see, for instance,
[27], [25], [28]). In this respect, for our numerical experiments, in the sequel we exploit a pair with
high order accuracy given by the classical Runge-Kutta method (ak, bk, ck)k=1,...,4 (see [29]) with
tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

which performs an explicit and cheap approximation of the state variable E(t) and is joint with its
symplectic counterpart (âk, bk, ck)k=1,...,4 with tableau

0 1/6 −2/3 1/3 1/6
1/2 1/6 1/3 −1/6 1/6
1/2 1/6 1/3 1/3 0
1 1/6 1/3 1/3 1/6

1/6 1/3 1/3 1/6

that provides an implicit discretization for the exponential function µ(t) and avoids spurious and
unstable oscillations in the discrete solution, without any restriction on the choice of the time-step
length ∆. The resulting numerical scheme is defined as

max
Ln1,Ln2,Ln3,Ln4

∆

6

N−1∑

n=0

µn+1Sn +
µN

σ
Π(1− EN (E − EN )/(ηa), EN ), (25)
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subject to

Sn =

(
1 + h+

h2

2
+
h3

4

)
Π1 +

(
2 + h+

h2

2

)
Π2 + (2 + h)Π3 +Π4,

En+1 = En +
∆

6
(f1 + 2f2 + 2f3 + f4), E0 = E(0),

En1 = En, En2 = En +
∆

2
f1, En3 = En +

∆

2
f2, En4 = En +∆f3,

µn+1 = µn

(
1 + h+

h2

2
+
h3

6
+
h4

24

)−1

, µ0 = 1,

where h = σ∆, Πi = Π(Lni, Eni), fi = f(Lni, Eni) for i = 1, . . . , 4. This method is featured by
fourth order accuracy in the approximation and it preserves the steady-state invariance, since it
is possible to verify that the assumptions in Proposition 5 are satisfied by the adopted scheme
in correspondence with any value for ∆. Discrete model (25) has been implemented in Matlab
environment; in particular, the optimization process has been performed by means of the Matlab
fmincon built-in function.

6. Numerical experiments

In the following numerical tests, the parameters of interest are set as follows

α = 0.65, γ = 0.65, δ = 0.3655, r = 0.255, σ = 0.25.

The values for E (the carrying capacity of the environmental resource) and η (the pollution rate
of the industrial sector) change over all the cases we consider in the sequel. Figures 4 show the
stable manifolds of the equilibrium points, which are obtained setting η = 0.014 and varying the
parameter E. Saddle points and repellors are denoted by squares and dots, respectively.

Notice that, when the value of E is sufficiently high (see, for instance, Figure 4(a)), then there
exists a unique stationary state E∗ = E, L∗ = 1. In correspondence with this point, the stock of
the natural resource is equal to its carrying capacity E (i.e. to the maximum sustainable level)
and the representative L-agent allocates all her time endowment (assumed to be equal to 1) in
the production of the resource-dependent sector; as a consequence, according to (5), the external
investment KI is equal to 0. In the same Figure 4(a), we consider the dynamics that moves along
the transition path which approaches the point E∗ = E, L∗ = 1 from the left. In this respect,
when the stock E of the natural resource is sufficiently low in a suitable neighbourhood of the
origin, then the labor employed in the local sector is equal to 1 and, therefore, KI = 0. The
consequence is an increase in E (the local sector has no impact on E). When E moves on the left
and reaches a sufficiently high value, then L decreases (that corresponds to increasing KI); after
that, L definitively increases. It is worthwhile noting that L = 1 holds in two different cases: either
when E is low enough and near to 0 or when E is sufficiently high in a neighbourhood of E. In
the first case, L = 1 is chosen to avoid the complete depletion of the environmental resource (even
though the productivity of L in the local sector is low, since E low); in the second case, L = 1 is
chosen because the productivity in the resource-dependent sector is high with respect to the wage
rate in the industrial sector. The scenario described in Figure 4(a) represents the context where
the economy is endowed with a relatively high value of E; in this case, the external investment
KI may be only observed along the transition path, while the economy becomes “specialized” in
the resource-dependent sector when E is near to the value E. The other Figures 4(b)-4(c)-4(d)
can be interpreted in a similar way. Figure 4(b) shows a bi-stable regime: both the equilibrium
points C and (E, 1) can be reached and the equilibrium selection depends on the initial value
E(0) = E0. Under the assumption that E0 is sufficiently high, then the economy approaches
(E, 1), where external investment is ruled out; otherwise, the economy converges to C, where
the local sector coexists with the industrial one. Figure 4(c) represents another possible bi-stable
regime where there exit two saddle points A and C, where the two sectors coexist (in this case, the
state (E, 1) is not an equilibrium point). The bi-stable regimes in Figures 4(b)-4(c) are observed
for “intermediate” values of the carrying capacity E. When E becomes low enough, then the case
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Figure 4: Stable manifolds of the saddle points, obtained varying the parameter E, which measures the carrying
capacity of the environmental resource.

illustrated in Figure 4(d) holds, where there exists a unique saddle point C characterized by a low
value for E and a high value for L (thus, we have a low value for KI).

In addition, the dynamics of E and KI along the stable manifolds of the saddle points A and C,
in the bi-stable regime shown in Figure 4(c), is provided in Figure 5; notice that, in the equilibrium
A, the values for E and L are higher than in C, while the opposite case holds for the value of the
external investment KI (according to (5)).

Applying the “indirect method”already described in the previous Section, we also developed
other numerical tests in order to evaluate the effects of an increase in the pollution rate of the
industrial sector η. The simulations in Figures 6 were obtained by setting E = 0.095 and varying
the value of η. Notice that, if the value of η is low (Figure 6(a)), a bi-stable regime is observed;
however, when the value of η becomes sufficiently high (Figure 6(c)), then we observe a dynamic
regime where the point (E, 1) is the unique existing stationary state and the economy tends to
specialize in the resource-dependent sector.

The remaining figures show the results obtained applying the “direct method”. We set E = 0.12
and η = 0.014; under this choice, the phase portrait is that given in Figure 4(c). Figures 7-10
represent the time evolution of the state and control variables in correspondence with the initial
conditions E(0) = 0.004, E(0) = 0.025, E(0) = 0.07 and E(0) = 0.15, respectively. All the
results have been obtained by employing the same time-step length ∆ = 0.5; in order to have an
even representation, the figures show the dynamics of control and state variables with the same
number of nodes. The time evolution paths starting from E(0) = 0.004 and E(0) = 0.025 approach
the equilibrium C (see Figures 7-8), while the ones starting from E(0) = 0.07 and E(0) = 0.15
converge to the equilibrium A (see Figures 9-10). It is worth to note that the time evolution of the
state variable E is always monotonic (see also Figures 4 and 6). It implies that the evolution of E
cannot be represented by a U-shaped path along which the value for E is firstly decreasing and then
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Figure 5: The evolution of E and KI along the stable manifolds of the saddle points A and C, in the bi-stable
regime shown in Figure 4(c).
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Figure 6: Stable manifolds of the saddle points, obtained varying the parameter η, which measures the pollution
rate of the industrial sector.
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Figure 7: Evolution dynamics for the state variable (left) and the control (right) in correspondence with E(0) = 0.004.
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Figure 8: Evolution dynamics for the state variable (left) and the control (right) in correspondence with E(0) = 0.025.

definitively increasing. This means that our model does not generate an environmental Kuznets
curve (see, among the others, [30], [31], [32], [33]). The U-shaped path is usually observed in models
where the accumulation process of the industrial capital depends on the consumption/investment
decisions of economic agents rather than on external capital inflows, as it happens in our model.

We would remark that the other cases in Figures 4(a)-4(b)-4(d) have been also reproduced by
exploiting the direct method. All the solutions provided by the direct approach and the indirect
one are in perfect agreement. For that reason and for the sake of brevity, we do not show all the
time evolution dynamics and prefer to provide the stable manifolds in the space (E,L) in Figures
4. In addition, we remark again that the use of the two different procedures which provide the
same discrete approximations validates the results we show so far.
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Figure 9: Evolution dynamics for the state variable (left) and the control (right) in correspondence with E(0) = 0.07.
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Figure 10: Evolution dynamics for the state variable (left) and the control (right) in correspondence with E(0) = 0.15.

7. Conclusions

We have analyzed an economic growth model with three factors of production -labor, a renew-
able natural resource and physical capital- and two sectors -the “industrial sector” and the “local
sector”. Physical capital is specific to the industrial sector whereas the natural resource is specific
to the local sector. External investors invest in the industrial sector as long as the return on cap-
ital which is invested is higher than in the other economies. The activity of the industrial sector
causes a negative impact on the environmental resource. In this framework, we have analyzed the
economic dynamics under the assumption that the labour allocation between the two sectors of
the economy is optimal, that is, it maximizes the discounted flow of the local population revenues.

Our findings show that, in this kind of economy, the external investments may give rise to
path-dependent dynamics. More specifically, three stationary states A, B and C may exist; A and
C are saddle points while B is a repellor (see Figure 4(c)); In A and C the two sectors of the
economy coexist and the equilibrium selection depends on the initial condition for the stock of the
environmental resource E(0). Another bi-stable regime that may be observed is the one shown in
Figure 4(b), with the repellor B separating the stable manifold of C from the stable manifold of
a stationary state (E,L) = (E, 1) where the investment in physical capital is KI = 0; therefore,
the economy is specialized in the resource-dependent sector. These two cases of path-dependence
emerge only for intermediate values of the carrying capacity E of the environmental resource and for
sufficiently low values of the rate η of the environmental impact by the incoming activities. When
these conditions are not satisfied, then a unique stationary state exists. For instance, in Figure 4(a)
we show a case when the carrying capacity E is sufficiently high and the unique existing stationary
state is (E∗, L∗) = (E, 1), therefore the economy is specialized in the resource-dependent sector.
On the other hand, Figure 4(d) corresponds to a low value for the carrying capacity E, then there
exists a unique stationary state where the two sectors coexist.

The numerical analysis of the model has pointed out two further features of the dynamics: 1)
The control variable L, which measures the optimal labor input in the resource-dependent sector,
assumes the value 1 (i.e. the economy specializes in the resource dependent sector) either if the
stock E is low enough or if it is sufficiently high; however, in the first case, the same choice L = 1
avoids the complete depletion of the environmental resource (the resource-dependent sector has no
impact on E), while in the second case, the choice L = 1 is motivated by the high productivity
of labor in the resource-dependent sector. 2) The state variable E, which measures the stock of
the environmental resource, has monotonic time evolution paths (see Figures 7-10). This implies
that the stock E cannot follow U-shaped paths along which E is initially decreasing and then
definitively decreasing. This result suggests that if the capital accumulation process is driven by
external investments only, then the so called Environmental Kuznets Curve cannot be observed (in
a context in which labor allocation is optimal).

We sum up that our results show how the openness to external investments does not exclude
both environmental sustainability and an improvement in the welfare of local population even when
the incoming capitals are invested in polluting activities and they flow towards economies that are
highly dependent on natural capital. The carrying capacity E, the initial stock of natural capital
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E(0) and the rate of environmental impact of the external sector η play a key role in determining
the transition towards a diversified economic structure. The analyzed model can be generalized by
assuming that also local economic agents can accumulate physical capital; we leave this extension
of our model to future research.
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Appendix A. Proofs

Appendix A.1. Proof of properties (P1)-(P6)

Condition (P1) is easily obtained from relationship (8). Furthermore, for each L ∈ U we have
ηa(1− L) ≥ 0, thus

f(L,E) ≤ E(E − E) ≤ E E.

It follows that
E · f(L,E) ≤ E2E ≤ E(1 + E2),

thus property (P2) is proved. Condition (P3) holds by setting

f0(E) := E(E − E)− ηa, f1(E) := ηa.

Moreover, property (P4) is trivial and (P5) easily follows from relationship

∂2Π

∂L2
(L,E) = α(α− 1)EαL−α ≤ 0,

for each 0 < L ≤ 1, under the assumption that E ∈ X.
Moreover, in order to prove (P6), we fix t > 0 and consider |Π(L,E(t))| = Π(L,E(t)) for L ∈ U .

Due to relationship (8) and condition 0 ≤ L ≤ 1, we have

|Π(L,E(t))| ≤ Cα
0 L

1−α + a(1− γ)(1− L) ≤ Cα
0 + a(1− γ),

and
max
L

|Π(L,E(t))| ≤ Cα
0 + a(1− γ).

Thus, we set
ν(t) = e−σt(Cα

0 + a(1− γ)).

It is evident that ν(t) → 0 as t→ +∞ and

e−σt max
L∈U

|Π(L,E(t))| ≤ ν(t).

Moreover, for any T > 0 we define

ω(T ) =

∫ +∞

T

ν(s) ds =
e−σT

σ
(Cα

0 + a(1− γ)).

We have ω(T ) → 0 as T → +∞ and

∫ +∞

T

e−σt|Π(L(t), E(t))| dt ≤ ω(T ).

Under this argument, property (P6) is completely proved.

Appendix A.2. Proof of Proposition 3

In order to assure the existence of three inner stationary states, we require that the curve CF
crosses the line z = z in Ω and the minimum point for CG is located on (z = 1/E,E = 0). Those
requirements are equivalent to have:

• z̃ < z, and
√
aη < E,
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• z̃E = 1, and ϕ(z̃) = 0.

In this way, condition (16) is obtained in a direct way. In addition, by exploiting assumption
ϕ(z̃) = 0, we have (17). Moreover,

√
aη < E yields

η <
1

az2
, (A.1)

which has to be coupled with the following condition

η − 2
√
a z(1− α)

1

α

√
η +

1

a z2(1− α)
1

α

> 0, (A.2)

that arises from z̃ < z. It is not so difficult to verify that the solution to system (A.1)-(A.2) with
respect to η consists of the positive values which satisfy condition (18). In this way, the result is
completely proved.

Appendix A.3. Proof of Proposition 4

Assume the existence of three stationary points A(z∗A, E
∗

A), B(z∗B , E
∗

B) and C(z∗C , E
∗

C), with
z∗A < z∗B < z∗C . In the proof of Proposition 2 we have already noticed that the point C is on the
lower branch of the curve CF , on the strip defined by the interval [z̃,+∞[. On the other hand, A
and B lie on the strip defined by the interval [ẑ, z̃]. The point B is again on the lower branch of
CF , while A may be located either on the upper branch or on the lower one (see Figure 3).

As a first step, we assume that the state A is on the upper branch, as it is shown in Figure
3(a), since the case described in Figure 3(b) can be analyzed in a similar way and the same result
can be obtained. The basic idea in this argument exploits the slopes of the curves CF and CG at
their crossing points A, B and C. Those slopes provide insights about the sign of the derivatives
of functions F (z, E) and G(z, E) which are needed to evaluate the sign of T and D in P(λ); in this
way, the sign of the Jacobian matrix eigenvalues is known and a stability analysis can be carried
out for the states A, B and C.
In this respect, we notice that the slope of the curve CF is given by

mF (z, E) = − Fz(z, E)

FE(z, E)
,

at any given point (z, E) ∈ CF . It is obtained by applying the implicit function theorem in order
to solve equation F (z, E) = 0. Indeed, since F is a continuously differentiable function, then it is
possible to consider a function ψ(z) whose graph (z, ψ(z)) is the set of all the points (z, E) such
that F (z, E) = 0; in addition, ψ(z) is smooth and ψ′(z) = −Fz(z, ψ(z))/FE(z, ψ(z)).
In the same way, it is possible to prove that the slope of the curve CG is given by

mG(z, E) = −Gz(z, E)

GE(z, E)
,

at any given point (z, E) ∈ CG. The stability analysis can be developed as in the following items:

• At the stationary state C the curve CF is decreasing with respect to z and CG is increasing;
therefore, we have

mF (z
∗

C , E
∗

C) < 0, mG(z
∗

C , E
∗

C) > 0.

Since Fz(z, E) = ηaE > 0 and GE(z, E) = 2az(1− γ)(zα − zα)/(α(1−α)) > 0 at any point,
then it follows that

FE(z
∗

C , E
∗

C) > 0, and Gz(z
∗

C , E
∗

C) < 0;

thus D < 0 in P(λ). The eigenvalues related to C change their sign; therefore, this stationary
state represents a saddle point.

22



• At the stationary state B the curves CF and CG are both decreasing and the slope for CG is
greater than the other one, according to their absolute value:

mF (z
∗

B , E
∗

B) < 0, mG(z
∗

B , E
∗

B) < 0, |mF (z
∗

B , E
∗

B)| < |mG(z
∗

B , E
∗

B)|.

Then, we have

FE(z
∗

B , E
∗

B) > 0, Gz(z
∗

B , E
∗

B) < 0, and
Fz(z

∗

B , E
∗

B)

FE(z∗B , E
∗

B)
<
Gz(z

∗

B , E
∗

B)

GE(z∗B , E
∗

B)
;

thus D > 0 and T > 0 in P(λ). The eigenvalues related to B preserve their sign; therefore,
this equilibrium represents a repellor.

• At the stationary state A the curve CF increases and CG decreases; therefore, we have

mF (z
∗

A, E
∗

A) > 0, mG(z
∗

A, E
∗

A) < 0.

It follows that
FE(z

∗

A, E
∗

A) < 0, and Gz(z
∗

A, E
∗

A) > 0;

thus D < 0 in P(λ). The eigenvalues related to A change their sign; therefore, this stationary
state represents a saddle point.

As we already pointed out, similar arguments can be developed when the point A lies on the
lower branch of CF (see Figures 3(b) and 3(c)): the same results are obtained as in the previous
discussed case, where A was on the upper branch.
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