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Abstract: There is a wide consensus in considering Africa as the birthplace of anatomically modern
humans (AMH), but the dispersal pattern and the main routes followed by our ancestors to colonize
the world are still matters of debate. It is still an open question whether AMH left Africa through
a single process, dispersing almost simultaneously over Asia and Europe, or in two main waves,
first through the Arab Peninsula into southern Asia and Australo-Melanesia, and later through a
northern route crossing the Levant. The development of new methodologies for inferring population
history and the availability of worldwide high-coverage whole-genome sequences did not resolve
this debate. In this work, we test the two main out-of-Africa hypotheses through an Approximate
Bayesian Computation approach, based on the Random-Forest algorithm. We evaluated the ability of
the method to discriminate between the alternative models of AMH out-of-Africa, using simulated
data. Once assessed that the models are distinguishable, we compared simulated data with real
genomic variation, from modern and archaic populations. This analysis showed that a model of
multiple dispersals is four-fold as likely as the alternative single-dispersal model. According to
our estimates, the two dispersal processes may be placed, respectively, around 74,000 and around
46,000 years ago.

Keywords: approximate Bayesian computation; demographic history; human evolution; migration;
machine learning; random forest; whole-genome data

1. Introduction

Levels and patterns of genome diversity reflect past demographic processes, and a crucial turning
point in our demographic history is the expansion of anatomically modern humans (AMH) from
Africa. Some aspects of this process seem rather well established. First, what is often called the
ancestral African population should not be regarded as a single, biologically homogeneous unit, but as
a structured population hosting regional diversity [1]. Second, the AMH expansion was accompanied
by the disappearance of preexisting archaic human forms [2,3] Third, a variable component of the
genomes of most present populations—always small, seldom zero—comes from anatomically archaic
ancestors [4].

Conversely, there is disagreement over other aspects of the AMH expansion out of Africa, such as
the number of major dispersal events, their timing, and the geographical routes followed by migrating
people. Groups of AMH may have left Africa more than 100,000 years ago [5], but genetic evidence
suggests that such early phenomena were not successful and did not lead to the establishment of
permanent non-African populations. One expansion left traces in modern genomes; it took place
between 60,000 and 50,000 years ago, along a Northern route in the Nile valley and across the
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Near East (see e.g., [6–8]). However, based on cranial morphology, Lahr and Foley [9] proposed an
additional, earlier migration through a Southern route, from the Horn of Africa into the Arab peninsula,
Southern Asia, and Australo-Melanesia. We shall refer to these alternative models as Single Dispersal
(SD) and Multiple Dispersal (MD) hypotheses. The MD hypothesis found support in several studies,
and notably in a comparison of cranial and DNA diversity data [10] but broader genomic analyses
gave contradictory results. Tassi and colleagues [11] and, to a lesser extent, Pagani et al. [12] described
patterns consistent with two dispersal processes, the first one overlapping in time with the proposed
early Southern exit from Africa [11]. On the other hand, two studies of different genomic datasets
concluded that there is little [4] or no evidence [13] for such an early dispersal process, and hence that
AMH either left Africa in a single major migrational wave, or perhaps in several waves, but then only
one of them contributed to the ancestry of modern populations.

Malaspinas et al. [13] conclusion in favor of SD was not really based on an explicit comparison
between models. In their paper, indeed, they considered an MD model in which East Asians and
Europeans have a more recent common ancestor than Aboriginal Australians and East Asians. and they
estimated the models’ parameters. The evidence supporting the SD model came from the overlapping
estimation for the divergence times of the ancestors of Aboriginal Australians and Eurasians.

This non-straightforward procedure was due to an implicit limitation of the composite likelihood
method they applied, in which model selection may be performed through likelihood ratio tests (LRT)
or by the Akaike Information Criterion (AIC; [14,15]). LRT and AIC can only be used to understand
which modifications significantly improve the model, without explicit model testing and a direct
attribution of probabilities to each tested scenario.

To understand which model, SD or MD, better accounts for the current levels of genome
diversity, in this study we formally compare them by a recently developed Approximate Bayesian
Computation framework, based on the study of the observed Frequency Distributions of four categories
of Segregating Sites for pair of populations (FDSS) [16]. ABC is a powerful and flexible framework,
based on computer simulations, to perform model selection and estimate models’ parameters. In its
original formulation [17,18] the ABC algorithm suffered from two main issues, related to the simulation
effort and to the number of summary statistics used to summarize the data. These issues limited
the possibility to use ABC for the analysis of complex demographic histories and/or large datasets.
In 2015, the introduction of a paradigm shift in the ABC model selection procedure based on a
Machine Learning approach called Random Forest (ABC-RF, [19]), allowed to overcome the above-cited
limitations and paved the ground for the application of ABC to the study of complex models through
the analysis of complete genomes. Under ABC-RF, the model selection procedure is rephrased as a
classification problem. At first, the classifier is constructed from simulations from the prior distribution
via a machine learning RF algorithm. Once the classifier is constructed and applied to the observed
data, the posterior probability of the resulting model can be approximated through another RF that
regresses the selection error over the statistics used to summarize the data. The number of simulations
necessary to obtain reliable estimates passed from a few million to a few thousand; the informative
statistics are systematically extracted from the pool used to summarize the data. In 2018, a similar
approach, based on a machine-learning tool of regression RF, has been developed for parameter
estimation [20]. In [16] we showed that the ABC-RF algorithm, combined with the inferential power
provided by the FDSS, can be satisfactorily exploited to estimated past population dynamics even in
case of complex demographic histories, thus making the approach particularly suitable to the analysis
of SD and MD models.

Under both SD and MD models, the structure of the past populations is the same, but the tree
topologies differ in that they assume, respectively, one ancestral population for the SD model, and two
ancestral populations leaving Africa at different times for the MD model. As the Australo-Melanesian
represent the population that might carry the signal of the first wave of migrations out of the African
continent and also, to make sure that the different results obtained by [12,13] were not due to differences
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in the Australo-Melanesian samples available, we repeated our analyses considering genomes coming
from both studies, obtaining results that seem consistent and informative.

2. Materials and Methods

2.1. The FDSS

We summarized the data through the FDSS, i.e., the frequency distributions of the four mutually
exclusive categories of segregating sites for pair of populations (i.e., private polymorphisms in either
population, shared polymorphisms, and fixed differences [21]). This statistic proved to be powerful for
reconstructing even a complex series of demographic processes [16]. The FDSS is calculated considering
each genome analyzed as subdivided into a certain number of independent fragments of a certain
length, and for each fragment, the number of sites belonging to each of the four above-mentioned
categories is counted. The final vector of summary statistics is thus composed by the truncated
frequency distribution of fragments having from 0 to n segregating sites in each category, for each pair
of populations considered. We fixed the maximum number of segregating sites in a locus of a certain
length to 100, and hence the last category contains all the observations higher than 100.

We calculated the FDSS using a python script (available on Github https://github.com/anbena/

ABC-FDSS) [16]. The ABC-RF model selection estimates have been obtained using the function abcrf
from the package abcrf and employing a forest of 500 classification trees, a number suggested providing
the best trade-off between computational efficiency and statistical precision [19]. Before proceeding
with the model selection procedure, we computed the confusion matrices and evaluated the out-of-bag
classification error (CE) and the proportion of True Positives (1-CE), which are representative of the
power of the whole inferential procedure. The ABC-RF parameters estimation on the most supported
models have been performed through the function regAbcrf from the package abcrf and employing a
forest of 500 regression trees. An outline of our entire workflow is reported in Figure S1.

2.2. Simulated Models of Anatomically Modern Humans Expansion Out of Africa

We tested two alternative models of expansion of anatomically modern humans out of the African
continent (Figure 1), both sharing the same structure for the archaic groups, but differing for the
relationships among modern populations. To design the models, we followed the parametrization
proposed by [13], with some modifications detailed below. The first model (SD) indeed accounts
for a single dispersal from Africa giving rise to both modern Eurasians and Australo-Melanesians,
the second model (MD) accounts for two different waves of migrations, from two different African source
populations, giving rise, first, to the modern Australo-Melanesians and, later to the modern Eurasians.
The archaic groups consist of three Denisovan populations, two Neanderthal populations, and an
unknown archaic population ancestral to both Neandertals and Denisovans. We explicitly considered
admixture pulses from archaic to modern populations: a pulse from the archaic unknown population
to Australo-Melanesians (as reported in [22]), two pulses from two different Denisovan populations
to Asians and Australo-Melanesians [23,24], two pulses from the same Neandertal population to
modern humans just after the separation between African and non-African populations, and to the
ancestor of all Eurasians [25–27]. Both models account for the presence of a Basal European population,
as described in [28–30]. This (so far, unknown) population contributed genes to modern Europeans,
possibly diluting the contribution of archaic Neandertal variants in European genomes. The SD and MD
models have 45 and 50 free parameters (i.e., parameters whose values are defined by prior distributions),
respectively. The prior distributions associated with these parameters were set following what was
proposed in the recent literature by [13,23,30], and are reported in Tables S1 and S2. We considered a
generation time of 29 years, and we fixed the mutation rate at 1.25 × 10−8 bp/generation [31] and the
intra-locus recombination rate at 1.12 × 10−8, all values as in [13].

https://github.com/anbena/ABC-FDSS
https://github.com/anbena/ABC-FDSS
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Figure 1. Demographic models compared: Single Dispersal (A) and Multiple Dispersals (B). AR: 
unknown archaic population; D-D1-D2: Denisovan groups; N-NR: Neandertal and Neandertal 
related groups; Y: African population; G1-G2: ghost populations; BE: Basal Europe population; E: 
European population; A: Asian population; P: Australo-Melanesian population. 
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We analyzed the high-coverage genomes of Denisova [33] and Neandertal [26], together with 
worldwide modern human samples from [12]. All the individuals were mapped against the human 
reference genome hg19 build 37. To calculate the observed FDSS we only considered autosomal 
regions outside known and predicted genes ± 10,000 bp and outside CpG islands and repeated 
regions (as defined on the UCSC platform, [34]). We extracted 10,000 independent fragments of 500 
bp length, separated by at least 10,000 bps in genomic regions that passed a set of minimal quality 
filters used for the analysis of the ancient genomes (map35_50%; [26,33]). We also included in the 
analysis of the 25 Papuan individuals published by [13]. For these individuals, we downloaded the 
alignments in CRAM format from https://www.ebi.ac.uk/ega/datasets/EGAD00001001634. The 
mpileup and call commands from samtools-1.6 [35], were used to call all variants within the 10,000 
neutral genomic fragments, using the --consensus-caller flag, without considering indels. We then 
filtered the initial call set according to the filters reported in [13] using vcflib and bcftools [35]. The 
complete set of samples used for the comparison between SD and MD are reported in Table S3.  

In each models’ comparison, we evaluated the genomic variation of one Denisova, one 
Neandertal, one African (Congo-pygmies), one European (Estonians), one Asian (Vietnamese), and 
one Australo-Melanesian (Papuans). We decided to restrict the analysis to one high coverage diploid 
genome per population since previous extensive analyses showed that a single individual sampled 
per population has a comparable discrimination power as twenty chromosomes [16]. However, to 

Figure 1. Demographic models compared: Single Dispersal (A) and Multiple Dispersals (B). AR: unknown
archaic population; D-D1-D2: Denisovan groups; N-NR: Neandertal and Neandertal related groups;
Y: African population; G1-G2: ghost populations; BE: Basal Europe population; E: European population;
A: Asian population; P: Australo-Melanesian population.

We performed 20,000, 50,000, and 100,000 simulations for each model with ms [32], to evaluate the
Prior Error Rate and identify the optimum number of simulations to use. At each iteration, we sampled
six diploid genomes, one Neandertal, one Denisova, one African, one European, one Asian, and one
Papuan. The FDSS was calculated from 10,000 independent genomic fragments of 500 bp length.

2.3. Observed Genomic Data

We analyzed the high-coverage genomes of Denisova [33] and Neandertal [26], together with
worldwide modern human samples from [12]. All the individuals were mapped against the human
reference genome hg19 build 37. To calculate the observed FDSS we only considered autosomal
regions outside known and predicted genes ± 10,000 bp and outside CpG islands and repeated regions
(as defined on the UCSC platform, [34]). We extracted 10,000 independent fragments of 500 bp length,
separated by at least 10,000 bps in genomic regions that passed a set of minimal quality filters used
for the analysis of the ancient genomes (map35_50%; [26,33]). We also included in the analysis of
the 25 Papuan individuals published by [13]. For these individuals, we downloaded the alignments
in CRAM format from https://www.ebi.ac.uk/ega/datasets/EGAD00001001634. The mpileup and call
commands from samtools-1.6 [35], were used to call all variants within the 10,000 neutral genomic
fragments, using the –consensus-caller flag, without considering indels. We then filtered the initial call
set according to the filters reported in [13] using vcflib and bcftools [35]. The complete set of samples
used for the comparison between SD and MD are reported in Table S3.

In each models’ comparison, we evaluated the genomic variation of one Denisova, one Neandertal,
one African (Congo-pygmies), one European (Estonians), one Asian (Vietnamese), and one
Australo-Melanesian (Papuans). We decided to restrict the analysis to one high coverage diploid
genome per population since previous extensive analyses showed that a single individual sampled per
population has a comparable discrimination power as twenty chromosomes [16]. However, to ensure
the consistency of the results, we performed several model selection procedures (a) taking into account

https://www.ebi.ac.uk/ega/datasets/EGAD00001001634
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at each run one out of six Papuans from [12] or one of 25 Papuans from [13]; (b) considering alternative
individuals as representative of African, European, and Asian populations (Table S4).

2.4. Assessment of the Quality of the Parameters Estimated

One of the most interesting features of ABC is its high flexibility for model checking,
i.e., for assessing the quality of the estimates inferred from real data. This is mainly achieved
through the analysis of pseudo-observed data (pods), i.e., simulated datasets generated under known
conditions. To determine whether the observed data would contain enough information to estimate
parameters of the multi-dimensional model tested, we exploited 1000 pods, each generated from
the most supported model (i.e., the MD model) and through a known combination of demographic
parameters. Using these pods, for each parameter we calculated the following indices:

• The coefficient of determination (R2). R2 is the fraction of variance of the parameters explained
by the summary statistics used to build the regression model. In the absence of an established
threshold value, there is a general agreement that when R2 < 0.10, the summary statistics do not
convey enough information about the parameter estimates [36].

• The relative bias. To calculate the relative bias, we estimated the parameters for each pod with the
same approach used for the observed data. The bias depends on the sum of differences between the
1000 estimates of each parameter thus obtained and the known (true) value, and it is calculated as

1
n

n∑
i=1

θi − θ
θ

where θi is the estimator of the parameter θ (true value), and n is the number of pods used (1000 in
our case). Because bias is relative, a value of 1 corresponds to a bias equal to 100% of the true value.

• The root mean square error (RMSE). To calculate the RMSE we re-estimated parameters using
pods. The RMSE depends the sum of squared differences between the 1000 estimates of each
parameter thus obtained and the true value and it is calculated as:√√

1
n

n∑
i=1

(θi − θ)
2

• The factor 2, representing the proportion of the 1000 estimated median values lying between 50%
and 200% of the true value.

• The 50% and 90% coverage, defined as the proportion of times that the known value lies within
the 50% and the 90% credible interval of the 1000 estimates.

3. Results

3.1. Model Selection

Table 1 and Table S5 show the results of the power check of the comparison between SD and MD.
Predictably, the Prior Error rate, which indicates the global quality of the ML classifier, decreases for
increasing numbers of simulations in the reference table (from 20,000 to 100,000); for this reason,
we decided to use 100,000 simulations for the subsequent analyses. The proportion of True Positives,
that is the proportion of times the SD or the MD model is correctly recognized by the model selection
procedure, is above 70% for both SD and MD, with a mean posterior probability associated with the
true demography of about 75%.
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Table 1. Power test for model comparison using a reference table with 100,000 simulations per model.

Prior Err. Rate True Positive SD True Positive MD Post. Prob. SD Post. Prob. MD

0.26 0.73 0.75 0.75 0.73

Table 2 and Table S4 show the results of the model selection. Regardless of the Papuan individual
considered, and the combination of non-Australo-Melanesian tested, the model selection analyses
supported the MD model as the scenario best explaining the recent evolution of anatomically modern
humans out of Africa, with probabilities ranging from 78 to 84%.

Table 2. Model Selection results using Papuan individuals from [12,13]. In the first column are reported
the ID of the Papuan samples used for the model choice. The second column shows the model selected
by the ABC procedure. In the third and the fourth columns are reported the votes assigned to the SD
and MD models by the Random-Forest algorithm. The last column shows the posterior probabilities
associated with the most supported model. The samples with the highest posterior probabilities
(in bold) were selected to perform the parameter estimation of the MD model.

ID_Individual Selected Model Votes SD Votes MD Post. Prob.

EGAN00001279031 MD 94 406 0.822
EGAN00001279039 MD 86 414 0.806
EGAN00001279047 MD 111 389 0.798
EGAN00001279054 MD 128 372 0.809
EGAN00001279032 MD 90 410 0.825
EGAN00001279040 MD 113 387 0.784
EGAN00001279048 MD 99 401 0.805
EGAN00001279033 MD 108 392 0.791
EGAN00001279041 MD 111 389 0.797
EGAN00001279049 MD 126 374 0.789
EGAN00001279034 MD 150 350 0.797
EGAN00001279042 MD 109 391 0.791
EGAN00001279050 MD 111 389 0.797
EGAN00001279035 MD 108 392 0.799
EGAN00001279043 MD 97 403 0.802
EGAN00001279051 MD 117 383 0.786
EGAN00001279036 MD 136 364 0.778
EGAN00001279044 MD 109 391 0.784
EGAN00001279052 MD 100 400 0.815
EGAN00001279037 MD 96 404 0.800
EGAN00001279045 MD 148 352 0.787
EGAN00001279053 MD 100 400 0.796
EGAN00001279038 MD 91 409 0.811
EGAN00001279046 MD 104 396 0.781
EGAN00001279055 MD 138 362 0.787

Koinb1 MD 165 335 0.810
Koinb2 MD 129 371 0.811
Koinb3 MD 175 325 0.820
Kosip1 MD 152 348 0.818
Kosip2 MD 136 364 0.788
Kosip3 MD 123 377 0.830

3.2. Parameters Estimation

Once identified the MD as the most probable model, we moved to estimate its parameter values
maximizing the fit between observed and simulated genomic data. To do this, we exploited the
recently developed ML method, based on a regression RF approach [20]. As detailed in [20], a faithful
estimation of parameters’ posterior distribution may be now achieved with a reduced number of
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simulations (i.e., a few thousand; we used 100,000 simulations), making it feasible to also perform an
accurate assessment of the quality of the parameters estimated using pods.

Parameters were estimated from two observed datasets (one with a Papuan individual from [13]
and one with a Papuan individual from [12]), those which produced the highest value of posterior
probability for the MD model in the model selection (Tables 3 and 4). The posterior plots and the
definition of the parameter’s acronyms are reported in Supplementary Materials (Figures S2–S10,
Table S6). The R2, the bias, the RMSE, the Factor 2, and the 50–90% Coverage associated with each of
these parameters are shown in Table 5. As expected for complex demography, many parameters are
not well estimated, as indicated by low R2, high bias, and high RMSE. The parameters showing better
estimation quality are the effective population sizes, in particular those associated with the ancestral
population of African and non-African modern humans (nYG, R2 = 91%), and the ancestral population
of modern and archaic groups (nAM, R2 = 99%). The divergence times appear to have been estimated
reasonably well, with most of R2s above 10%. This is true in particular for the times of the two Out of
Africa events, which also show a low bias and a high Factor2 and Coverage. On the other hand, it is
evident that the data tell us very little about admixture events (their timing and admixture proportions)
and migration rates. Although disappointing, this is not unexpected, and high levels of uncertainty
associated with these parameters were already reported [13].

Table 3. Estimated parameters for the MD model using the Papuan samples from [13]. The mean and
the median estimated values are listed, as well as the 90% and the 50% credible intervals. The parameters
cited in the text are reported in bold.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)

nAR 2822 2793 5.77 × 104 2540 3410 2666 2914
nY 19,077 14,347 1.72 × 108 4204 44,993 7976 29117

nG1 26,191 26,995 2.08 × 108 3253 47,385 13,670 39,819
nG2 23,473 22,275 1.96 × 108 1903 46,649 11,151 34,663
nBE 25,612 26,269 2.08 × 108 2731 47,604 13,394 38,160
nE 13,498 6616 2.07 × 108 627 42,565 1616 23,761
nA 16,360 11,553 2.25 × 108 773 44,620 2599 28,065
nP 24,268 24,839 2.34 × 108 1535 47,534 10,756 37,349

nYG 23,317 22,292 3.19 × 107 17,112 35,456 19,789 25,425
nNNR 2424 2343 1.22 × 105 2057 3001 2219 2504
nDDR 21,360 19,680 2.00 × 108 1570 46,512 9482 32,332
nDN 17,025 12,576 1.77 × 108 2789 43,117 5312 27,001

nADN 19,733 16,531 2.28 × 108 2108 47,465 5770 31,455
nAM 18,846 18,745 1.73 × 106 16,780 21,023 17,911 19,745

rP 0.0214 0.0146 8.36 × 10−4 0.0105 0.0532 0.0119 0.0192
rEA 0.0313 0.0179 1.91 × 10−3 0.0109 0.0869 0.0142 0.0303

tdYG1 101,162 103,842 7.61 × 108 54,830 140,536 78,262 125,226
tdYG2 99,000 98,925 7.13 × 108 55,038 137,970 76,482 124,250
tdOA1 77,106 73,566 5.86 × 108 47,019 120,206 55,392 96,881

tOAbot1 73,389 66,248 6.14 × 108 44,341 118,942 52,082 93,165
tdOA2 47,524 45,937 3.99 × 107 40,394 59,245 42,597 51,019

tOAbot2 45,223 43,282 5.30 × 107 37,718 58,387 40,110 48,153
tdG2BE 68,415 61,497 3.78 × 108 50,281 113,560 53,713 75,889

tdEA 38,187 37,017 4.33 × 107 30,483 50,076 33,374 41,444
taNG2 52,032 49,731 8.13 × 107 42,680 69,758 45,402 55,444
taNEA 41,663 40,005 4.51 × 107 33,965 55,743 36,653 45,055
taARP 61,567 55,048 4.53 × 108 37,831 106,642 43,945 75,654
taD1P 51,047 44,460 3.89 × 108 31,094 95,155 36,207 58,088
taD2A 28,645 27,059 4.24 × 107 20,958 39,746 23,730 32,456
taBEE 25,269 24,844 1.00 × 108 11,194 45,254 16,827 31,380

paNG2 5.19 × 10−2 4.99 × 10−2 7.71 × 10−4 9.44 × 10−3 9.52 × 10−3 2.91 × 10−2 7.73 × 10−2

paNEA 4.73 × 10−2 4.73 × 10−2 7.95 × 10−4 5.36 × 10−3 9.57 × 10−2 2.30 × 10−2 7.01 × 10−2
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Table 3. Cont.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)

paARP 4.82 × 10−2 4.83 × 10−2 9.00 × 10−4 4.97 × 10−3 9.45 × 10−2 2.09 × 10−2 7.71 × 10−2

paD1P 5.21 × 10−2 5.27 × 10−2 8.43 × 10−4 4.58 × 10−3 9.53 × 10−2 2.84 × 10−2 7.85 × 10−2

paD2A 4.74 × 10−2 4.72 × 10−2 8.46 × 10−4 3.95 × 10−3 9.32 × 10−2 2.17 × 10−2 7.24 × 10−2

paBEE 2.78 × 10−1 2.85 × 10−1 1.61 × 10−2 6.83 × 10−2 4.79 × 10−1 1.71 × 10−1 3.83 × 10−1

mYG1 4.75 × 10−4 4.62 × 10−4 9.64 × 10−8 2.61 × 10−5 9.48 × 10−4 1.92 × 10−4 7.54 × 10−4

mG1Y 4.74 × 10−4 4.64 × 10−4 7.95 × 10−8 4.65 × 10−5 9.30 × 10−4 2.25 × 10−4 6.98 × 10−4

mG1G2 4.93 × 10−4 4.80 × 10−4 8.50 × 10−8 4.54 × 10−5 9.41 × 10−4 2.49 × 10−4 7.63 × 10−4

mG2G1 5.34 × 10−4 5.61 × 10−4 8.83 × 10−8 4.77 × 10−5 9.68 × 10−4 2.69 × 10−4 7.94 × 10−4

mG2E 5.23 × 10−4 5.29 × 10−4 8.13 × 10−8 5.19 × 10−5 9.57 × 10−4 2.84 × 10−4 7.81 × 10−4

mEG2 4.21 × 10−4 3.69 × 10−4 7.78 × 10−8 3.73 × 10−5 9.07 × 10−4 1.85 × 10−4 6.48 × 10−4

mEA 4.19 × 10−4 3.60 × 10−4 8.63 × 10−8 3.73 × 10−5 9.66 × 10−4 1.81 × 10−4 6.45 × 10−4

mAE 5.33 × 10−4 5.69 × 10−4 7.63 × 10−8 5.82 × 10−5 9.33 × 10−4 2.90 × 10−4 7.57 × 10−4

mAP 1.70 × 10−4 1.27 × 10−4 2.26 × 10−8 1.42 × 10−5 5.16 × 10−4 7.40 × 10−5 2.10 × 10−4

mPA 1.28 × 10−4 1.02 × 10−4 1.18 × 10−8 8.01 × 10−6 3.37 × 10−4 4.52 × 10−5 1.72 × 10−4

m1G2EA 4.96 × 10−4 5.01 × 10−4 8.24 × 10−8 5.60 × 10−6 9.47 × 10−4 2.45 × 10−4 7.53 × 10−4

m1EAG2 4.46 × 10−4 4.00 × 10−4 8.23 × 10−8 5.18 × 10−5 9.49 × 10−4 1.99 × 10−4 6.95 × 10−4

m1EAP 4.25 × 10−4 3.97 × 10−4 7.57 × 10−8 2.77 × 10−5 9.07 × 10−4 1.95 × 10−4 6.39 × 10−4

m1PEA 4.40 × 10−4 4.02 × 10−4 8.39 × 10−8 4.04 × 10−5 9.31 × 10−4 1.77 × 10−4 6.93 × 10−4

Table 4. Estimated parameters for the MD model using the Papuan samples from [12]. The mean and
the median estimated values are listed, as well as the 90% and the 50% credible intervals. The parameters
cited in the text are reported in bold.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)

nAR 2803 2783 4.57 × 104 2532 3302 2668 2900
nY 19,182 14,771 1.62 × 108 4379 44,930 8223 29,102

nG1 26,722 28,003 2.18 × 108 2702 47,514 14,075 40,579
nG2 25,325 27,394 1.97 × 108 2218 47,188 13,362 36,308
nBE 25,684 26,296 2.17 × 108 2194 47,896 13,706 38,919
nE 12,485 5373 1.94 × 108 699 42,194 1616 21,836
nA 14,543 8978 2.10 × 108 916 43,930 2214 26,207
nP 19,089 16,639 2.16 × 108 1048 46,319 4980 30,429

nYG 22,857 21,922 2.62 × 107 17,112 31,789 19,579 25,130
nNNR 2422 2336 1.24 × 105 2057 3023 2219 2531
nDDR 21,778 20,572 1.94 × 108 1640 46291 9606 32,332
nDN 16,239 11,846 1.59 × 108 2879 41321 5311 25,523

nADN 19,279 16,531 2.21 × 108 2108 47070 4884 31,082
nAM 18,629 18,574 1.57 × 106 16,671 20,691 17,779 19,476

rP 0.0215 0.0143 6.10 × 10−4 0.0104 0.0576 0.0118 0.0204
rEA 0.0314 0.0179 1.94 × 10−3 0.0109 0.0869 0.0144 0.0310

tdYG1 98,829 99,987 7.31 × 108 54,220 140,009 76,337 122,428
tdYG2 97,430 96,686 6.87 × 108 54,693 138,490 76,482 120,370
tdOA1 74,244 68,987 5.32 × 108 46,663 119,539 54,334 89,685

tOAbot1 70,341 64,285 5.47 × 108 43,471 116,608 50,992 85,938
tdOA2 48,554 46,257 7.36 × 107 40,559 64,865 42,739 51,453

tOAbot2 46,366 43,475 8.49 × 107 37,922 63,074 40,247 50,084
tdG2BE 68,122 62,035 3.36 × 108 50,281 105,774 53,533 76,526

tdEA 37,747 35,936 5.05 × 107 30,381 50,399 32,690 40,845
taNG2 53,606 50,116 1.08 × 108 43,274 73,012 46,917 57,484
taNEA 42,255 40,175 7.98 × 107 33,449 56,376 37,030 45,231
taARP 61,203 54,697 4.60 × 108 37,428 106,643 43,994 73,444
taD1P 48,493 43,651 2.90 × 108 31,343 86,579 36,450 55,023
taD2A 29,298 27,601 5.05 × 107 21,090 41,451 24,133 32,700
taBEE 23,871 23,356 9.64 × 107 10,508 40,711 15,268 30,666
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Table 4. Cont.

Parameter Mean Median Variance Q (0.05) Q (0.95) Q (0.25) Q (0.75)

paNG2 5.29 × 10−2 5.35 × 10−2 7.32 × 10−4 8.94 × 10−3 9.52 × 10−2 3.18 × 10−2 7.51 × 10−2

paNEA 5.12 × 10−2 5.22 × 10−2 7.83 × 10−4 5.58 × 10−3 9.60 × 10−2 2.69 × 10−2 7.44 × 10−2

paARP 5.02 × 10−2 5.06 × 10−2 8.74 × 10−4 5.45 × 10−3 9.49 × 10−2 2.36 × 10−2 7.81 × 10−2

paD1P 5.23 × 10−2 5.50 × 10−2 8.00 × 10−4 6.13 × 10−3 9.41 × 10−2 2.78 × 10−2 7.66 × 10−2

paD2A 4.82 × 10−2 4.52 × 10−2 8.87 × 10−4 4.93 × 10−3 9.58 × 10−2 2.27 × 10−2 7.39 × 10−2

paBEE 2.79 × 10−1 2.91 × 10−1 1.65 × 10−2 6.58 × 10−2 4.78 × 10−1 1.68 × 10−1 3.88 × 10−1

mYG1 4.47 × 10−4 4.08 × 10−4 8.52 × 10−8 3.74 × 10−5 9.32 × 10−4 1.89 × 10−4 6.97 × 10−4

mG1Y 4.92 × 10−4 4.91 × 10−4 7.55 × 10−8 5.11 × 10−5 9.27 × 10−4 2.79 × 10−4 7.28 × 10−4

mG1G2 4.74 × 10−4 4.59 × 10−4 8.40 × 10−8 4.41 × 10−5 9.35 × 10−4 2.31 × 10−4 7.32 × 10−4

mG2G1 5.20 × 10−4 5.23 × 10−4 9.07 × 10−8 4.77 × 10−5 9.67 × 10−4 2.34 × 10−4 7.93 × 10−4

mG2E 5.16 × 10−4 5.29 × 10−4 7.87 × 10−8 5.67 × 10−5 9.55 × 10−4 2.85 × 10−4 7.60 × 10−4

mEG2 3.77 × 10−4 3.04 × 10−4 8.13 × 10−8 2.70 × 10−5 9.11 × 10−4 1.30 × 10−4 5.80 × 10−4

mEA 5.07 × 10−4 5.15 × 10−4 8.78 × 10−8 4.74 × 10−5 9.57 × 10−4 2.52 × 10−4 7.68 × 10−4

mAE 4.67 × 10−4 4.68 × 10−4 7.94 × 10−8 4.78 × 10−5 9.17 × 10−4 2.29 × 10−4 7.07 × 10−4

mAP 5.17 × 10−4 5.12 × 10−4 7.28 × 10−8 1.04 × 10−4 9.35 × 10−4 2.78 × 10−4 7.50 × 10−4

mPA 4.05 × 10−4 3.79 × 10−4 5.71 × 10−8 5.15 × 10−5 8.70 × 10−4 2.27 × 10−4 5.41 × 10−4

m1G2EA 5.20 × 10−4 5.21 × 10−4 8.85 × 10−8 4.88 × 10−5 9.74 × 10−4 2.74 × 10−4 7.90 × 10−4

m1EAG2 4.56 × 10−4 4.30 × 10−4 7.91 × 10−8 5.77 × 10−5 9.24 × 10−4 2.09 × 10−4 7.16 × 10−4

m1EAP 4.92 × 10−4 5.12 × 10−4 7.88 × 10−8 6.32 × 10−5 9.42 × 10−4 2.47 × 10−4 7.11 × 10−4

m1PEA 4.78 × 10−4 4.59 × 10−4 7.42 × 10−8 6.17 × 10−5 9.24 × 10−4 2.44 × 10−4 7.02 × 10−4

Table 5. Accuracy of the estimated parameters of the MD model assessed by 1000 pods. The parameters
cited in the text are reported in bold.

Parameters R2 Bias RMSE Factor 2 Coverage 90% Coverage 50%

nAR 0.84 −0.0020 5.90 × 103 0.990 0.935 0.553
nY 0.54 0.1900 1.04 × 104 0.867 0.919 0.522

nG1 0.08 2.0020 1.46 × 104 0.702 0.880 0.466
nG2 0.17 0.9175 1.36 × 104 0.698 0.915 0.497
nBE 0.02 2.2194 1.47 × 104 0.722 0.895 0.479
nE 0.33 0.4278 1.25 × 104 0.767 0.908 0.523
nA 0.28 0.4159 1.20 × 104 0.795 0.922 0.532
nP 0.39 0.3425 1.21 × 104 0.791 0.908 0.501

nYG 0.91 0.0020 3.54 × 103 0.998 0.957 0.650
nNNR 0.92 0.0086 3.64 × 103 0.998 0.966 0.622
nDDR 0.36 0.3529 1.18 × 104 0.800 0.923 0.522
nDN 0.54 0.1979 1.09 × 104 0.842 0.941 0.534

nADN 0.33 0.7749 1.29 × 104 0.705 0.930 0.476
nAM 0.99 0.0067 5.40 × 102 0.997 0.995 0.870

rP 0.10 0.1110 6.79 × 10−2 0.721 0.879 0.521
rEA 0.10 0.0983 5.65 × 10−2 0.748 0.915 0.547

tdYG1 0.25 0.0629 2.23 × 104 0.998 0.928 0.576
tdYG2 0.25 0.0630 2.25 × 104 0.996 0.934 0.573
tdOA1 0.19 0.0025 1.99 × 104 0.998 0.911 0.540
tOAbot1 0.19 0.0052 1.99 × 104 0.996 0.918 0.544
tdOA2 0.13 −0.0257 1.24 × 104 0.998 0.883 0.511
tOAbot2 0.13 −0.0261 1.24 × 104 0.995 0.881 0.512
tdG2BE 0.16 −0.0016 1.98 × 104 0.999 0.913 0.523
tdEA 0.08 −0.0167 9.09 × 103 0.989 0.898 0.495

taD2A 0.04 0.0116 7.35 × 103 0.993 0.905 0.526
paD2A 0.02 0.0010 2.88 × 10−2 1.000 0.900 0.500
taBEE 0.03 0.1286 1.04 × 104 0.914 0.904 0.486
paBEE 0.02 0.0439 1.31 × 10−1 1.000 0.893 0.497
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Table 5. Cont.

Parameters R2 Bias RMSE Factor 2 Coverage 90% Coverage 50%

taD1P 0.11 −0.0070 1.72 × 104 0.973 0.897 0.499
paD1P 0.02 −0.0002 2.85 × 10−2 1.000 0.897 0.508
taARP 0.15 −0.0002 1.85 × 104 0.988 0.916 0.517
paARP 0.03 −0.0014 2.85 × 10−2 1.000 0.906 0.509
taNEA 0.10 −0.0204 1.06 × 104 0.992 0.893 0.516
paNEA 0.02 0.0000 2.81 × 10−2 1.000 0.924 0.516
taNG2 0.15 −0.0223 1.36 × 104 0.998 0.909 0.528
paNG2 0.02 −0.0003 2.89 × 10−2 1.000 0.909 0.477
mYG1 0.15 1.2696 2.69 × 10−4 0.709 0.927 0.521
mG1Y 0.03 1.8171 2.86 × 10−4 0.742 0.907 0.516

mG1G2 0.05 2.0667 2.85 × 10−4 0.737 0.895 0.519
mG2G1 0.05 2.9954 2.89 × 10−4 0.745 0.885 0.509
mG2E 0.03 3.0547 3.01 × 10−4 0.692 0.886 0.460
mEG2 0.19 1.5013 2.67 × 10−4 0.722 0.908 0.503
mEA 0.12 1.4834 2.68 × 10−4 0.744 0.902 0.543
mAE 0.11 1.9813 2.74 × 10−4 0.731 0.908 0.523
mAP 0.27 1.4789 2.40 × 10−4 0.766 0.910 0.548
mPA 0.37 2.2687 2.35 × 10−4 0.773 0.908 0.546

m1G2EA 0.02 2.1201 2.90 × 10−4 0.701 0.911 0.489
m1EAG2 0.04 2.7879 2.92 × 10−4 0.708 0.888 0.496
m1EAP 0.06 2.5111 2.82 × 10−4 0.728 0.901 0.528
m1PEA 0.05 3.2113 2.91 × 10−4 0.694 0.911 0.477

The estimates for the current African effective population size (nY) is about 15,000 (median value),
in agreement with previous studies [37,38]. A lower value is estimated for the Eurasians, with an
effective population size of about 7000 individuals for the Europeans (nE) and of about 11,000 individuals
for the Asians (nA). A bit higher is the estimate for Australo-Melanesian population: the median value
of the effective population size is indeed about 25,000 individuals (nP).

The first divergence within Africa (tdYG1), that generated the source population giving rise to the
first wave of migrants has been estimated about 104,000 years ago, with a 95% confidence interval
between 55,000 and 141,000 years ago (and a 50% CI between 78,000 and 125,000 years ago). The first
waves of migrants left Africa (tdOA1) about 74,000 years ago (95% CI: 47,000–120,000 years ago;
50% CI: 55,000–96,000 years ago), whereas the second wave of migration (tdOA2), originated from
a structure generated (tdYG2) about 100,000 years ago, left Africa about 46,000 years ago (95% CI:
40,000–59,000 years ago, 50% CI: 42,000–51,000 years ago). Europeans and Asians diverged (tdEA)
about 37,000 years ago. These estimates are in agreement with a previous work that considered a less
realistic model and a smaller amount of genetic data [11].

4. Discussion

In this paper, we explicitly compared two models of AMH evolution through an ABC–RF approach
based on the analysis of modern and ancient complete genomes. The two tested demographic models
consider details of our evolutionary history that have been proposed in the recent literature, such as
the presence of a (so far, unsampled) Basal European population contributing to the genome of recent
Europeans [30], or the two distinct pulses of admixture from two different Denisovan populations
to Asians and Papuans [23]. The main difference between the two scenarios regards the dynamics of
expansion from Africa of AMH. According to the SD model, all non-African populations derive from a
single major migration wave; on the contrary, the MD model assumes two migration waves, distinct in
time and place, the first one giving rise to modern Australo-Melanesians and the other giving rise to
Eurasians. Needless to say, successive processes of gene flow and admixture have certainly complicated
the apparently simple patterns generated by the initial African dispersal(s). Yet, even these admittedly
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simplified models are complex (defined by up to 50 parameters), and the differences between them are
relatively small; therefore, one could expect that it might be difficult to tell them apart. On the contrary,
the ABC-RF procedure we chose provided a good discriminatory power, with a proportion of True
Positives of about 70% for both AD and MD models. This TP proportion is comparable to, or higher
than, that reported in previous works where simpler (and hence less realistic) models were analyzed
(see e.g., [39,40]). When the two alternative models were compared, the MD model resulted consistently
four-fold more probable than the SD model, no matter which Papuan (Table 2), African, European or
Asian individuals were considered (Table S4), with a posterior probability estimated around 80%.
The support for the MD model is marginally higher than in [16], where a comparison between two
alternative, less up-to-date, evolutionary histories of AMH favored the MD model with a probability
of about 75%. These results are robust to slight changes in the MD parametrization. We indeed tested
also a version of MD in which Papuans derived part of their genomes from Eurasians, modeled as a
single pulse of admixture occurring after the second exit (rather than through a process of continuous
gene flow), the results are reported in Table S7. Even in this version, the MD appeared more supported
by data than the SD model, although it appeared slightly less likely than the previous MD model when
included in the general comparison.

In this work, for the first time, we also attempted to estimate the parameters of the supported
model by ABC-RF. The MD model was defined by 50 free parameters, estimated through the regression
random forest algorithm [20]. We also assessed the quality of these estimates through the calculation of
statistics that gave us information about the inferential power of the parameter’s estimation procedure.
An assessment of the quality of the estimated parameters was prohibitive so far, due to computational
limits of other inferential methods, e.g., those based on composite-likelihood [41]. With ABC-RF,
instead, the same reference table (made up of just a few thousand simulations) allows one to both
estimate parameters and assess their quality using a subset of the simulation as “pods”. To perform
the same analysis by composite-likelihood methods, one would require about 100 thousand new
simulations for each pod analyzed, which means, even considering only 100 pods, billions of simulations.
This large amount of simulated data often exceeds computational constraints, in particular when
complex demographies are analyzed. As a consequence, in studies of complex models, no information
was provided about the reliability of parameter estimates [13,42]. The procedure we applied made it
possible to compensate for this drawback, as shown in Table 5.

It would have been unrealistic to expect that all 50 parameters could be reliably estimated.
The migration rates among modern populations, or the proportion and timing of admixture events,
for instance, proved elusive, showing a low R2 and high bias and RMSE values. We knew that
there is an almost infinite set of parameter combinations leading to the same patterns of genome
diversity, with, for instance, old small-scale admixture events, and recent larger-scale admixture events,
producing, in principle, the same consequences at the genomic level. Other parameters show better
estimates. This is the case of the effective population sizes, or, to a lesser extent, of the divergence
times. The African, European and Asian estimates of the effective population sizes are consistent with
what reported in the literature [38,43]; the higher value estimated for the Australo-Melanesian group,
here represented by the Papuans, may be surprising, but it is in agreement with the harmonic mean of
the effective population sizes estimated over time by [12].

The most interesting parameters are those associated with the divergence/departure from
Africa. These parameters show R2 above 10%, good coverage, and a factor 2 of about 100%;
however, their confidence intervals are huge and their posterior distributions often seem to reflect
the prior range. This means that we should still take with caution these estimates and that the ABC
inferential procedure, albeit powerful, shows room for improvement. The key advantage of the ABC
estimation is that the “quality assessment” procedure allows the acquisition of consciousness about the
quality of the estimates; nevertheless, having this in mind, we can still discuss the estimates obtained.
We dated the structure of African groups that gave rise to the source populations of the migration
waves from Africa about 100,000 years ago. The bottleneck of the first exit from Africa, associated with
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the origin of Australo-Melanesian groups, has been estimated at about 74,000 years ago, in line with
the timing inferred from paleoanthropological data (70,000 years ago, [44]). The second exit, giving rise
to Eurasian populations, was placed at about 46,000 years ago. This is in agreement with previous
estimates from genomic data [4,38,45] and receives further support from the relatively recent arrival of
modern humans in Europe suggested by much of the archaeological evidence (40–45 thousand years
ago, [46,47]). Some authors proposed an even earlier presence of AMH in Europe [48]. Be that as it may,
it is also plausible that large-scale gene flow processes, documented at least twice in Europe (in the
Neolithic period and Bronze Age; see [49]) may have slightly reduced diversity and hence the apparent
depth of the DNA genealogies, thus producing a bias towards more recent values in the estimation of
divergence times. The two migration waves from Africa considered in the MD model appear to be
separated in time, with no temporal overlap considering their 50% confidence interval (55,000–96,000
for the first exit and 42,000–51,000 for the second exit), and a limited overlap considering their 95%
confidence interval (47,000–120,000 for the first exit and 40,000–59,000 for the second exit).

5. Conclusions

In this paper we extensively tested two up-to-date models of modern human expansion Out of
Africa through a machine learning ABC approach. The simulated variation has been compared with
those observed in ancient and modern genomes, and our results consistently supported a Multiple
Dispersal Model, in which modern Australo-Melanesians derive from an earlier migration from Africa
than that giving rise to Eurasians. We also estimated the parameters of the most supported model,
and we concentrated our effort in assessing the quality of the estimates produced. This procedure,
albeit fundamental to ensure the reliability of the estimates, it is rarely performed, due to the limitations
of available inferential methods. These limitations are currently overcame by the ABC-RF procedure
coupled with the FDSS statistic, which allowed us to highlight weakness and strengths of the parameters
estimated. Our results indeed support that the hypothesis of two main dispersal event from Africa,
separated in time and place [10–12], cannot be dismissed [4,13], but the quality assessment of the
parameters we estimated certainly show that needs to be further explored.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1510/s1,
Table S1: Demographic parameters and prior distributions of Single Dispersal model. Table S2: Demographic
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Power test of model comparison for increasing number of simulations considered in the reference table.; Table S6.
Complete list of acronyms of the MD model’s demographic parameters.; Table S7. Model Selection results
including the MD-Pulse admixture model. Figure S1: Outline of the entire workflow; Figure S2: Posterior density
of the effective population sizes estimated using the Papuan sample from Malaspinas et al. (2016). Figure S3:
Posterior density of the divergence times and the admixture times estimated using the Papuan sample from
Malaspinas et al. (2016). Figure S4: Posterior density of the admixture rates estimated using the Papuan sample
from Malaspinas et al. (2016). Figure S5: Posterior density of the migration rates estimated using the Papuan
sample from Malaspinas et al. (2016). Figure S6: Posterior density of the effective population sizes estimated
using the Papuan sample from Pagani et al. (2016). Figure S7: Posterior density of the divergence times and the
admixture times estimated using the Papuan sample from Pagani et al. (2016). Figure S8: Posterior density of the
admixture rates estimated using the Papuan sample from Pagani et al. (2016). Figure S9: Posterior density of
the migration rates estimated using the Papuan sample from Pagani et al. (2016). Figure S10: The model below
represents a simplified version of the most supported model (MD) showing the main demographic parameters.
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