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Abstract 

This work investigates the variance of fatigue damage in stationary random loadings with non-Gaussian probability distribution 
and narrow-band power spectral density. It presents an approach exploiting a non-linear time-invariant transformation that links 
Gaussian and non-Gaussian domains and that is calibrated on the skewness and kurtosis values of the non-Gaussian process. The 
transformation allows determining the joint probability distribution of two peaks and the cycle amplitude distribution in the non-
Gaussian process, from which the variance of damage is calculated. Monte Carlo numerical simulations are finally discussed to 
demonstrate the correctness of the proposed model and to investigate the sensitivity of the damage variance to several parameters 
(S-N inverse slope, skewness and kurtosis of non-Gaussian loading).  
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1. Introduction 

There are many engineering applications in which mechanical components are subjected to loadings inherently 
random, that is loadings with a random nature. Examples are the loads from road irregularity, wind or sea waves. 
Assessing the component structural durability usually requires that loading sample records be processed by counting 
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methods and damage accumulation rules (e.g. rainflow counting and Palmgren-Miner rule) so to compute a fatigue 
damage value from which the component service life is estimated. 

 
Nomenclature 

 sample coefficient of variation , , ,  peak and valley (Gaussian, non-Gaussian) 
 coefficient of variation of fatigue damage ,  Gaussian and non-Gaussian time-history 

 fatigue damage of a half-cycle ,  Gaussian and non-Gaussian process 
 sample mean of fatigue damage ,  skewness, kurtosis 

 fatigue damage in time period T  m-th spectral moment 
 probability distribution of stress amplitudes ,  mean value of  and  

,  joint probability density function of two peaks  rate of mean value upcrossings 
,  direct and inverse transformation ,  autocorrelation coefficient of  and  

,  material constants of the S-N curve  sample variance of fatigue damage 
 number of counted cycles in T  variance of fatigue damage 
 correlation function of  ,  variance of  and  

 stress amplitude of a half-cycle  time lag 
 Power Spectral Density of  ,  (pre-superscript) Gaussian, non-Gaussian 

 
Sample records from random loadings do have fatigue cycles that vary randomly both in their number as well as 

in their amplitudes and mean values. Fatigue cycles, and the damage computed therefrom, are thus random variables. 
This means that, for example, different damage values would result when analyzing distinct loading records, even if 
measured under virtually identical conditions.  

It often happens, though, that only few (perhaps only one) sample records of limited time length are available in 
practice. This small sample may give an incomplete picture of the cycle distribution characterizing the random 
loading. The computed damage may thus be a biased estimate of the “true” (or average) damage that would result by 
processing a much larger set of loading sample records, or ones with a much longer time duration. In other words, 
few damage values may have so large levels of statistical variability to make any fatigue life estimation rather 
uncertain (which, in turn, requires high safety factors to be introduced). Estimating the statistical variability 
(variance) of the damage is thus as equally important as estimating the “average” damage value. 

Over the last decades, several theoretical solutions were developed (e.g. Low, Mark and Crandall, Bendat) for 
estimating the variance of damage in a stationary random loading that is Gaussian and has a narrow-band frequency 
spectrum. Gaussian means that the load values follow a normal distribution; narrow-band means that the spectrum is 
concentrated around a well-defined frequency, as it happens in structures vibrating at their first resonance. 

The previous theoretical solutions do not apply, however, to loadings that are not Gaussian. This class of loadings 
is encountered, for instance, if the loading is itself non-Gaussian (e.g. certain types of wind or wave loads) or if a 
structure has a nonlinearity that transforms a Gaussian input into a non-Gaussian stress response (Benasciutti and 
Tovo (2018)).  

It should be noted that the non-Gaussian case is of particular relevance in structural durability. Indeed, a non-
Gaussian loading with kurtosis>3 takes on values larger than a corresponding Gaussian one with same variance, so 
its damage will be larger‒and its variance different‒from what predicted by Gaussian models.  

This premise emphasizes the importance to extend the current solutions of the damage variance from the 
Gaussian to the non-Gaussian case, which is indeed the main purpose of the present work. A “transformed model”, 
which links the Gaussian and non-Gaussian domains, is used by the approach here proposed to extend the Low’s 
solution to the case of a non-Gaussian narrow-band loading. The transformed model forms the basis from which the 
joint probability distribution of two peaks in the non-Gaussian process is derived. Through a numerical solution, the 
proposed method arrives at estimating the variance for any combination of skewness and kurtosis of practical 
interest. 

A Monte Carlo study is finally carried out, with two main purposes. The first is to verify the correctness of the 
proposed solution. The second is to investigate how much the variance of damage depends on the values of skewness 
and kurtosis of the non-Gaussian process, as well as on the inverse slope of S-N curve. 

 Author name / Structural Integrity Procedia 00 (2019) 000–000  3 

2. Theoretical background 

2.1. Random process and Power Spectral Density (PSD) 

Let ���� be a stationary Gaussian random process. It represents an infinite collection (ensemble) of time histories 
of unlimited duration, ����� , �� � � � � . The process ����  has mean value ��  and autocorrelation function 
����� � ��������� � ���. An autocorrelation coefficient, ����� � ����� ��� , (with �1 � ����� � 1) will also be 
used in the following. The Fourier transform of ����� defines the one-sided Power Spectral Density (PSD) ����� of 
the random process. The power spectrum has spectral moments: 

 �� � � ��
�

�
�����	��,					� � 0,1,2… (1) 

The variance of ���� is �� � ���  and the frequency of upward crossings of the mean value is �� �� � ��� �� 		 
(the pre-superscript specifies the Gaussian process). 

Let ���� be a non-Gaussian random process, with mean �� and upcrossing rate ��� �� (the pre-superscript stands 
for non-Gaussian). The values of a non-Gaussian process do not follow a Gaussian probability distribution. The 
degree of deviation from the Gaussian distribution is summarized by the skewness and kurtosis parameters: 

 �� � ���� � �����
��� 	��������;								�� � ���� � �����

��� 	�������� (2) 

where symbol ���� means “expected value”. The skewness quantifies the degree of asymmetry of the non-
Gaussian distribution. The kurtosis quantifies the contribution of the tails of the distribution: values away from the 
mean can be either higher (�� � 3, leptokurtic case) or lower (�� � 3, platykurtic case) than the values from a 
Gaussian distribution, for which �� � 0 and	�� � 3. 

3. Fatigue damage: expected value and variance 

Let 	����, 0 � � � �, be a time history of time duration �. Under the Palmgren-Miner hypothesis, the fatigue 
damage ���� is calculated as the sum of damage values of ���� individual half-cycles counted in �: 

 ���� � � ��
����

���
� � ���

2�
����

���
 (3) 

where �� is the stress amplitude of the i-th half-cycle; � and � are material constants defining the S–N curve as 
��� � �. Damage ���� depends on the particular set of stress amplitudes �� counted in ����. It is a function of the 
particular ���� from which it is computed, as well as of the time duration �. For example, the damage would take a 
different value if ���� were longer, or if the damage were computed from another realization of the random process.  

Taking the expectation of Eq. (1) gives the expected damage value: 

 ������� � ������� ���
��

2�  (4) 

It represents the limiting case in which the damage is computed from the whole ensemble of realizations, or from 
an ergodic time history of infinite time length. The quantity ������� is the expected number of cycles counted in �, 
whereas the term ���� � ����� 2�  represents the expected damage per half-cycle, calculated from the probability 
distribution of stress amplitudes	����� as (Benasciutti and Tovo (2005)): 
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 ���� � 1
2�� ����������

�

�
 (5) 

In a narrow-band Gaussian process, ����� is a Rayleigh distribution and the damage per half-cycle becomes: 

 ����� � 1
2� ��2���

�� �1 � �
2� (6) 

where Γ��� is the gamma function. Superscript specifies the Gaussian case. Furthermore, in a narrow-band 
process the expected number of half-cycles is twice the number of mean value upward crossings, ������� � 2����. 

The variance of ���� is obtained by simply taking the variance of Eq. (3) (Mark (1961)): 

 ��� � ��� �� ��
����

���
� � � �� �����

����

���

����

���
� � �� �� ��

����

���
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The second equality follows from the definition of the variance of a random variable ������ � ����� � �������. 
A deterministic number of half-cycles ���� can be assumed if peaks and valley that define every half-cycle are 

mutually independent and identically distributed. The variance then becomes: 

 ��� ����������
�

���

�

���
� �������

�

���
�
�
 (8) 

As the random process ���� is stationary, the discrete process �� can be assumed to be stationary as well, so that 
����� � ����� � � � ������� and ������� � �������, � � � � �. Accordingly, the previous equation turns into: 

 ��� � �������� � ������� � 2��� � ���������� � �������
���

���
 (9) 

The term �� � ��������� characterizes the autocorrelation function ���,����� of the half-cycle damage, where � is 
the “time lag” that takes on integer values from 1 to � � 1.  

Now consider two peaks, ��  and �� , separated by a time difference � � � �2���� . Following Low (2012), 
throughout the text the term ‘‘peaks’’ is used in a broad sense to mean also valleys. It should be noted that, in a 
narrow-band process, the stress amplitude is equal to the peak value, �� � ��. Therefore, the damage per cycle �� is 
proportional to ���. Accordingly, the product ������� can be computed from the joint probability density function 
(JPDF) of two peaks, ���,�����, ��� as: 

 ������� �� 1
4�� �����������,�����, ��� ��� ���

�

��
 (10) 

This equation makes apparent that �������  depends upon the JPDF ���,�����, ��� , which thus plays a 
fundamental role to compute the variance by Eq. (9). A general closed-form expression for ���,�����, ��� is not 
available, unless some simplifying hypothesis are introduced, as proposed in several approaches (Low, Mark and 
Crandall, Bendat). A survey can be found in Enzveiler Marques et al. (2019). In the next paragraph, only a brief 
account of Low’s approach for Gaussian processes is presented, as it constitutes the basis from which to develop the 
method for non-Gaussian processes. 
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4. Variance of damage: Gaussian case (Low’s method) 

This method is applicable to Gaussian narrow-band processes with any spectral density shape. For this process, 
the JPDF of two peaks has been derived by Rice (1944): 

 ���,��� ���, ��� � ����
1 � ��� �� �

�������
1 � ��� � �

�������
�������� � (11) 

where �����  is the modified Bessel function of the first kind with order zero, and �� � �����  is the 
autocorrelation coefficient computed at the lag �. By invoking Eq. (9), the variance is: 

 �� �� �� �� ������� � ������ �� � 2��� � ��� ������� � ������ ��
���

���
���,���  (12) 

The quantity ρ��,���  is the damage correlation coefficient. In Low (2012) it is computed by means of the joint 
distribution in Eq. (11) and approximated by a quadratic interpolation function of ��� as ρ��,��� � ����� � �����, 
where ��  and ��  are best-fitting coefficients. The variance of fatigue damage, normalized to expected damage 
squared �������� �, defines the coefficient of variation (CoV): 

 �� � � �� � 2� �� � �������� ���,���

�� � ��1 � ��
�� �1 � �

2�
� 1� (13) 

5. Variance of damage: non-Gaussian case (new method) 

5.1. Transformed model 

The Low’s method for a Gaussian process ���� can be extended to a non-Gaussian process ���� provided that 
this is defined through a “transformed model” as ���� � �������. This “transformed model” is based on a time-
independent non-linear transformation ���� that links the values of Gaussian and non-Gaussian processes at any 
time �. The Gaussian process ���� � ������� is retrieved by the inverse transformation ���� � ������. 

Some authors (e.g. Winterstein, Ochi and Ahn, Lutes and Sarkani (2004)) provide the analytical expression of 
either the direct or the inverse transformation. Among them, only the Winterstein’s model provides the expressions 
of both. This is particularly advantageous as it makes much easier to develop the following theoretical solution of 
the variance. Furthermore, the Winterstein’s model is based on cubic Hermite polynomials that are capable to model 
non-Gaussian processes characterized by a relatively wide range of skewness, ��, and kurtosis, ��. 

For a leptokurtic process (�� � 3), the inverse transformation is (the time �  variable is omitted for clarity) 
(Winterstein et al. (1994)): 

 
���� � ������� � � � �����

�
� � ������� � � � �����

�
� � � 

���� � 1.5� �� � � � ��
��� � � �� 

(14) 

in which ��� is the mean value and �� the standard deviation of the non-Gaussian process, and � � �� �3��� , 
� � 1 �3��� , � � �� � 1 � ���� . The scale factor � � �1 � 2��� � 6������ �  assures that both the Gaussian and 
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�
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 (10) 

This equation makes apparent that �������  depends upon the JPDF ���,�����, ��� , which thus plays a 
fundamental role to compute the variance by Eq. (9). A general closed-form expression for ���,�����, ��� is not 
available, unless some simplifying hypothesis are introduced, as proposed in several approaches (Low, Mark and 
Crandall, Bendat). A survey can be found in Enzveiler Marques et al. (2019). In the next paragraph, only a brief 
account of Low’s approach for Gaussian processes is presented, as it constitutes the basis from which to develop the 
method for non-Gaussian processes. 
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4. Variance of damage: Gaussian case (Low’s method) 

This method is applicable to Gaussian narrow-band processes with any spectral density shape. For this process, 
the JPDF of two peaks has been derived by Rice (1944): 
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where �����  is the modified Bessel function of the first kind with order zero, and �� � �����  is the 
autocorrelation coefficient computed at the lag �. By invoking Eq. (9), the variance is: 
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The quantity ρ��,���  is the damage correlation coefficient. In Low (2012) it is computed by means of the joint 
distribution in Eq. (11) and approximated by a quadratic interpolation function of ��� as ρ��,��� � ����� � �����, 
where ��  and ��  are best-fitting coefficients. The variance of fatigue damage, normalized to expected damage 
squared �������� �, defines the coefficient of variation (CoV): 
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5. Variance of damage: non-Gaussian case (new method) 

5.1. Transformed model 

The Low’s method for a Gaussian process ���� can be extended to a non-Gaussian process ���� provided that 
this is defined through a “transformed model” as ���� � �������. This “transformed model” is based on a time-
independent non-linear transformation ���� that links the values of Gaussian and non-Gaussian processes at any 
time �. The Gaussian process ���� � ������� is retrieved by the inverse transformation ���� � ������. 

Some authors (e.g. Winterstein, Ochi and Ahn, Lutes and Sarkani (2004)) provide the analytical expression of 
either the direct or the inverse transformation. Among them, only the Winterstein’s model provides the expressions 
of both. This is particularly advantageous as it makes much easier to develop the following theoretical solution of 
the variance. Furthermore, the Winterstein’s model is based on cubic Hermite polynomials that are capable to model 
non-Gaussian processes characterized by a relatively wide range of skewness, ��, and kurtosis, ��. 

For a leptokurtic process (�� � 3), the inverse transformation is (the time �  variable is omitted for clarity) 
(Winterstein et al. (1994)): 
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in which ��� is the mean value and �� the standard deviation of the non-Gaussian process, and � � �� �3��� , 
� � 1 �3��� , � � �� � 1 � ���� . The scale factor � � �1 � 2��� � 6������ �  assures that both the Gaussian and 
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non-Gaussian process has the same variance, . The non-dimensional coefficients  and  take on slightly 
different expressions, depending on the version of the method. The earliest version (Winterstein (1985)) was a first-
order model limited to small non-Gaussian degrees. The later version–considered in the following–included also a 
second-order term and gives the following expressions: 
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These coefficients hold for 0 2 3 3  and 3 15, which include most non-Gaussian cases. 
For a platykurtic process ( 3), the inverse transformation is: 

 1 3  (16) 

where   is a standardized process; 6  and 3 24  are Hermite moments. 

 

Fig. 1. (a) Non-linear transformation; (b) Gaussian and its corresponding transformed non-Gaussian process. 

Fig. 1(a) depicts an example of non-linear transformation for 0 and 5. A Gaussian process and its 
corresponding transformed non-Gaussian are compared in Fig. 1(b). The peaks of both processes are marked to 
emphasize their relationship. 

As a final comment, a shortcoming in the use of transformed models is that they tend to distort the power spectral 
density so that the power spectrum of the transformed process  tends to be “whiter” (harmonics are added) than 
the spectrum of  (Smallwood (2005)). However, if the degree of non-linearity of  is not too high, the 
distortion is acceptable and both processes have similar spectral contents (Smallwood (2005)). 

5.2. Variance for non-Gaussian process 

The Low’s model for the variance (see Sec. 4) relies on three known facts, namely that in a narrow-band process: 

 the expected number of half-cycles in time interval  is proportional to the upcrossing rate: 2 ; 
 the time lag between two peaks  and  is 2 ; 
 the JPDF of two peaks is known in closed-form (Rice’s distribution in Eq. (11)) if the process is Gaussian; 

It should be noted that only the third point requires the Gaussian hypothesis for the process, whereas the other 
two are in fact very general and can be extended to a transformed non-Gaussian process. Indeed, the property of a 
“transformed model” of establishing a one-to-one relationship between instantaneous values in a Gaussian process 
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and its corresponding transformed non-Gaussian process has important consequences. It implies that both processes 
do have peaks, valleys and mean value crossings exactly at the same time instants, see Fig. 1(b). More precisely, if 
the Gaussian process crosses its mean value �� at time ��, that is ����� � ��, the non-Gaussian process will cross its 
mean value �� also at ��, that is ����� � ��. Furthermore, if ���� has a peak ����� or valley ����) at instant �, the 
non-Gaussian process will have a corresponding peak or valley at the same instant, ����� � �������� and ����� ���������. The same holds true also for the inverse relationship ����� � �������� and ����� � ��������. As a 
consequence of the previous property, both the Gaussian and non-Gaussian process have the same autocorrelation 
coefficient, that is  ����� � �����.  

Another, and perhaps more important, property is that the transformation–being monotonic–also preserves the 
relative position of peaks and valleys in both processes. This is to say, for example, that if ������ � ������ at some 
instants �� , ��  in the Gaussian process, it will also be ������ � ������  in the non-Gaussian process for the 
corresponding peaks transformed by ���� (of course, the same concepts applies to valleys as well). By using the 
notation adopted previously, if the Gaussian process has peaks �� � � �� ��� at time lag �, the non-Gaussian process 
will have peaks ��� � � ��� ��� at the same time lag. 

The previous arguments may be summarized by saying that a “transformed model” from Gaussian to non-
Gaussian process preserves the number of mean value crossings and modifies (increases or decreases) the values of 
peaks and valleys (depending on ��, ��), keeping their relative positions unaltered. This property, in particular, 
guarantees that, in the non-Gaussian process, half-cycles are formed by peak/valley pairs transformed from the 
corresponding peak/valley pairs in the Gaussian process, and that non-Gaussian half-cycles have amplitudes smaller 
or larger (depending on ��, ��) than the corresponding amplitudes of Gaussian half-cycles. 

In light of the previous arguments, the three conditions in the previous list may easily be adapted to the non-
Gaussian case with no much effort. It is possible to say that in a narrow-band non-Gaussian process: 

 the expected number of half-cycles in time interval � is ������� � ��� ��2�; 
 the time lag between two peaks ��� � and ��� ��� is � � � � ��� ��2� ; 
 the JPDF of two peaks is obtained as a variable transformation of the Rice’s joint distribution in Eq. (11); 

The third point is now elaborated further. Let consider any two extremes �� and �� (peak and valley) in the non-
Gaussian process. They are random variables with joint probability density function, say f��,���� ��p, ���. Such 
extremes are transformed back to two corresponding extremes ��=	����� and �� � ����� (peak and valley) in the 
Gaussian process through the inverse function ����. For the Gaussian extremes applies the joint Rice’s distribution 
in Eq. (11). It is therefore straightforward to derive the joint distribution of the non-Gaussian extremes by the rule of 
transformed random variables (Lutes and Sarkani (2004)): 

 ���,���� ���, ��� � ���,��� ���, ���	�	J���, ���	��� (17) 

where symbol |	�	| means “absolute value” and � is the Jacobian of the transformation ����, which turns out 
from the following 2 � 2 determinant: 
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Note that the inverse transformation needs be applied to peak and valley variables separately. As a result, the 
Jacobian in Eq. (18) is, in fact, a diagonal matrix. Intuition indeed suggests, for example, that an infinitesimal 
change in the non-Gaussian peak ���  cannot produce any variation in the corresponding valley ��� , so that 
������ ��� � 0. A similar reasoning applies to the other out-of-diagonal term to explain that ������ ��� � 0. 

By considering Rice’s formula in Eq. (11), the general expression in Eq. (18) can be made more explicit as: 
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and its corresponding transformed non-Gaussian process has important consequences. It implies that both processes 
do have peaks, valleys and mean value crossings exactly at the same time instants, see Fig. 1(b). More precisely, if 
the Gaussian process crosses its mean value �� at time ��, that is ����� � ��, the non-Gaussian process will cross its 
mean value �� also at ��, that is ����� � ��. Furthermore, if ���� has a peak ����� or valley ����) at instant �, the 
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Although not written explicitly, the Bessel function �����, ��� in Eq. (19) is intended to be a function of �� and 
��, and it is obtained by a simple change of variables in the corresponding function �����, ��� in Eq. (11), which is 
instead a function of �� and ��. 

The expression in Eq. (19) represents the joint distribution of two peaks in the non-Gaussian process. The 
presence of a transformation of variables involving the non-linear function ����� makes the expression so complex 
that no closed-form solution is obtainable. A numerical approach is then adopted. 

Eq. (19) depends on both �� and �� through function �����. It is also function of ��, ��� and ��. Obviously, in the 
limiting case �� � 0 and �� � 3 (Gaussian process), Eq. (19) converges to Rice’s distribution in Eq. (11). 

 

Fig. 2. (a) Peak-peak joint probability density function and (b) peak marginal distribution (solid line = Gaussian, dashed line = non-Gaussian). 

Fig. 2(a) compares the Gaussian and non-Gaussian joint probability distributions (the latter obtained with �� � 0, 
��� � 1, �� � 0, �� � 0 and �� � 5). The shift of probabilities is clear. In particular, if compared to the Gaussian 
case, the non-Gaussian distribution shows higher levels of probability towards larger peak values. The shift in 
probability is confirmed even more clearly by the comparison of the marginal probability density functions in Fig. 
2(b).  

The non-Gaussian peak-peak joint distribution obtained so far allows the damage correlation ���������  to be 
computed with no much effort by solving numerically the double integral in Eq. (10). The other damage terms in the 
variance expression of the non-Gaussian process are computed from the non-Gaussian peak probability distribution: 

 ����� ���� � ���� ���� ���������� ��
��

 (20) 

which is transformed from the Rayleigh distribution of peaks, f��� ����, of the narrow-band Gaussian process. In 
Eq. (20), �� � ����� is the transformed variable corresponding to ��. 

In the same way as with Eq. (5), the expected damage �������  and ��������  are nothing more than the moments 
of order � and 2�, respectively, of the probability distribution f���� ����. Making use of the expression in Eq. (20) 
and introducing the change of variable ����� into the Rayleigh distribution f��� ����, the two damage values can be 
written by this compact notation: 
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where the exponent � is 1 or 2. This expression is only a function of ��, ���, �� and ��. 
The variance of damage for the non-Gaussian process is finally obtained through Eq. (9), in which the terms  
��������� , ��������  and �������  calculated so far for the non-Gaussian process need to be used: 

 ��� �� � �� �������� � ������� �� � 2��� � ��� ��������� � ������� ��
���

���
 (22) 

Accordingly, the coefficient of variation for the non-Gaussian process becomes: 

 ��� � � ��� �������� � ������� �� � 2∑ �� � ��� ��������� � ������� ��������
��	 ������� �  (23) 

6. Numerical simulations 

Monte Carlo simulations allow the correctness of the previous theoretical to be verified against time-domain 
results. Simulations considered a narrow-band rectangular power spectrum ����� centered at 10 Hz, with half 
spectral width 1 Hz and zero-order spectral moment �� � 1, see Fig. 3(a). A total of � � 2 ∙ 10� random Gaussian 
time-histories �����, � � 1,2,3, …� were simulated from this PSD. Winterstein’s model is then used to transform 
each ����� into a non-Gaussian time-history �����.  

For every time-history, ����� and �����, the fatigue damage �� ���� and ��� ���� was calculated in time-domain 
by rainflow counting and Palmgren-Miner rule. Damage calculation assumed a S-N curve with � � 1 and several 
values of the inverse slope � � 3, 5, 7. The mean �� � ��� ∑ ������ , variance ���� � �� � 1��� ∑ ��� � ��������  and 
coefficient of variation ��� � ��� ��  were estimated from the sample damage values in both Gaussian and non-
Gaussian case. By contrast, the expected damage value was computed from the analytical solutions: the Gaussian 
expected damage �������� � �	 �����  from Eq. (6), the non-Gaussian expected damage  ��������� � �	 ������  
by taking � � 1 in Eq. (21). 

Fig. 3(b) shows the trend of mean and standard deviation of damage (normalized to the expected damage) as a 
function of the number of rainflow cycles, for both the Gaussian and non-Gaussian case (with � � 3, �� � 0 and 
�� � 5). It is apparent from the figure how the statistical scatter of damage decreases as the number of cycles in the 
loading increases. For any value of the number of cycles, the non-Gaussian damage always has a variance higher 
(about 100%) than that of the Gaussian damage. This difference confirms the importance of taking the non-Gaussian 
effect into account. 
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The variance of damage for the non-Gaussian process is finally obtained through Eq. (9), in which the terms  
��������� , ��������  and �������  calculated so far for the non-Gaussian process need to be used: 

 ��� �� � �� �������� � ������� �� � 2��� � ��� ��������� � ������� ��
���

���
 (22) 

Accordingly, the coefficient of variation for the non-Gaussian process becomes: 

 ��� � � ��� �������� � ������� �� � 2∑ �� � ��� ��������� � ������� ��������
��	 ������� �  (23) 

6. Numerical simulations 

Monte Carlo simulations allow the correctness of the previous theoretical to be verified against time-domain 
results. Simulations considered a narrow-band rectangular power spectrum ����� centered at 10 Hz, with half 
spectral width 1 Hz and zero-order spectral moment �� � 1, see Fig. 3(a). A total of � � 2 ∙ 10� random Gaussian 
time-histories �����, � � 1,2,3, …� were simulated from this PSD. Winterstein’s model is then used to transform 
each ����� into a non-Gaussian time-history �����.  

For every time-history, ����� and �����, the fatigue damage �� ���� and ��� ���� was calculated in time-domain 
by rainflow counting and Palmgren-Miner rule. Damage calculation assumed a S-N curve with � � 1 and several 
values of the inverse slope � � 3, 5, 7. The mean �� � ��� ∑ ������ , variance ���� � �� � 1��� ∑ ��� � ��������  and 
coefficient of variation ��� � ��� ��  were estimated from the sample damage values in both Gaussian and non-
Gaussian case. By contrast, the expected damage value was computed from the analytical solutions: the Gaussian 
expected damage �������� � �	 �����  from Eq. (6), the non-Gaussian expected damage  ��������� � �	 ������  
by taking � � 1 in Eq. (21). 

Fig. 3(b) shows the trend of mean and standard deviation of damage (normalized to the expected damage) as a 
function of the number of rainflow cycles, for both the Gaussian and non-Gaussian case (with � � 3, �� � 0 and 
�� � 5). It is apparent from the figure how the statistical scatter of damage decreases as the number of cycles in the 
loading increases. For any value of the number of cycles, the non-Gaussian damage always has a variance higher 
(about 100%) than that of the Gaussian damage. This difference confirms the importance of taking the non-Gaussian 
effect into account. 
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case either. 

A small difference between time-domain and theoretical estimation may occur for very large kurtosis values (for 
example, 6), see Fig. 4(a). It comes from a numerical approximation that arises when calculating the joint 
probability distribution in the non-Gaussian domain (a non-Gaussian process indeed takes on much larger values 
than a Gaussian one, especially for very large ). The results in Fig. 4(a) and (b) then confirm that not only is the 
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about 2 times for 3, while it can even arrive as large as 8 times for 7. This further confirms the importance 
of taking into account non-Gaussian effects in the evaluation of the variance of damage. 

7. Conclusions 

This work presented a theoretical model for assessing the variance of fatigue damage in stationary non-Gaussian 
random loadings with a narrow-band power spectrum. The model only requires that the power spectral density, 
skewness and kurtosis coefficients of the non-Gaussian loading are known. The model makes use of a time-
independent non-linear transformation to link the Gaussian and non-Gaussian domains. This transformation is used 
to extend the range of validity of the existing Gaussian solution (Low’s method) also to the non-Gaussian case. 

Monte Carlo numerical simulations were presented to check the correctness of the proposed model and also to 
identify typical trends. A rectangular narrow-band PSD was used for simulating a large sample of random time-
histories for which the variance of damage has been computed. It was observed that variance of damage for a non-
Gaussian loading was larger (of about 100%) than the variance in a Gaussian loading. This result confirms how 
Gaussian models (which ignore non-Gaussian features) lead to unsafe estimates of the variance, especially for high 
values of kurtosis and inverse slope of the S-N curve. The use of the model here proposed is then recommended. 
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about 2 times for 3, while it can even arrive as large as 8 times for 7. This further confirms the importance 
of taking into account non-Gaussian effects in the evaluation of the variance of damage. 

7. Conclusions 

This work presented a theoretical model for assessing the variance of fatigue damage in stationary non-Gaussian 
random loadings with a narrow-band power spectrum. The model only requires that the power spectral density, 
skewness and kurtosis coefficients of the non-Gaussian loading are known. The model makes use of a time-
independent non-linear transformation to link the Gaussian and non-Gaussian domains. This transformation is used 
to extend the range of validity of the existing Gaussian solution (Low’s method) also to the non-Gaussian case. 

Monte Carlo numerical simulations were presented to check the correctness of the proposed model and also to 
identify typical trends. A rectangular narrow-band PSD was used for simulating a large sample of random time-
histories for which the variance of damage has been computed. It was observed that variance of damage for a non-
Gaussian loading was larger (of about 100%) than the variance in a Gaussian loading. This result confirms how 
Gaussian models (which ignore non-Gaussian features) lead to unsafe estimates of the variance, especially for high 
values of kurtosis and inverse slope of the S-N curve. The use of the model here proposed is then recommended. 
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