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ABSTRACT  

To characterise type 2 diabetes (T2D) associated variation across the allele frequency 

spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D 

cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes 

multi-ethnic reference panel. Promising association signals were followed-up in additional 

data sets (of 14,545 or 7,397 T2D cases and 38,994 or 71,604 controls). We identified 13 

novel T2D-associated loci (p<5×10
-8

), including variants near the GLP2R, GIP, and HLA-

DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 

distinct signals at 113 loci. Despite substantially increased sample size and more complete 

coverage of low-frequency variation, all novel associations were driven by common SNVs. 

Credible sets of potentially causal variants were generally larger than those based on 

imputation with earlier reference panels, consistent with resolution of causal signals to 

common risk haplotypes. Stratification of T2D-associated loci based on T2D-related 

quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in 

pancreatic islet enhancers for loci influencing insulin secretion, and in adipocytes, monocytes 

and hepatocytes for insulin action-associated loci. These findings highlight the predominant 

role played by common variants of modest effect and the diversity of biological mechanisms 

influencing T2D pathophysiology.  
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MAIN TEXT  

Type 2 diabetes (T2D) has rapidly increased in prevalence in recent years and represents a 

major component of the global disease burden (1). Previous efforts to use genome-wide 

association studies (GWAS) to characterise the genetic component of T2D risk have largely 

focused on common variants (minor allele frequency [MAF]>5%). These studies have 

identified close to 100 loci, almost all of them currently defined by common alleles 

associated with modest (typically 5-20%) increases in T2D risk (2–6). Direct sequencing of 

whole genomes or exomes offers the most comprehensive approach for extending discovery 

efforts to the detection of low-frequency (0.5%<MAF<5%) and rare (MAF<0.5%) risk and 

protective alleles, some of which might have greater impact on individual predisposition. 

However, extensive sequencing has, thus far, been limited to relatively small sample sizes (at 

most, a few thousand cases), restricting power to detect rarer risk alleles, even if they are of 

large effect (7–9). Whilst evidence of rare variant associations has been detected in some 

candidate gene studies (10,11), the largest study to date, involving exome sequencing in 

~13,000 subjects, found little trace of rare variant association effects (9).  

Here, we implement a complementary strategy that makes use of imputation into existing 

GWAS samples from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) 

Consortium with sequence-based reference panels (12). This strategy allows the detection of 

common and low-frequency (but not rare) variant associations in extremely large samples 

(13), and facilitates the fine-mapping of causal variants. We performed a European ancestry 

meta-analysis of GWAS with 26,676 T2D cases and 132,532 controls, and followed up our 

findings in additional independent European ancestry studies of 14,545 T2D cases and 38,994 

controls genotyped using the Metabochip (4). All contributing studies were imputed against 

the March 2012 multi-ethnic 1000 Genomes Project (1000G) reference panel of 1,092 whole-

genome sequenced individuals (12). Our study provides near-complete evaluation of common 
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variants with much improved coverage of low-frequency variants, and the combined sample 

size considerably exceeds that of the largest previous T2D GWAS meta-analyses in 

individuals of European ancestry (4). In addition to genetic discovery, we fine-map novel and 

established T2D-associated loci to identify regulatory motifs and cell types enriched for 

potential causal variants, and pathways through which T2D-associated loci increase disease 

susceptibility. 

RESEARCH DESIGN AND METHODS 

Research participants. The DIAGRAM stage 1 meta-analyses is comprised of 26,676 T2D 

cases and 132,532 controls (effective sample size, Neff=72,143 individuals, defined as 

4/[(1/Ncases)+(1/Ncontrols)]) from 18 studies genotyped using commercial genome-wide single-

nucleotide variant (SNV) arrays (Supplementary Table 1). The Metabochip stage 2 follow 

up is comprised of 14,545 T2D cases and 38,994 controls (Neff=38,645) from 16 non-

overlapping stage 1 studies (4,14). We performed additional follow-up in 2,796 T2D cases 

and 4,601 controls from the EPIC-InterAct (15) and 9,747 T2D cases and 61,857 controls 

from the GERA study (16) (Supplementary Material).  

Statistical analyses. We imputed autosomal and X chromosome SNVs using the all 

ancestries 1000G reference panel (1,092 individuals from Africa, Asia, Europe, and the 

Americas [March, 2012 release]) using miniMAC (17) or IMPUTE2 (18). After imputation, 

from each study we removed monomorphic variants or those with imputation quality r
2
-

hat<0.3 (miniMAC) or proper-info<0.4 (IMPUTE2, SNPTEST). Each study performed T2D 

association analysis using logistic regression, adjusting for age, sex, and principal 

components for ancestry, under an additive genetic model. We performed inverse-variance 

weighted fixed-effect meta-analyses of the 18 stage 1 GWAS (Supplementary Table 1). 

Fifteen of the 18 studies repeated analyses also adjusting for body mass index (BMI). SNVs 

reaching suggestive significance p<10
-5

 in the stage 1 meta-analysis were followed-up. Novel 
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loci were selected using the threshold for genome-wide significance (p<5×10
-8

) in the 

combined stage 1 and stage 2 meta-analysis. For the 23 variants with no proxy (r
2
≥0.6) 

available in Metabochip with 1000G imputation in the fine-mapping regions, the stage 1 

result was followed-up in EPIC-InterAct and GERA, both imputed to 1000G variant density 

(Supplementary Material). 

Approximate conditional analysis with GCTA. We performed approximate conditional 

analysis in the stage 1 sample using GCTA v1.24 (19,20). We analysed SNVs in the 1Mb-

window around each lead variant, conditioning on the lead SNV at each locus 

(Supplementary Material) (21). We considered loci to contain multiple distinct signals if 

multiple SNVs reached locus-wide significance (p<10
-5

), accounting for the approximate 

number of variants in each 1Mb window (14).  

Fine-mapping analyses using credible set mapping. To identify 99% credible sets of causal 

variants for each distinct association signal, we performed fine-mapping for loci at which the 

lead independent SNV reached p<5×10
-4

 in the stage 1 meta-analysis. We performed credible 

set mapping using the T2D stage 1 meta-analysis results to obtain the minimal set of SNVs 

with cumulative posterior probability>0.99 (Supplementary Material).  

Type 1 diabetes (T1D)/T2D discrimination analysis. Given the overlap between loci 

previously associated with T1D and the associated T2D loci, we used an inverse variance 

weighted Mendelian randomisation approach (22) to test whether this was likely to reflect 

misclassification of T1D cases as individuals with T2D in the current study (Supplementary 

Material).  

Expression quantitative trait locus (eQTL) analysis. To look for potential biological overlap 

of T2D lead variants and eQTL variants, we extracted the lead (most significantly associated) 

eQTL for each tested gene from existing datasets for a range of tissues (Supplementary 
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Material). We concluded that a lead T2D SNV showed evidence of association with gene 

expression if it was in high LD (r
2
>0.8) with the lead eQTL SNV (p<5×10

-6
). 

Hierarchical clustering of T2D-related metabolic phenotypes. Starting with the T2D 

associated SNVs, we obtained T2D-related quantitative trait Z-scores from published 

HapMap-based GWAS meta-analysis for: fasting glucose, fasting insulin adjusted for BMI, 

homeostasis model assessment for beta-cell function (HOMA-B), homeostasis model 

assessment for insulin resistance (HOMA-IR) (23); 2-hour glucose adjusted for BMI (24); 

proinsulin (25); corrected insulin response (CIR) (26); BMI (27); high density lipoprotein 

cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, and 

triglycerides (28). When an association result for a SNV was not available, we used the 

results for the variant in highest LD and only for variants with r
2
>0.6. We performed 

clustering of phenotypic effects using Z-scores for association with T2D risk alleles and 

standard methods (Supplementary Material) (29).  

Functional annotation and enrichment analysis. We tested for enrichment of genomic and 

epigenomic annotations using chromatin states for 93 cell types (after excluding cancer cell 

lines) from the NIH Epigenome Roadmap project, and binding sites for 165 transcription 

factors (TF) from ENCODE (30) and Pasquali et al. (31). Using fractional logistic regression, 

we then tested for the effect of variants with each cell type and TF annotation on the variant 

posterior probabilities (πc) using all variants within 1Mb of the lead SNV for each distinct 

association signal from the fine-mapping analyses (Supplementary Material). In each 

analysis, we considered an annotation significant if it reached a Bonferroni-corrected 

p<1.9×10
-4 

(i.e. 0.05/258 annotations).  

Pathway analyses with DEPICT. We used the Data-driven Expression Prioritized Integration 

for Complex Traits (DEPICT) tool (32) to (i) prioritize genes that may represent promising 

candidates for T2D pathophysiology, and (ii) identify reconstituted gene sets that are 
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enriched in genes from associated regions and might be related to T2D biological pathways. 

As input, we used independent SNVs from the stage 1 meta-analysis SNVs with p<10
-5

 and 

lead variants at established loci (Supplementary Material). For the calculation of empirical 

enrichment p values, we used 200 sets of SNVs randomly drawn from entire genome within 

regions matching by gene density; we performed 20 replications for false discovery rate 

(FDR) estimation.  

RESULTS 

Novel loci detected in T2D GWAS and Metabochip-based follow-up. The stage 1 GWAS 

meta-analysis included 26,676 T2D cases and 132,532 controls and evaluated 12.1M SNVs, 

of which 11.8M were autosomal and 260k mapped to the X chromosome. Of these, 3.9M 

variants had MAF between 0.5% and 5%, a near fifteen-fold increase in the number of low-

frequency variants tested for association compared to previous array-based T2D GWAS 

meta-analyses (2,4) (Supplementary Table 2). Of the 52 signals showing promising 

evidence of association (p<10
-5

) in stage 1, 29 could be followed up in the stage 2 

Metabochip data. In combined stage 1 and stage 2 data, 13 novel loci were detected at 

genome-wide significance (Table 1, Figure 1, Supplementary Figure 1A-D, 

Supplementary Table 3).  

Lead SNVs at all 13 novel loci were common. Although detected here using 1000G imputed 

data, all 13 were well captured by variants in the HapMap CEU reference panel (2 directly, 

10 via proxies with r
2
>0.8, and one via proxy with r

2
=0.62) (Supplementary Materials). At 

all 13, lead variants defined through 1000G and those seen when the SNP density was 

restricted to HapMap content, had broadly similar evidence of association and were of similar 

frequency (Supplementary Figure 2; Supplementary Table 3). Throughout this 

manuscript, loci are named for the gene nearest to the lead SNV, unless otherwise specified 

(Table 1, Supplementary Materials: Biology box). 
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Adjustment for BMI revealed no additional genome-wide significant associations for T2D 

and, at most known and novel loci, there were only minimal differences in statistical 

significance and estimated T2D effect size between BMI-adjusted and unadjusted models. 

The four signals at which we observed a significant effect of BMI adjustment 

(pheterogeneity<4.4×10
-4

; based on 0.05/113 variants currently or previously reported to be 

associated with T2D at genome-wide significance) were FTO and MC4R (at which the T2D 

association is known to reflect a primary effect on BMI), and TCF7L2 and SLC30A8 (at 

which T2D associations were strengthened after BMI-adjustment) (Supplementary Figure 

3; Supplementary Table 4).  

Insights into genetic architecture of T2D. In this meta-analysis, we tested 3.9M low-

frequency variants (r
2
≥0.3 or proper-info≥0.4; minor allele present in ≥3 studies) for T2D 

association, constituting 96.7% of the low-frequency variants ascertained by the 1000G 

European Panel (March 2012) (Supplementary Table 2). For variants with risk-allele 

frequencies (RAF) of 0.5%, 1%, or 5%, we had 80% power to detect association (p<5×10
-8

) 

for allelic ORs of 1.80, 1.48, and 1.16, respectively, after accounting for imputation quality 

(Figure 1, Supplementary Table 5). Despite the increased coverage and sample size, we 

identified no novel low-frequency variants at genome-wide significance (Figure 1).  

Since we had only been able to test 29 of the 52 promising stage 1 signals on the Metabochip, 

we investigated whether this failure to detect low-frequency variant associations with T2D 

could be a consequence of selective variant inclusion on the Metabochip. Amongst the 

remaining 23 variants, none reached genome-wide significance after aggregating with GWAS 

data available from EPIC-InterAct. Six of these 23 SNVs had MAF<5%, and for these we 

performed additional follow-up in the GERA study. However, none reached genome-wide 

significance in a combined analysis of stage 1, EPIC-InterAct and GERA (a total of 39,219 

cases and 198,990 controls) (Supplementary Table 6). Therefore, despite substantially 
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enlarged sample sizes that would have allowed us to detect low-frequency risk alleles with 

modest effect sizes, the overwhelming majority of variants for which T2D-association can be 

detected with these sample sizes are themselves common.  

To identify loci containing multiple distinct signals, we performed approximate conditional 

analysis within the established and novel GWAS loci and detected two such novel common 

variant signals (Supplementary Table 7) (19,20). At the ANKRD55 locus, we identified a 

previously-unreported distinct (pconditional<10
-5

) association signal led by rs173964 

(pconditional=3.54×10
-7

, MAF=26%) (Supplementary Table 7, Supplementary Figure 4). We 

also observed multiple signals of association at loci with previous reports of such signals 

(4,14), including CDKN2A/B (3 signals in total), DGKB, KCNQ1 (6 signals), HNF4A, and 

CCND2 (3 signals) (Supplementary Table 7, Supplementary Figure 4). At CCND2, in 

addition to the main signal with lead SNV rs4238013, we detected: (i) a novel distinct signal 

led by a common variant, rs11063018 (pconditional=2.70×10
-7

, MAF=19%); and (ii) a third 

distinct signal led by a low-frequency protective allele (rs188827514, MAF=0.6%; 

ORconditional=0.60, pconditional=1.24×10
-6

) (Supplementary Figure 5A, Supplementary Table 

7), which represents the same distinct signal as that at rs76895963 (pconditional=1.0) reported in 

the Icelandic population (Supplementary Figure 5B) (7). At HNF4A, we confirm recent 

analyses (obtained in partially-overlapping data) (14) that a low-frequency missense variant 

(rs1800961, p.Thr139Ile, MAF=3.7%) is associated with T2D, and is distinct from the known 

common variant GWAS signal (which we map here to rs12625671).  

We evaluated the trans-ethnic heterogeneity of allelic effects (i.e. discordance in the direction 

and/or magnitude of estimated odds ratios) at novel loci on the basis of Cochran’s Q statistics 

from the largest T2D trans-ancestry GWAS meta-analysis to date (2). Using reported 

summary statistics from that study, we observed no significant evidence of heterogeneity of 

effect size (Bonferroni correction pCochran’s Q<0.05/13=0.0038) between major ancestral 
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groups at any of the 13 loci (Supplementary Table 8). These results are consistent with 

these loci being driven by common causal variants that are widely distributed across 

populations. 

1000G variant density for identification of potentially causal genetic variants. We used 

credible set fine-mapping (33) to investigate whether 1000G imputation allowed us to better 

resolve the specific variants driving 95 distinct T2D association signals at 82 loci 

(Supplementary Material). 99% credible sets included between 1 and 7,636 SNVs; 25 

included fewer than 20 SNVs, 16 fewer than 10 (Supplementary Tables 9 and 10). We 

compared 1000G-based credible sets with those constructed from HapMap SNVs alone 

(Figure 2B, Supplementary Table 9). At all but three of the association signals (two at 

KCNQ1 and rs1800961 at HNF4A), 1000G imputation resulted in larger credible sets 

(median increase of 34 variants) spanning wider genomic intervals (median interval size 

increase of 5kb) (Figure 2B, Supplementary Table 9). The 1000G-defined credible sets 

included >85% of the SNVs in the corresponding HapMap sets (Supplementary Table 9). 

Despite the overall larger credible sets, we asked whether 1000G imputation enabled an 

increase in the posterior probability afforded to the lead SNVs, but found no evidence to this 

effect (Figure 2C).  

Within the 50 loci previously associated with T2D in Europeans (4) which had at least 

modest evidence of association in the current analyses (p<5x10
-4

), we asked whether the lead 

SNV in 1000G-imputed analysis was of similar frequency to that observed in HapMap 

analyses. Only at TP53INP1, was the most strongly associated 1000G-imputed SNV  

(rs11786613, OR=1.21, p=1.6x10
-6

, MAF=3.2%) of substantially lower frequency than the 

lead HapMap-imputed SNV (3) (rs7845219, MAF=47.7%, Figure 2A). rs11786613 was 

neither present in HapMap, nor on the Metabochip (Supplementary Figure 6). Reciprocal 

conditioning of this low-frequency SNV and the previously identified common lead SNV 
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(rs7845219: OR=1.05, p=5.0x10
-5

, MAF=47.5%) indicated that the two signals were likely to 

be distinct but the signal at rs11786613 did not meet our threshold (pconditional<10
-5

) for locus-

wide significance (Supplementary Figure 4).  

Pathophysiological insights from novel T2D associations. Among the 13 novel T2D-

associated loci, many (such as those near HLA-DQA1, NRXN3, GIP, ABO and CMIP) 

included variants previously implicated in predisposition to other diseases and traits (r
2
>0.6 

with the lead SNV) (Supplementary Table 3, Supplementary Materials: Biology box). For 

example, the novel association at SNV rs1182436 lies ~120Kb upstream of MNX1, a gene 

implicated in pancreatic hypoplasia and neonatal diabetes (34–36).  

The lead SNV rs78761021 at the GLP2R locus, encoding the receptor for glucagon-like 

peptide 2, is in strong LD (r
2
=0.87) with a common missense variant in GLP2R (rs17681684, 

D470N, p=3×10
-7

). These signals were strongly dependent and mutually extinguished in 

reciprocal conditional analyses, consistent with the coding variant being causal and 

implicating GLP2R as the putative causal gene (Supplementary Figure 7). While previously 

suggested to regulate energy balance and glucose tolerance (37), GLP2R has primarily been 

implicated in gastrointestinal function (38,39). In contrast, GLP1R, encoding the GLP-1 

receptor (the target for a major class of T2D therapies (40)) is more directly implicated in 

pancreatic islet function and variation at this gene has been associated with glucose levels and 

T2D risk (41).  

We also observed associations with T2D centred on rs9271774 near HLA-DQA1 (Table 1), a 

region showing a particularly strong association with T1D (42). There is considerable 

heterogeneity within, and overlap between, the clinical presentations of T1D and T2D, but 

these can be partially resolved through measurement of islet cell autoantibodies (43). Such 

measures were not uniformly available across studies contributing to our meta-analysis 

(Supplementary Table 1). We therefore considered whether the adjacency between T1D- 
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and T2D-risk loci was likely to reflect misclassification of individuals with autoimmune 

diabetes as cases in the present study.  

Three lines of evidence make this unlikely. First, the lead T1D-associated SNV in the HLA 

region (rs6916742) was only weakly associated with T2D in the present study (p=0.01), and 

conditioning on this variant had only modest impact on the T2D-association signal at 

rs9271774 (punconditional=3.3x10
-7

; pconditional=9.1x10
-6

). Second, of 52 published genome-wide 

significant T1D-association GWAS signals, 50 were included in the current analysis: only six 

of these reached even nominal association with T2D (p<0.05; Supplementary Figure 8), and 

at one of these six (BCAR1), the T1D risk-allele was protective for T2D. Third, in genetic 

risk score (GRS) analyses, the combined effect of these 50 T1D signals on T2D risk was of 

only nominal significance (OR =1.02[1.00, 1.03], p=0.026), and significance was eliminated 

when the 6 overlapping loci were excluded (OR =1.00[0.98, 1.02], p=0.73). In combination, 

these findings argue against substantial misclassification and indicate that the signal at HLA-

DQA1 is likely to be a genuine T2D signal.  

Potential genes and pathways underlying the T2D loci: eQTL and pathway analysis. Cis-

eQTLs analyses highlighted four genes as possible effector transcripts: ABO (pancreatic 

islets), PLEKHA1 (whole blood), HSD17B12 (adipose, liver, muscle, whole blood) at the 

respective loci, and HLA-DRB5 expression (adipose, pancreatic islets, whole blood) at the 

HLA-DQA1 locus (Supplementary Table 11).  

We next asked whether large-scale gene expression data, mouse phenotypes, and protein-

protein interaction (PPI) networks could implicate specific gene candidates and gene sets in 

the aetiology of T2D. Using DEPICT (32), 29 genes were prioritised as driving observed 

associations (FDR<0.05), including ACSL1 and CMIP among the genes mapping to the novel 

loci (Supplementary Table 12). These analyses also identified 20 enriched reconstituted 

gene sets (FDR<5%) falling into 4 groups (Supplementary Figure 9; complete results, 
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including gene prioritisation, can be downloaded from 

https://onedrive.live.com/redir?resid=7848F2AF5103AA1B!1505&authkey=!AIC31supgUwj

ZVU&ithint=file%2cxlsx). These included pathways related to mammalian target of 

rapamycin (mTOR), based on co-regulation of the IDE, TLE1, SPRY2, CMIP, and MTMR3 

genes (44).  

Overlap of associated variants with regulatory annotations. We observed significant 

enrichment for T2D-associated credible set variants in pancreatic islet active enhancers 

and/or promoters (log odds [β]=0.74, p=4.2x10
-8

) and FOXA2 binding sites (β=1.40, 

p=4.1×10
-7

), as previously reported (Supplementary Table 13) (14). We also observed 

enrichment for T2D-associated variants in coding exons (β=1.56, p=7.9x10
-5

), in EZH2-

binding sites across many tissues (β=1.35, p=5.3x10
-6

), and in binding sites for NKX2.2 

(β=1.73, p=4.1x10
-8

) and PDX1 (β=1.46, p=7.4x10
-6

) in pancreatic islets (Supplementary 

Figure 10).  

Even though credible sets were generally larger, analyses performed on the 1000G imputed 

results produced stronger evidence of enrichment than equivalent analyses restricted to SNVs 

present in HapMap. This was most notably the case for variants within coding exons (β=1.56, 

p=7.9x10
-5

 in 1000G compared to β=0.68, p=0.62 in HapMap), and likely reflects more 

complete capture of the true causal variants in the more densely imputed credible sets. Single 

lead SNVs overlapping an enriched annotation accounted for the majority of the total 

posterior probability (πc>0.5) at seven loci. For example, the lead SNV (rs8056814) at 

BCAR1 (πc=0.57) overlaps an islet enhancer (Supplementary Figure 11A), while the newly-

identified low-frequency signal at TP53INP1 overlaps an islet promoter element 

(rs117866713; πc=0.53) (Figure 2D) (31).  

We applied hierarchical clustering to the results of diabetes-related quantitative trait 

associations for the set of T2D-associated loci from the present study, identifying three main 

https://onedrive.live.com/redir?resid=7848F2AF5103AA1B!1505&authkey=!AIC31supgUwjZVU&ithint=file%2cxlsx
https://onedrive.live.com/redir?resid=7848F2AF5103AA1B!1505&authkey=!AIC31supgUwjZVU&ithint=file%2cxlsx


19 
 

clusters of association signals with differing impact on quantitative traits (Supplementary 

Table 9). The first, including GIPR, C2CDC4A, CDKAL1, GCK, TCF7L2, GLIS3, THADA, 

IGF2BP2, and DGKB involved loci with a primary impact on insulin secretion and 

processing (26,29). The second cluster captured loci (including PPARG, KLF14, and IRS1) 

disrupting insulin action. The third cluster, showing marked associations with BMI and lipid 

levels, included NRXN3, CMIP, APOE, and MC4R, but not FTO, which clustered alone.  

In regulatory enhancement analyses, we observed strong tissue-specific enrichment patterns 

broadly consistent with the phenotypic characteristics of the physiologically-stratified locus 

subsets. The cluster of loci disrupting insulin secretion showed the most marked enrichment 

for pancreatic islet regulatory elements (β=0.91, p=9.5×10
-5

). In contrast, the cluster of loci 

implicated in insulin action was enriched for annotations from adipocytes (β=1.3, p=2.7×10
-

11
) and monocytes (β=1.4, p=1.4×10

-12
), and that characterised by associations with BMI and 

lipids showed preferential enrichment for hepatic annotations (β=1.15, p=5.8×10
-4

) (Figure 

3A-C). For example, at the novel T2D-associated CMIP locus, previously associated with 

adiposity and lipid levels (28,45), the lead SNV (rs2925979, πc=0.91) overlaps an active 

enhancer element in both liver and adipose tissue, among others (Supplementary Figure 

11B).  

DISCUSSION  

In this large-scale study of T2D genetics, in which individual variants were assayed in up to 

238,209 subjects, we identify 13 novel T2D-associated loci at genome-wide significance and 

refine causal variant location for the 13 novel and 69 established T2D loci. We also provide 

evidence for enrichment in regulatory elements at associated loci in tissues relevant for T2D, 

and demonstrate tissue-specific enrichment in regulatory annotations when T2D loci were 

stratified according to inferred physiological mechanism. 
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Together with loci reported in other recent publications (9), we calculate that the present 

analysis brings the total number of independent T2D associations to 128 distinct signals at 

113 loci (Supplementary Table 3). Lead SNVs at all 13 novel loci were common (MAF > 

0.15) and of comparable effect size (1.07≤OR≤1.10) to previously-identified common variant 

associations (2,4). Associations at the novel loci showed homogeneous effects across diverse 

ethnicities, supporting the evidence for coincident common risk alleles across ancestry groups 

(2). Moreover, we conclude that misclassification of diabetes subtype is not a major concern 

for these analyses and that the HLA-DQA1 signal represents genuine association with T2D, 

independent of nearby signals that influence T1D. 

We observed a general increase in the size of credible sets with 1000G imputation compared 

to HapMap imputation. This is likely due to improved enumeration of potential causal 

common variants on known risk haplotypes, rather than resolution towards low-frequency 

variants of larger effect driving common variant associations. These findings are consistent 

with the inference (arising also from the other analyses reported here) that the T2D-risk 

signals identified by GWAS are overwhelmingly driven by common causal variants. In such 

a setting, imputation with denser reference panels, at least in ethnically restricted samples, 

provides more complete elaboration of the allelic content of common risk haplotypes. Finer 

resolution of those haplotypes that would provide greater confidence in the location of causal 

variants will likely require further expansion of trans-ethnic fine-mapping efforts (2). The 

distinct signals at the established CCND2 and TP53INP1 loci point to contributions of low-

frequency variant associations of modest effect, but indicate that even larger samples will be 

required to robustly detect association signals at low frequency. 

The discovery of novel genome-wide significant association signals in the current analysis is 

attributable primarily to increased sample size, rather than improved genomic coverage. 

Although we queried a large proportion of the low-frequency variants present in the 1000G 
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European reference haplotypes, and had >80% power to detect genome-wide significant 

associations with OR>1.8 for the tested low-frequency risk variants, we found no such low-

frequency variant associations in either established or novel loci. Whilst low-frequency 

variant coverage in the present study was not complete, this observation adds to the growing 

evidence (2,4,9,46) that few low-frequency T2D-risk variants with moderate to strong effect 

sizes exist in European ancestry samples, and is consistent with a primary role for common 

variants of modest effect in T2D risk. The present study reinforces the conclusions from a 

recent study which imputed from whole-genome sequencing data - from 2,657 European T2D 

cases and controls, rather than 1000G - into a set of GWAS studies partially overlapping with 

the present meta-analysis. We demonstrated that the failure to detect low frequency 

associations in that study is not overcome by a substantial increase in sample size (9). It is 

worth emphasising that we did not, in this study, have sufficient imputation quality to test for 

T2D associations with rare variants and we cannot evaluate the collective contribution of 

variants with MAF<0.5% to T2D risk.  

The development of T2D involves dysfunction of multiple mechanisms across several 

distinct tissues (9,29,31,47,48). When coupled with functional data, we saw larger effect 

estimates for enrichment of coding variants than observed with HapMap SNVs alone, 

consistent with more complete recovery of the causal variants through imputation using a 

denser reference panel. The functional annotation analyses also demonstrated that the 

stratification of T2D-risk loci according to primary physiological mechanism resulted in 

evidence for consistent and appropriate tissue-specific effects on transcriptional regulation. 

These analyses exemplify the use of a combination of human physiology and genomic 

annotation to position T2D GWAS loci with respect to the cardinal mechanistic components 

of T2D development. Extension of this approach is likely to provide a valuable in silico 

strategy to aid prioritisation of tissues for mechanistic characterisation of genetic 
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associations. Using the hypothesis-free pathway analysis of T2D associations with DEPICT 

(32), we highlighted a causal role of mTOR signalling pathway in the aetiology of T2D not 

observed from individual loci associations. The mTOR pathway has previously been 

implicated in the link between obesity, insulin resistance, and T2D from cell and animal 

models (44,49).  

The current results emphasize that progressively larger sample sizes, coupled with higher 

density sequence-based imputation (13), will continue to represent a powerful strategy for 

genetic discovery in T2D, and in complex diseases and traits more generally. At known T2D-

associated loci, identification of the most plausible T2D causal variants will likely require 

large-scale multi-ethnic analyses, where more diverse haplotypes, reflecting different patterns 

of LD, in combination with functional (31,50,51) data allow refinement of association signals 

to smaller numbers of variants (2).  
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DESCRIPTION OF SUPPLEMENTAL DATA 

Supplemental Data include eleven figures and thirteen tables.  
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FIGURE TITLES AND LEGENDS 

Figure 1. The effect sizes of the established (blue diamonds, N=69, p<5×10
-4

, 

Supplementary Material), novel (red diamonds, N=13), and additional distinct (sky blue 

diamonds, N=13, Supplementary Table 7) signals according to their risk allele frequency 

(Supplementary Table 3). The additional distinct signals are based on approximate 

conditional analyses. The distinct signal at TP53INP1 led by rs11786613 (Supplementary 

Table 7) is plotted (sky blue diamond). This signal did not reach locus-wide significance, but 

was selected for follow-up because of its low frequency and absence of LD with previously 

reported signal at this locus. The power curve shows the estimated effect size for which we 

had 80% power to detect associations. Established common variants with OR>1.12 are 

annotated. 

Figure 2. A) The number of SNVs included in 99% credible sets when performed on all 

SNVs compared to when analyses were restricted to those SNVs present in HapMap. B) The 

cumulative πc of the top 3 SNVs among all 1000G SNVs and after restriction to HapMap 

SNVs is shown. While the low frequency SNV at TP53INP1 (rs11786613) did not reach the 

threshold for a distinct signal in approximate conditional analyses, we fine-mapped both this 

variant and the previous common signal separately after reciprocal conditioning, which 

suggested they were independent. C) The minor allele frequency of the lead SNV identified 

in current analyses compared to that identified among SNVs present in HapMap. D) The 

association of the low frequency variant rs11786613 (blue) and that of the previous lead 

variant at this locus, rs7845219 (purple). The low frequency variant overlaps regulatory 

annotations active in pancreatic islets, among other tissues, and the sequence surrounding the 

A allele of this variant has a in silico recognition motif for a FOXA1:AR (androgen receptor) 

protein complex.  

Figure 3. Type 2 diabetes loci stratified by patterns of quantitative trait (e.g. glycaemic, 

insulin, lipid, and anthropometric) effects show distinct cell-type annotation patterns. We 

hierarchically clustered loci based on endophenotype data and identified groups of T2D loci 

associated with measures of A) insulin secretion, B) insulin resistance, and C) BMI/lipids. 

We then tested the effect of variants in cell-type enhancer and promoter chromatin states on 

the posterior probabilities of credible sets for each group. We identified most significant 

effects among pancreatic islet chromatin for insulin secretion loci, CD14+ monocyte and 

adipose chromatin for insulin resistance loci, and liver chromatin for BMI/lipid loci.  
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Table 1. Novel loci associated with T2D from the combination of 1000G-imputed GWAS meta-analysis (stage 1) and Metabochip follow-

up (stage 2).  
 Stage 1 Stage 2 Stage1+Stage2 

Locus name* Chr:Position SNV† EA/ 

NEA 

EAF OR 

(CI 95%) 

P-value Chr:Position SNV‡ r2 

with 

lead 

SNV 

EA/ 

NE

A 

EAF OR 

(95% CI) 

P-value OR 

(95% CI) ¢ 

P-value 

ACSL1 4:185708807 rs60780116 T/C 0.84 1.09 

(1.06-1.13) 

7.38x10-8 4:185714289 rs1996546 0.62 G/T 0.86 1.08 

(1.03-1.13) 

5.60x10-4 1.09 

(1.06-1.12) 

1.98x10-10 

HLA-DQA1 6:32594309 rs9271774 C/A 0.74 1.10 
(1.06-1.14) 

3.30x10-7 6:32594328 rs9271775 0.91 T/C 0.80 1.08 
(1.03-1.13) 

7.59x10-4 1.09 
(1.06-1.12) 

1.11x10-9 

SLC35D3 6:137287702 rs6918311 A/G 0.53 1.07 

(1.04-1.10) 

6.67x10-7 6:137299152 rs4407733 0.92 A/G 0.52 1.05 

(1.02-1.08) 

1.63x10-3 1.06 

(1.04-1.08) 

6.78x10-9 

MNX1 7:157027753 rs1182436 C/T 0.80 1.08 

(1.05-1.12) 

8.30x10-7 7:157031407 rs1182397 0.92 G/T 0.85 1.06 

(1.02-1.11) 

4.38x10-3 1.08 

(1.05-1.10) 

1.71x10-8 

ABO 9:136155000 rs635634 T/C 0.18 1.08 
(1.05-1.12) 

3.59x10-7 9:136154867 rs495828 0.83 T/G 0.20 1.06 
(1.01-1.10) 

1.23x10-2 1.08 
(1.05-1.10) 

2.30x10-8 

PLEKHA1 10:124186714 rs2292626 C/T 0.50 1.09 

(1.06-1.11) 

1.75x10-12 10:124167512 rs2421016 0.99 C/T 0.50 1.05 

(1.02-1.08) 

2.30x10-3 1.07 

(1.05-1.09) 

1.51x10-13 

HSD17B12 11:43877934 rs1061810 A/C 0.28 1.08 

(1.05-1.11) 

5.29x10-9 11:43876435 rs3736505 0.92 G/A 0.30 1.05 

(1.01-1.08) 

4.82x10-3 1.07 

(1.05-1.09) 

3.95x10-10 

MAP3K11 11:65364385 rs111669836 A/T 0.25 1.07 
(1.04-1.10) 

7.43x10-7 11:65365171 rs11227234 1.00 T/G 0.24 1.05 
(1.01-1.08) 

8.77x10-3 1.06 
(1.04-1.09) 

4.12x10-8 

NRXN3 14:79945162 rs10146997 G/A 0.21 1.07 

(1.04-1.10) 

4.59x10-6 14:79939993 rs17109256 0.98 A/G 0.21 1.07 

(1.03-1.11) 

1.27x10-4 1.07 

(1.05-1.09) 

2.27x10-9 

CMIP 16:81534790 rs2925979 T/C 0.30 1.08 

(1.05-1.10) 

2.72x10-8 16:81534790 rs2925979 1.00 T/C 0.31 1.05 

(1.02-1.08) 

3.06x10-3 1.07 

(1.04-1.09) 

2.27x10-9 

ZZEF1 17:4014384 rs7224685 T/G 0.30 1.07 

(1.04-1.10) 

2.00x10-7 17:3985864 rs8068804 0.95 A/G 0.31 1.07 

(1.03-1.11) 

4.11x10-4 1.07 

(1.05-1.09) 

3.23x10-10 

GLP2R 17:9780387 rs78761021 G/A 0.34 1.07 
(1.05-1.10) 

5.49x10-8 17:9791375 rs17676067 0.87 C/T 0.31 1.03 
(1.00-1.07) 

3.54x10-2 1.06 
(1.04-1.08) 

3.04x10-8 

GIP 17:46967038 rs79349575 A/T 0.51 1.07 

(1.04-1.09) 

2.61x10-7 17:47005193 rs15563 0.78 G/A 0.54 1.04 

(1.01-1.07) 

2.09x10-2 1.06 

(1.03-1.08) 

4.43x10-8 

*The nearest gene is listed; this does not imply this is the biologically relevant gene; †Lead SNV types: all map outside transcripts except 

rs429358 (missense variant) and rs1061810 (3’UTR); ‡Stage 2: proxy SNV (r
2
>0.6 with stage 1 lead SNV) was used when no stage 1 SNV was 

available. 
¢
The meta-analysis OR is aligned to the Stage 1 SNV risk allele. Abbreviations: Chr – chromosome, CI – confidence interval, EA - 

effect allele, EAF – effect allele frequency, OR – odds ratio, NEA – non-effect allele. 
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