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Summary

Massive DNA sequencing has significantly increased the amount of data avail-

able for population genetics and molecular ecology studies. However, the paral-

lel computation of simple statistics within and between populations from large

panels of polymorphic sites is not yet available, making the exploratory analyses

of a set or subset of data a very laborious task. Here, we present 4P (parallel

processing of polymorphism panels), a stand-alone software program for the

rapid computation of genetic variation statistics (including the joint frequency

spectrum) from millions of DNA variants in multiple individuals and multiple

populations. It handles a standard input file format commonly used to store

DNA variation from empirical or simulation experiments. The computational

performance of 4P was evaluated using large SNP (single nucleotide polymor-

phism) datasets from human genomes or obtained by simulations. 4P was faster

or much faster than other comparable programs, and the impact of parallel

computing using multicore computers or servers was evident. 4P is a useful tool

for biologists who need a simple and rapid computer program to run explor-

atory population genetics analyses in large panels of genomic data. It is also

particularly suitable to analyze multiple data sets produced in simulation stud-

ies. Unix, Windows, and MacOs versions are provided, as well as the source

code for easier pipeline implementations.

Introduction

Next-generation sequencing (NGS) technologies, now in

their third generation of systems, have led to a dramatic

increase of polymorphism’s data available in model and

nonmodel species. For example, about 38 million single

nucleotide polymorphisms (or SNPs) have been identified

in the human genome, and data are now available at each

of them for more than one thousand individuals (Abecasis

et al. 2012). In nonmodel organisms, where a reference

genome is not available, several thousands of SNPs can be

now isolated and typed using specific protocols (Davey

et al. 2011). All this genetic data can be used to obtain pre-

cise answers to old questions, for example, regarding the

levels of population differentiation (Keller et al. 2013;

Ogden et al. 2013) or the admixture rates (Hohenlohe

et al. 2013) and are essential for the identification of geno-

mic regions responsible of adaptation and speciation (The

Heliconius Genome Consortium 2012; Hess et al. 2013;

Wagner et al. 2013). This continuously accelerating trend

is challenging the methods for data analysis, both computa-

tionally and theoretically. Basic statistics of genetic varia-

tion must now be computed for millions (rather than tens)

of markers, their distributions can be estimated empirically

from the data, and complex inferential methods require fas-

ter algorithms and computer clusters.

Statistics estimating the levels of genetic variation within

and between populations are usually computed in explor-

atory analyses of real data, or for summarizing genetic

patterns in large numbers of simulated data sets. When

millions of loci are involved, however, the computer time

required to complete a single analysis with the available

software packages is unfeasibly long. Programs like

stacks (Catchen et al. 2013) and PLINK (Purcell et al.

2007), designed for specific aims such as analyzing RAD

tag sequencing data or performing association studies,

respectively, use serial computations and are not optimized

for speed. Adegenet (Jombart and Ahmed 2011) and
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PopGenome (Pfeifer et al. 2014) implement tools for the

analysis of genome-wide SNPs, but they are R packages

with only a few functions that can be executed in parallel.

These difficulties mean that ad hoc scripts must be devel-

oped, and/or data sets have to be partitioned before the

analysis.

Here, we introduce 4P (parallel processing of polymor-

phisms panels), a new OpenMP-accelerated software writ-

ten in ANSI C. 4P was specifically designed to rapidly

compute common population genetic statistics from SNP

data sets. Our implementation ensures a notable increase

in computational speed especially in shared memory sys-

tems such as multicore personal computers or servers.

General features and supported
input formats

A panel of SNPs can be simply described as an N 9 M

matrix, where N corresponds to the number of individu-

als (or homologous chromosomes in diploids) and M to

the number of SNPs. This is the most convenient way to

store the data in dynamic memory, considering the ability

of the C language to handle two-dimensional matrices

and the possibility to directly apply parallelization tech-

niques. In our implementation, as all the statistics in 4P

do not use information across loci, we used the OpenMP

API to assign a certain number of columns (SNPs) to

each core, thus allowing parallel computation by data

partition. 4P is not limited to any size of N or M. The

main limiting factor is the amount of RAM available on

the system, due to the fact that the matrix is loaded

before starting the computation. 4P can read SNP files

created by other programs commonly used to identify or

validate polymorphisms, such as PLINK and BAM/SAM/

VCF-tools (Li et al. 2009; Barnett et al. 2011; Danecek

et al. 2011). Because reading large data files from the disk

is highly time-consuming, we implemented optimized

routines for data import from files with the formats ped/

map and vcf (v4.1). The output of fastsimcoal (Excoffier

and Foll 2011; Excoffier et al. 2013), a commonly used

coalescent simulator of genomic data, is also supported as

a 4P input file. 4P can be easily integrated in pipelines

that require a preliminary computation of summary sta-

tistics from real or simulated data (e.g., when using dadi,

Gutenkunst et al. 2009, or when performing an approxi-

mate Bayesian computation analysis). Additional details

are provided in the online manual of 4P.

Implemented statistics

4P computes several statistics useful to summarize and

explore genetic diversity within and between populations.

Output is provided for each locus, or as means and

variances across loci. The number of alleles for each locus

can vary between 1 (monomorphic locus) and 4 (tetra-

allelic locus).

The within-populations statistics implemented in 4P

are: allele frequencies, observed and expected heterozygos-

ities, and single population and multipopulation allele fre-

quency spectrum. The between-populations statistics

implemented in 4P are: Gst (three formulations, Nei 1973;

Nei and Chesser 1983; and Hedrick 2005), Jost’s D (Jost

2008), and the classical Fst (Weir and Cockerham 1984).

In addition, 4P computes the proportion of shared alleles

between all pairs of individuals, from the same or from

different populations.

Computational performances

We analyzed the performance of 4P using a dual 6-core

Intel Xeon� X5650 running at 2.66 GHz with 32GB of

RAM. The SNP data sets (stored in arp formatted files)

were generated by simulation using the software fastsim-

coal 1.0 (Excoffier and Foll 2011), assuming a model with

two populations separated by 1000 generations and com-

posed of 500 diploid individuals each.

The time required by 4P to compute all the between-

population statistics and the comparison of this comput-

ing time and the number of cores and number of SNPs

in the data set are shown in Fig. 1A. For data sets up to

10,000 SNPs, the data processing (including file loading)

required between 0.17 and 0.84 sec. Multiple cores did

not improve the speed of the computation, due to parallel

environment overhead. For larger data sets, the impact of

parallel computing was evident in the analysis of 106

SNPs, for example, the baseline serial time decreased from

88.70 sec to 56.69, 39.64, 30.08, and 28.38 with 2, 4, 8,

and 16 cores, respectively. The increase of speed with

increasing number of cores was less pronounced with 105

SNPs, but it is important to note that even a small reduc-

tion of computing time is very important when summary

statistics are computed from multiple simulated data sets.

Under our implementation, the decrease of computing

time with the number of cores also rapidly reaches a pla-

teau in the analysis of larger datasets. This result (consid-

ering that the maximum amount of RAM memory

expended for the analysis of the largest dataset never

exceeded 2GB) suggests that low- or medium-end com-

puters are sufficient for most SNP-exploratory analyses.

The speed of 4P was initially compared with that of

PLINK, which allows the computation of observed and

expected heterozygosity in large data sets of SNPs. When

only a single core was used for the analysis, 4P was 1.5 to

2.5 times faster than PLINK, depending on the number of

SNPs analyzed (see Fig. 1B). Using the multicore option

in 4P (not implemented in PLINK), the execution times
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decreased substantially. For example, with a data set of

106 SNPs and 4 or 16 cores, 4P accomplishes all the com-

putations in 69.2 and 42.3 sec, respectively, about 7 and

11 times faster than PLINK, respectively. Again, a moder-

ate improvement was detected with small datasets (103

and 104) due to the parallel environment overhead. To

validate this conclusion, we additionally analyzed a real

data set from the human chromosome 1 produced by the

1000 Genomes Project, Phase I (available at ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/). This

data set, stored in a ped file, include 1092 individuals and

3 9 106 SNPs. 4P (with 16 cores) is about three times

faster than PLINK when observed and expected heterozy-

gosites are computed. In particular, PLINK required

29 min and 45 sec to load and run the analysis, and 4P

only 9 min and 9 sec. The difference between 4P and

PLINK is reduced in this experiment compared to the

analysis of simulated data sets, due to the much slower

loading step of ped compared to arp files. When only the

computation time is considered, the speed difference

between 4P and PLINK is similar to that observed in sim-

ulated data (about 11X, with 16 cores).

We then compared 4P with PopGenome (Pfeifer et al.

2014), a set of R functions recently developed to handle

whole-genome data. Our goal was to detect the differ-

ences between the two packages in reading a real data

set of one million of SNPs (as above, located in the

chromosome 1 and typed in 1092 human individuals

for the 1000 Genomes Project) and in computing

genetic variation indices. We used the PopGenome read-

VCF function that is optimized for loading compressed

and tabix indexed vcf files. 4P was able to load the

SNP data set in less than half of the time required by

the best optimized readVCF function in PopGenome

(5 min vs. 11 min; the time required by PopGenome

was in agreement with that reported in Pfeifer et al.

2014). We then compared the performances of the two

packages in computing some genetic diversity indices.

Due to the very large memory requirement of PopGe-

nome, it was not possible to analyze the whole SNP

data set in a single step. We therefore proceeded subdi-

viding initially the region of the human Chromosome 1

containing one million SNP in nonoverlapping Win-

dows of 1,000 base pairs. PopGenome completed the

computation of the nucleotide/haplotype diversity using

the diversity.stat function in about 10 min (in agree-

ment with the performances reported in Pfeifer et al.

2014), using 8GB of memory. 4P computed the

observed and expected heterozigosity, and the allele fre-

quency spectrum in 2′30″, 47″, and 33″ using 1, 4, or 8

cores, respectively, and never consuming more than 3

GB of memory.

Finally, we compared 4P with the adegenet R package

using a single core, which is the only implementation of

the functions in adegenet that compute genetic variation

measures. Even with a single core, the C code in 4P was

much faster than the R code in adegenet. Detailed results

are not shown, but with the largest datasets, the computa-

tion time dropped from hours (adegenet) to minutes

(4P).

Conclusions

We introduce 4P, an efficient C program for the parallel

analysis of large SNP data sets. Several population genet-

ics statistics within and between populations can be com-

puted from real or simulated data set. 4P is faster or

much faster than comparable packages, do not require ad

hoc scripts used sometimes to parallelize serial programs

and collect the data (although this strategy can be used

(A) (B)

Figure 1. 4P execution times. (A) The time required by 4P to compute five different pairwise measures of genetic differentiation (see the main

text for details) is reported as a function of the number of core; different lines correspond to datasets with different numbers of SNPs. (B) The

time required by 4P and PLINK to compute expected and observed heterozygosities is reported as a function of the data set size; PLINK is not

implemented for multiple cores.

174 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

4P for SNP Analysis A. Benazzo et al.



also with 4P to additionally increase its speed), and it can

be used in stand-alone computers and servers.
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