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Abstract. We consider p-evolution equations, for p ≥ 2, with complex valued coefficients.
We prove that a necessary condition for H∞ well-posedness of the associated Cauchy problem
is that the imaginary part of the coefficient of the subprincipal part (in the sense of Petrowski)
satisfies a decay estimate as |x| → +∞.

1. Introduction and main result

Given an integer p ≥ 2, we consider in [0, T ] × R the linear partial differential operator P of
the form

(1.1) P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p−1∑
j=0

aj(t, x)Dj
x ,

with D = 1
i
∂, ap ∈ C([0, T ];R) and aj ∈ C([0, T ];B∞) for 0 ≤ j ≤ p − 1, (here B∞ =

B∞(Rx) is the space of complex valued functions which are bounded on Rx together with all
their x-derivatives). We are dealing with a non-kowalewskian evolution operator; anisotropic
evolution operators of the form (1.1) are usually called p−evolution operators. The condition
that ap is real valued means that the principal symbol (in the sense of Petrowski) of P has the
real characteristic τ = −ap(t)ξp; by the Lax-Mizohata theorem (cf. [24]), this is a necessary
condition to have a unique solution, in Sobolev spaces, of the Cauchy problem{

P (t, x,Dt, Dx)u(t, x) = f(t, x) (t, x) ∈ [0, T ]× R
u(0, x) = g(x) x ∈ R,

(1.2)

in a neighborhood of t = 0. We notice that for p = 2 the operator is of Schrödinger type,
for p = 3 we have the same principal part as the Korteweg-De Vries equation. Many results
of well-posedness in Sobolev spaces of (1.2) are available under the assumption that all the
coefficients aj of (1.1) are real (see, for instance, [1], [2], [3], [9], [14], [15]). On the contrary,
when the coefficients aj(t, x) for 1 ≤ j ≤ p − 1 are not real, the theory is well developed
only in the case p = 2: we know from the pioneering papers [20], [21] that a decay condition
as |x| → +∞ on Im a1 is necessary and sufficient for well-posedness of the Cauchy problem
(1.2) in H∞. Sufficient conditions for well-posedness in H∞ and/or Gevrey classes for 2 or
3−evolution equations have been given by many authors (see, for instance, [19], [25], [11], [22],
[10], [16], [17], [13]). The general case p ≥ 2 has been recently considered in [6], proving H∞

well-posedness of the Cauchy problem (1.2) under suitable decay conditions, as |x| → +∞, on
ImDβ

xaj, for j ≤ p − 1 and [β/2] ≤ j − 1. These results have been extended to the case of
weighted Sobolev spaces in [8], to the case of first order systems of pseudo-differential operators
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in [4], to the case of higher order equations in [5], and to semi-linear 3-evolution equations in
[7].

As far as we know, there are no results available about necessary conditions for H∞ well-
posedness for p-evolution equations, p ≥ 3.

In this paper we give a necessary condition for well-posedness of the Cauchy problem (1.2) in
H∞, generalizing to the case p ≥ 2 the necessary condition given by Ichinose in [20] for p = 2.
More precisely, in [20] Ichinose considered, for x ∈ Rn, the operator

(1.3) P = Dt − a24x +
n∑
j=1

a
(j)
1 (x)Dxj + c(x),

with a2 ∈ (0, 1] and a
(j)
1 , c ∈ B∞(Rn). He proved that a necessary condition for H∞ well-

posedness of the associated Cauchy problem is the existence of non-negative constants M, N
such that

(1.4) sup
x∈Rn, ω∈Sn−1

∣∣∣∣∣
n∑
j=1

∫ %

0

Im a
(j)
1 (x+ 2a2θω)ωjdθ

∣∣∣∣∣ ≤M log(1 + %) +N ∀% > 0,

where Sn−1 is the unit sphere in Rn. The same condition is also sufficient (cf. [21]) only in the
case of space dimension n = 1.

In this paper we assume that there exists a constant m > 0 such that

(1.5) |ap(t)| ≥ m ∀t ∈ [0, T ]

and prove the following:

Theorem 1.1. Let P be the operator in (1.1) with ap ∈ C([0, T ];R) satisfying (1.5) and
aj ∈ C([0, T ];B∞) for 0 ≤ j ≤ p− 1. A necessary condition for the Cauchy problem (1.2) to be
well-posed in H∞ is the existence of constants M,N > 0 such that:

(1.6) sup
x∈R

min
0≤τ≤t≤T

∫ %

−%
Im ap−1(t, x+ pap(τ)θ)dθ ≤M log(1 + %) +N, ∀% > 0.

Remark 1.2. If the coefficient ap(t) vanishes at some point of the interval [0, T ], the well-
posedness in H∞ of the Cauchy problem (1.2) may fail to be true also if the necessary condition
(1.6) is satisfied (see [18], [6]). In [6], for instance, a Levi-type condition of the form

| Im ap−1(t, x)| ≤ Cap(t)/〈x〉(1.7)

is needed to weaken (1.5) into ap(t) ≥ 0 for proving H∞ well-posedness of (1.2). Notice that
condition (1.7) is consistent with (1.6). In the present paper we focus on the fact that the
dependence on space of the coefficient of the subprincipal part is allowed only accompanied by
a decay condition at infinity.

2. Idea of the proof and auxiliary tools.

We prove Theorem 1.1 by contradiction, taking f ≡ 0 without any loss of generality.
We assume the Cauchy problem (1.2) to be well-posed, so that for every g ∈ H∞, there exists

a unique u ∈ C([0, T ];H∞) solution of (1.2) and there exists q ∈ N0 := N ∪ {0} and C > 0
such that

(2.1) ‖u(t, ·)‖0 ≤ C‖g‖q ∀t ∈ [0, T ],

where ‖ · ‖s stands for the norm in the Sobolev space Hs (we shall write ‖ · ‖ := ‖ · ‖0 for
simplicity).



A. Ascanelli, C. Boiti, L. Zanghirati 3

Then we assume, by contradiction, that (1.6) does not hold. This implies that, for every
M > 0 and k ∈ N there exist a sequence of points xk ∈ R and a sequence %k → +∞ such that∫ %k

−%k
Im ap−1(t, xk + pap(τ)θ)dθ ≥M log(1 + %k) + k ∀0 ≤ τ ≤ t ≤ T.(2.2)

We can then construct a sequence of initial data gk localized at high frequency nk := %ak, for
suitable a > 0, so obtaining a sequence uk of solutions of the corresponding Cauchy problem.
Further localizing these solutions in the phase space along the trajectory of the hamiltonian
ap(t)ξ

p, we produce a sequence of functions vα,βk (for α, β ∈ N0) satisfying some energy estimates,
because of (2.1).

Taking, finally, a suitable linear combination σk(t) of the L2-norms ‖vα,βk (t, ·)‖, we obtain, in
Section 3, that (2.2) implies an estimate from below of σk(t); this estimate will contradict an
estimate from above for σk(t) which is stated and proved in Section 4.

In this section we discuss condition (1.6), construct the sequence {vα,βk } and collect some
estimates that will be crucial in the proofs of the contradictory estimates from below and from
above of σk(t).

The next section is completely devoted to the proof of the estimate from below (3.40).
In Section 4 we give the estimate from above (4.1), and finally prove Theorem 1.1.
Let us start by remarking that if condition (1.6) does not hold, then at least one of the

following two conditions does not hold:

sup
x∈R

min
0≤τ≤t≤T

∫ %

0

Im ap−1(t, x+ pap(τ)θ)dθ ≤M log(1 + %) +N, ∀% > 0,(2.3)

or

sup
x∈R

min
0≤τ≤t≤T

∫ 0

−%
Im ap−1(t, x+ pap(τ)θ)dθ ≤M log(1 + %) +N, ∀% > 0.(2.4)

Since ∫ 0

−%
Im ap−1(t, x+ pap(τ)θ)dθ =

∫ %

0

Im ap−1(t, x− pap(τ)θ)dθ,

we can assume, without any loss of generality, that (2.3) does not hold and obtain then a
contradiction (if (2.4) does not hold we argue in the same way taking −ap instead of ap).

The following lemma will be the key to obtain the desired estimate from below (3.40):

Lemma 2.1. If (2.3) does not hold, then for every M > 0 and k ∈ N there esist xk ∈ R and
%k > 0 such that:

(i) %k → +∞;

(ii)

∫ %k

0

Im ap−1(t, xk + pap(τ)θ)dθ ≥M log(1 + %k) + k ∀0 ≤ τ ≤ t ≤ T ;

(iii)

∫ %

0

Im ap−1(t, xk + pap(τ)θ)dθ ≥ 0 ∀% ∈ [0, %k], 0 ≤ τ ≤ t ≤ T .

Proof. If (2.3) fails to be true, then for every M > 0, k ∈ N there exist yk ∈ R and δk > 0 such
that for all 0 ≤ τ ≤ t ≤ T∫ δk

0

Im ap−1(t, yk + pθap(τ))dθ ≥M log(1 + δk) + k.(2.5)

Let us set, for s ∈ [0, δk],

Fk(s) :=

∫ s

0

Im ap−1(t, yk + pθap(τ))dθ
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and let sk be point of minimum of Fk on [0, δk]. Define then

xk := yk + pskap(τ)

%k := δk − sk.

Remark that all yk, δk, sk, xk, %k depend also on M .
For all s ∈ [0, %k] ⊆ [0, δk]:∫ s

0

Im ap−1(t, xk + pap(τ)θ)dθ =

∫ s+sk

sk

Im ap−1(t, yk + pap(τ)θ′)dθ′

= Fk(s+ sk)− Fk(sk) ≥ 0(2.6)

by definition of sk. This proves (iii).
Moreover, Fk(sk) ≤ Fk(0) = 0 and hence, from (2.6) and (2.5):∫ %k

0

Im ap−1(t, xk + pap(τ)θ)dθ =

∫ δk−sk

0

Im ap−1(t, xk + pap(τ)θ)dθ

= Fk(δk)− Fk(sk) ≥ Fk(δk)

≥ M log(1 + δk) + k ≥M log(1 + %k) + k,

proving (ii).
Finally, the last inequality implies, for k → +∞,∫ %k

0

Im ap−1(t, xk + pap(τ)θ)dθ ≥ k → +∞

and hence %k → +∞, because ap−1 ∈ B∞. �

2.1. Solutions with high frequency initial data. Let us fix, here and throughout all the
paper, a cut-off function h ∈ C∞(R), such that

(2.7) h(y) =

{
1 |y| ≤ 1/4
0 |y| ≥ 1/2,

and a rapidly decreasing function ψ such that ψ(0) = 2 and

supp ψ̂ ⊆ {ξ ∈ R : h(ξ) = 1}.

Define then

(2.8) gk(x) = ei(x−xk)nψ(x− xk),

where

(2.9) n := %ak

for some a > 0 to be chosen later on (see (3.31)), and xk, %k as in Lemma 2.1. Note that

ĝk(ξ) = e−ixkξψ̂(ξ − n),(2.10)

so gk is localized in the phase space around the point (xk, n).
Denote by uk ∈ C([0, T ];H∞) the solution of the Cauchy problem{

P (t, x,Dt, Dx)uk(t, x) = 0 (t, x) ∈ [0, T ]× R
uk(0, x) = gk(x) x ∈ R.

(2.11)
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Then, by (2.1) and (2.10) we have, for all t ∈ [0, T ]:

‖uk(t, ·)‖ ≤ C‖gk‖q = C(2π)−1/2

(∫
R
〈ξ〉2q|ĝk(ξ)|2dξ

)1/2

≤ Cq(2π)−1/2〈n〉q
(∫

R
〈θ〉2q|ψ̂(θ)|2dθ

)1/2

≤ C ′qnq,(2.12)

for some Cq, C
′
q > 0.

2.2. A localizing operator. In this subsection we define, by giving its symbol wn,k(t, x, ξ),
a pseudo-differential operator Wn,k(t, x,Dx) which localizes the solutions of (1.2) in the phase
space along the trajectory of the hamiltonian ap(t)ξ

p.
Let wn,k(t, x, ξ) be the solution of the Hamilton’s equation of motion

(2.13)

{
∂twn,k = {wn,k,−ap(t)ξp}
wn,k(0, x, ξ) = w0,n,k(x, ξ) := %

1/2
k h (%k(x− xk))h (%µk(ξ/n− 1)) ,

with µ > 0 to be chosen later (see (3.31)), where {·, ·} denotes the Poisson brackets defined by

{p(x, ξ), q(x, ξ)} = ∂xp(x, ξ)∂ξq(x, ξ)− ∂ξp(x, ξ)∂xq(x, ξ).

Computing the Poisson brackets, equation (2.13) reduces to

(2.14)

{
(∂t + pap(t)ξ

p−1∂x)wn,k = 0

wn,k(0, x, ξ) = w0,n,k(x, ξ),

which admits the solution

wn,k(t, x, ξ) = w0,n,k(x− pAp(t)ξp−1, ξ), Ap(t) =

∫ t

0

ap(τ)dτ.

We thus obtain

(2.15) wn,k(t, x, ξ) := %
1/2
k h

(
%k(x− xk − pAp(t)ξp−1)

)
h (%µk(ξ/n− 1)) .

The following lemma shows that the symbol wn,k(t, x, ξ) is supported in a neighborhood of
the solution (xk + pAp(t)n

p−1, n) of the Hamilton’s canonical equation with initial data (xk, n);

moreover it introduces the sequence of symbols wα,βn,k which naturally appear in the computation

of ∂αξD
β
xwn,k.

Lemma 2.2. Let us define, for α, β ∈ N0, µ ≥ 2 and n as in (2.9), the symbols

(2.16) wα,βn,k (t, x, ξ) := %
1/2
k (∂αxh)(x)(∂βξ h)(ξ)

∣∣∣x=%k(x−xk−pAp(t)ξp−1)

ξ=%µk (ξ/n−1)

.

Then, for every t ∈
[
0,

%k
np−1

]
we have that

suppwα,βn,k (t) ⊆
{

(x, ξ) : |x− (xk + pAp(t)n
p−1)| ≤ cp

%k
, |ξ/n− 1| ≤ 1

2%µk

}
,

for cp = max{1, p2p−1 sup[0,T ] |ap|}, if k is large enough.
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Proof. The estimate |ξ/n − 1| ≤ 1/(2%µk) trivially follows by definition (2.16) and by (2.7).

Moreover, (2.7) implies, for t ∈ [0, %k/n
p−1], µ ≥ 2 and (x, ξ) ∈ suppwα,βn,k :

|x− (xk + pAp(t)n
p−1)| ≤ |x− (xk + pAp(t)ξ

p−1)|+ p|Ap(t)|np−1

∣∣∣∣∣
(
ξ

n

)p−1

− 1

∣∣∣∣∣
≤ 1

2%k
+ p sup

[0,T ]

|ap|tnp−1 ·
∣∣∣∣ ξn − 1

∣∣∣∣ ·
∣∣∣∣∣
(
ξ

n

)p−2

+

(
ξ

n

)p−3

+ . . .+ 1

∣∣∣∣∣
≤ 1

2%k
+ p sup

[0,T ]

|ap|
%k
2%µk

[
2p−2 + 2p−3 + . . .+ 1

]
≤ 1

2%k
+ p sup

[0,T ]

|ap|
1

2%µ−1
k

2p−1 ≤ cp
%k
,

for cp = max{1, p2p−1 sup[0,T ] |ap|}, since ξ/n ≤ |ξ/n − 1| + 1 ≤ 1/(2%µk) + 1 ≤ 2 for k large
enough. �

As a consequence of Lemma 2.2, we localize, in the phase space, the solution of (2.11),
defining

(2.17) vα,βk (t, x) := Wα,β
n,k (t, x,Dx)uk(t, x),

where Wα,β
n,k (t, x,Dx) is the pseudo-differential operator with symbol wα,βn,k (t, x, ξ). We shall

denote, throughout all the paper, Wn,k := W 0,0
n,k(t, x,Dx) and vk := v0,0

k for simplicity.

2.3. Useful estimates. In the next sections we need estimates of the L2-norms of the functions
vα,βk and of both operators Wα,β

n,k and [aj,Wn,k] acting on uk . In this subsection we state and
prove all these estimates. Proofs are quite technical, and the main tools for obtaining them,
collected in Appendix A, are the Calderon-Vaillantcourt’s Theorem A.3 and a skillful use of the
expansion formula of the symbol of the product of two pseudo-differential operators (Theorems
A.1 and A.2). To avoid losing his train of thought, the reader can skip these estimates at a
first reading, passing directly to Section 3 and coming back to the estimates at the moment of
their application.

To estimate the L2-norms of vk and of vα,βk we first need estimates of the semi-norms | · |0`,`
of the symbols wα,βn,k ∈ S0

0,0, defined in formula (A.2) of the Appendix.

Lemma 2.3. Let n = %ak with a ≥ µ ≥ 2, and t ∈
[
0,

%k
np−1

]
. Then, for every α, β ∈ N0 we

have, for k large enough:

(i) for every γ, σ ∈ N0 there exists a constant Cα,β,γ,σ > 0 such that, for all (t, x, ξ) ∈
[0, %k

np−1 ]× R2:

|∂γξ ∂
σ
xw

α,β
n,k (t, x, ξ)| ≤ Cα,β,γ,σ%

1
2

+σ

k

(
%µk
n

)γ
;

(ii) for every ` ∈ N there exists Cα,β,` > 0 such that∣∣∣wα,βn,k ∣∣∣0
`,`
≤ Cα,β,`%

1
2

+`

k ;

(iii) for every h ∈ N0 and ν, ` ∈ N there exists Cα,β,ν,` > 0 such that

|ξh∂νξw
α,β
n,k |

0
`,` ≤ Cα,β,ν,` n

h%
1
2

+`

k

(
%µk
n

)ν
.(2.18)
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Proof. Let us write

∂γξ ∂
σ
xw

α,β
n,k (t, x, ξ) = %σk∂

γ
ξw

α+σ,β
n,k (t, x, ξ)

= %
σ+ 1

2
k

∑
γ1+γ2=γ

Cγ∂
γ1
ξ h

(α+σ)(%k(x− xk − pAp(t)ξp−1)) · ∂γ2ξ h
(β)(%µk(ξ/n− 1)).(2.19)

Since |ξ| ≤ 2n on suppwα,βn,k , by Lemma 2.2 we have that∣∣∂γ1ξ h(α+σ)
(
%k(x− xk − pAp(t)ξp−1)

)∣∣ ≤ Cα,σ,γ1(Ap(t)|ξ|p−2%k)
γ1

≤ Cα,σ,γ1

(
sup
[0,T ]

|ap| · t · |ξ|p−2%k

)γ1

≤ C ′α,σ,γ1

(
%2
k

n

)γ1
for t ∈ [0, %k/n

p−1]. Moreover,∣∣∂γ2ξ h(β) (%µk(ξ/n− 1))
∣∣ ≤ Cγ2,β (%µkn

)γ2
.

Substituting in (2.19) we thus obtain (i), since µ ≥ 2.
From (i) and a ≥ µ we get∣∣∣wα,βn,k ∣∣∣0

`,`
= sup

γ,σ≤`
x,ξ∈R

∣∣∣∂γξ ∂σxwα,βn,k (t, x, ξ)
∣∣∣ ≤ sup

γ,σ≤`
x,ξ∈R

Cα,β,γ,σ %
1
2

+σ

k

(
%µk
n

)γ
≤ Cα,β,` %

1
2

+`

k

i.e. also (ii) is satisfied.

Finally, (iii) follows from (i), since |ξ| ≤ 2n on suppwα,βn,k and a ≥ µ. �

We are now ready to estimate ‖vk‖. By Calderon-Vaillalntcourt’s Theorem A.3, (ii) of
Lemma 2.3 and (2.12), we have that for all t ∈ [0, %k/n

p−1]

‖vk(t, ·)‖ = ‖W 0,0
n,k(t, ·, Dx)uk(t, ·)‖ ≤ C |wn,k(t, x, ξ)|02,2 ‖uk(t, ·)‖ ≤ C ′%

1
2

+2

k nq(2.20)

for some C,C ′ > 0; similarly, for every α, β ∈ N0, it follows that

‖vα,βk (t, ·)‖ ≤ Cα,β%
1
2

+2

k nq = Cα,β%
1
2

+2+aq

k ∀t ∈ [0, %k/n
p−1](2.21)

for some Cα,β > 0. To estimate also the derivatives of vα,βk we need the following:

Lemma 2.4. Let n = %ak with a ≥ µ. For every ν, r ∈ N and α, β ∈ N0 there exists Cα,β,r,ν > 0
such that for all t ∈ [0, %k/n

p−1] with k large enough:

‖Dr
xv

α,β
k (t, ·)‖ ≤ c1n

r‖vα,βk ‖+ Cα,β,r,ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nr+q,

for a fixed constant c1 > 0.

Proof. We define the function

χ1,k(ξ) = h

(
%µk
3

(
ξ

n
− 1

))
.(2.22)

By definition (2.7), we have that

suppχ1,k ⊆
{
ξ :

∣∣∣ ξ
n
− 1
∣∣∣ ≤ 3

2%µk

}
⊆ {ξ : |ξ| ≤ 3n} ,(2.23)

and

supp (1− χ1,k) ⊆
{
ξ :

∣∣∣ ξ
n
− 1
∣∣∣ ≥ 3

4%µk

}
.(2.24)
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This implies, by Lemma 2.2, that

supp(1− χ1,k) ∩ suppwα,βn,k = ∅.(2.25)

Localizing now at frequency n

Dr
xv

α,β
k = χ1,k(Dx)D

r
xv

α,β
k + (1− χ1,k(Dx))D

r
xv

α,β
k

= χ1,k(Dx)D
r
xv

α,β
k +

r∑
j=0

(
r

j

)
(1− χ1,k(Dx))(D

j
xW

α,β
n,k )Dr−j

x uk,

and applying Calderón-Vaillancourt’s Theorem A.3, we come to:

‖Dr
xv

α,β
k (t, ·)‖ ≤ |χ1,k(ξ)ξ

r|02,2 · ‖v
α,β
k ‖

+
r∑
j=0

(
r

j

)
%jk

∣∣∣σ ((1− χ1,k(Dx))W
α+j,β
n,k Dr−j

x

)∣∣∣0
2,2
· ‖uk‖.(2.26)

Note that |χ1,k(ξ)ξ
r|02,2 ≤ c1n

r for some c1 > 0, because of (2.23); to estimate the second term
of (2.26), by Theorem A.1 and (2.25) we write, for every integer ν ≥ 1:

σ
(

(1− χ1,k(Dx))W
α+j,β
n,k Dr−j

x

)
=

∑
0≤γ≤ν−1

1

γ!
∂γξ (1− χ1,k(ξ))D

γ
x(wα+j,β

n,k ξr−j)

+

∫ 1

0

(1− θ)ν−1

(ν − 1)!

∫ ∫
e−iyη∂νξ (1− χ1,k(ξ + θη)Dν

x(wα+j,β
n,k (t, x+ y; ξ)ξr−j)dyd̄ηdθ

=

∫ 1

0

(1− θ)ν−1

(ν − 1)!
Oν(t, θ, x, ξ)dθ,(2.27)

where

Oν(t, θ, x, ξ) :=

∫ ∫
e−iyη∂νξ (1− χ1,k(ξ + θη)Dν

xw
α+j,β
n,k (t, x+ y; ξ)ξr−jdyd̄η.

Writing ξr−j =
∑r−j

h=0

(
r−j
h

)
(ξ + θη)h(−θη)r−j−h and e−iyη(−η)r−j−h = Dr−j−h

y e−iyη, we have,
integrating by parts:

Oν = −
r−j∑
h=0

(
r − j
h

)
θr−j−h

∫ ∫
∂νξχ1,k(ξ + θη) · (ξ + θη)hDν

xw
α+j,β
n,k (t, x+ y; ξ)

·Dr−j−h
y e−iyηdyd̄η

=

r−j∑
h=0

(−1)r−j−h+1

(
r − j
h

)
θr−j−h

∫ ∫
e−iyη∂νξχ1,k(ξ + θη) · (ξ + θη)h

·Dν+r−j−h
y wα+j,β

n,k (t, x+ y; ξ)dyd̄η

=

r−j∑
h=0

(−1)r−j−h+1

(
r − j
h

)
θr−j−h%ν+r−j−h

h

∫ ∫
e−iyη∂νξχ1,k(ξ + θη) · (ξ + θη)h

·wα+ν+r−h,β
n,k (t, x+ y; ξ)dyd̄η.
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By Theorem A.2, (2.22), (2.23) and Lemma 2.3, for θ ∈ [0, 1] we have that

|Oν(t, θ)|02,2 ≤
r−j∑
h=0

ch%
ν+r−j−h
k |∂νξχ1,k(ξ)ξ

h|04,4 · |w
α+ν+r−h,β
n,k (t, x; ξ)|04,4

≤
r−j∑
h=0

Cα,ν,r,h,β%
ν+r−j−h
k

(
%µk
n

)ν
nh%

1
2

+4

k

≤
r−j∑
h=0

C ′α,β,ν,r,h

(
%µk
n

)ν (
n

%k

)r−j
%
ν+r−j+ 1

2
+4

k

= Cα,β,ν,r,j %
1
2

+4

k

(
%µ+1
k

n

)ν
nr−j

for some ch, Cα,ν,r,h,β, C
′
α,β,ν,r,h, Cα,β,ν,r,j > 0, since (n/%k)

h ≤ (n/%k)
r−j for 0 ≤ h ≤ r − j.

Substituting in (2.27) and integrating with respect to θ we thus have that

∣∣∣σ ((1− χ1,k(Dx))W
α+j,β
n,k Dr−j

x

)∣∣∣0
2,2
≤ |Oν |02,2 ≤ Cα,β,ν,r,j%

4+ 1
2

k

(
%µ+1
k

n

)ν
nr−j.(2.28)

Substituting in (2.26), and taking into account (2.12), we have that

‖Dr
xv

α,β
k (t, ·)‖ ≤ c1n

r‖vα,βk ‖+
r∑
j=0

C ′α,β,ν,r,j%
4+ 1

2
+j

k

(
%µ+1
k

n

)ν
nr−j+q

≤ c1n
r‖vα,βk ‖+ Cα,β,ν,r%

4+ 1
2

k

(
%µ+1
k

n

)ν
nr+q

for some C ′α,β,ν,r,j, Cα,β,ν,r > 0, since
(
%k
n

)j ≤ 1 for every j. �

The following two lemmas give estimates of some pseudo-differential operators acting on the
functions uk.

Lemma 2.5. Let n = %ak with a ≥ µ. Then for every σ, γ, λ ∈ N0 the operators W σ,γ
n,k (t, x,Dx)

satisfy

W σ,γ
n,kD

λ
x =

λ∑
j=0

cj%
j
kD

λ−j
x W σ+j,γ

n,k ,(2.29)

for some c0, . . . , cλ > 0. Moreover, there are constants Cλ > 0 and, for all ν ∈ N0, Cσ,γ,λ,ν > 0
such that for all t ∈ [0, %k/n

p−1] with k large enough:

‖W σ,γ
n,k (t, ·, Dx)D

λ
xuk(t, ·)‖ ≤ Cλ

λ∑
j=0

%jkn
λ−j‖vσ+j,γ

k ‖+ Cσ,γ,λ,ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nλ+q.(2.30)

Proof. Let us first prove (2.29) by induction on λ ∈ N.
For λ = 1 we clearly have W σ,γ

n,kDx = DxW
σ,γ
n,k − %kW

σ+1,γ
n,k .
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Let us assume (2.29) to be true for every λ′ < λ and let us prove it for λ. By Theorem A.1:

W σ,γ
n,kD

λ
x = Dλ

xW
σ,γ
n,k + [W σ,γ

n,k , D
λ
x ]

= Dλ
xW

σ,γ
n,k − op

(
λ∑

α=1

1

α!
∂αξ ξ

λ ·Dα
xw

σ,γ
n,k

)

= Dλ
xW

σ,γ
n,k −

λ∑
α=1

(
λ

α

)
%αk
(
W σ+α,γ
n,k Dλ−α

x

)
.

By the inductive assumption, we thus have that

W σ,γ
n,kD

λ
x = Dλ

xW
σ,γ
n,k −

λ∑
α=1

(
λ

α

)
%αk

(
λ−α∑
`=0

C`%
`
kD

λ−α−`
x W σ+α+`,γ

n,k

)

= Dλ
xW

σ,γ
n,k −

λ∑
α=1

λ−α∑
`=0

Cα,λ,`%
α+`
k Dλ−α−`

x W σ+α+`,γ
n,k

=
λ∑

α′=0

Cα′,λ%
α′

k D
λ−α′
x W σ+α′,γ

n,k .

Therefore (2.29) is proved and, applying Lemma 2.4 for j ≤ λ−1, we have that for every ν ∈ N:

‖W σ,γ
n,k (t, ·, Dx)D

λ
xuk(t, ·)‖ ≤

λ∑
j=0

cj%
j
k‖D

λ−j
x vσ+j,γ

k ‖

≤
λ−1∑
j=0

cj%
j
k

(
c1n

λ−j‖vσ+j,γ
k ‖+ Cσ,j,γ,λ,ν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nλ−j+q

)
+cλ%

λ
k‖v

σ+λ,γ
k ‖

≤ C ′λ

λ∑
j=0

%jkn
λ−j‖vσ+j,γ

k ‖+ Cσ,γ,λ,ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nλ+q,

for some C ′λ, Cσ,γ,λ,ν > 0. This proves (2.30). �

Lemma 2.6. Let aj = aj(t, x), for 0 ≤ j ≤ p− 1, be the coefficients of the operator (1.1), and
let n = %ak with a ≥ µ+ 1 ≥ 2. Then, for every ν ∈ N there exists Cν > 0 such that

‖[aj,Wn,k]D
j
xuk(t, ·)‖ ≤ Cν n

j
∑

1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖+ Cν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+j

for all t ∈ [0, %k/n
p−1] with k large enough.

Proof. By Theorem A.1, for all ν ∈ N

σ
(
[aj(t, x),Wn,k(t, x,Dx)]D

j
x

)
= σ([aj,Wn,k]) · ξj

= −

( ∑
1≤α≤ν−1

1

α!
∂αξ wn,k ·Dα

xaj

)
ξj −

∫ 1

0

(1− θ)ν−1

(ν − 1)!
Õν(t, θ, x, ξ)dθ,(2.31)

where

Õν(t, θ, x, ξ) :=

∫ ∫
e−iyη∂νξwn,k(t, x; ξ + θη)Dν

xaj(t, x+ y) · ξjdyd̄η.
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Arguing as in the proof of Lemma 2.4 we can estimate, by Theorem A.2 and Lemma 2.3:

|Õν |02,2 =

∣∣∣∣∣
j∑

h=0

(
j

h

)
θj−h

∫ ∫
∂νξwn,k(t, x; ξ + θη) · (ξ + θη)hDν

xaj(t, x+ y)Dj−h
y e−iyηdyd̄η

∣∣∣∣∣
0

2,2

≤
j∑

h=0

(
j

h

) ∣∣∣∣∫ ∫ e−iyη∂νξwn,k(t, x; ξ + θη) · (ξ + θη)hDν+j−h
x aj(t, x+ y)dyd̄η

∣∣∣∣0
2,2

≤
j∑

h=0

Cj
∣∣ξh∂νξwn,k(t, x; ξ)

∣∣0
4,4
·
∣∣Dν+j−h

x aj(t, x)
∣∣0
4,4

≤ Cνn
j%

4+ 1
2

k

(
%µk
n

)ν
(2.32)

for some Cj, Cν > 0, since aj ∈ C([0, T ];B∞) for 0 ≤ j ≤ p− 1.
In order to estimate now the first term of (2.31), we previously compute, by the Faà di Bruno

formula:

∂αξ wn,k =
∑

α1+α2=α

α!

α1!α2!
%

1/2
k · ∂

α1
ξ h
(
%k(x− xk − pAp(t)ξp−1)

)
· ∂α2

ξ h
(
%µk

( ξ
n
− 1
))

= %
1/2
k h

(
%k(x− xk − pAp(t)ξp−1)

)
· ∂αξ h

(
%µk

( ξ
n
− 1
))

+
∑

α1+α2=α
α1≥1

α!

α1!α2!

∑
r1+...+rs=α1

rh≥1

Cs,r%
1/2
k h(s)

(
%k(x− xk − pAp(t)ξp−1)

)

·∂r1ξ
[
%k(x− xk − pAp(t)ξp−1)

]
· · · ∂rsξ

[
%k(x− xk − pAp(t)ξp−1)

]
·
(%µk
n

)α2

h(α2)
(
%k

( ξ
n
− 1
))

=

(
%µk
n

)α
%

1/2
k h

(
%k(x− xk − pAp(t)ξp−1)

)
h(α)

(
%µk

( ξ
n
− 1
))

+
∑

α1+α2=α
α1≥1

α!

α1!α2!

∑
r1+...+rs=α1

1≤rh≤p−1

C ′s,r

(
%kAp(t)

)α1

· ξs(p−1)−α1

·
(%µk
n

)α2

%
1/2
k h(s)

(
%k(x− xk − pAp(t)ξp−1)

)
h(α2)

(
%k

( ξ
n
− 1
))

for some Cs,r, C
′
s,r > 0. Coming back to the first term of (2.31) and taking into account the

definition (2.15) of wn,k:( ∑
1≤α≤ν−1

1

α!
∂αξ wn,k ·Dα

xaj

)
ξj ≤

∑
1≤α≤ν−1

Dα
xaj
α!

(
%µk
n

)α
w0,α
n,k · ξ

j

+
∑

1≤α≤ν−1

∑
α1+α2=α
α1≥1

Dα
xaj

α1!α2!

∑
r1+...+rs=α1

1≤rh≤p−1

C ′s,r%
α1
k Ap(t)

α1

(
%µk
n

)α2

ws,α2

n,k · ξ
s(p−1)−α1+j
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and hence∥∥∥ op
[( ∑

1≤α≤ν−1

1

α!
∂αξ wn,k ·Dα

xaj

)
ξj
]
uk

∥∥∥
≤

∑
1≤α≤ν−1

Cα,j

(
%µk
n

)α ∥∥W 0,α
n,kD

j
xuk
∥∥

+
∑

1≤α≤ν−1

∑
α1+α2=α
α1≥1

Cα,j sup
[0,%k/np−1]

|Ap(t)|α1%α1
k

(
%µk
n

)α2 α1∑
s=1

∥∥W s,α2

n,k D
s(p−1)−α1+j
x uk

∥∥ .
Applying (2.30), since s ≤ α1, µ ≥ 2 and 0 ≤ j ≤ p− 1, we thus obtain, for t ∈ [0, %k/n

p−1]:∥∥∥ op
[( ∑

1≤α≤ν−1

1

α!
∂αξ wn,k ·Dα

xaj

)
ξj
]
uk

∥∥∥
≤

∑
1≤α≤ν−1

C ′α,j

(
%µk
n

)α [ j∑
h=0

%hkn
j−h‖vh,αk ‖+ Cα,j,ν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nj+q

]
+

∑
1≤α≤ν−1

∑
α1+α2=α
α1≥1

C ′α,j

( %k
np−1

)α1

%α1
k

(
%µk
n

)α2

·
α1∑
s=1

[
Cs,α,j

s(p−1)−α1+j∑
h=0

%hkn
s(p−1)−α1+j−h‖vs+h,α2

k ‖

+Cs,α,j,ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
ns(p−1)−α1+j+q

]
≤ Cνn

j
∑

1≤α≤ν−1

(
%µk
n

)α j∑
h=0

(%k
n

)h
‖vh,αk ‖+ Cν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nj+q

+Cν
∑

1≤α≤ν−1

∑
α1+α2=α
α1≥1

(
%µk
n

)α1+α2 1

nα1(p−2)

·
[
nα1(p−2)+j

α1∑
s=1

s(p−1)−α1+j∑
h=0

(%k
n

)h
‖vs+h,α2

k ‖+ %
4+ 1

2
k

(
%µ+1
k

n

)ν
nα1(p−2)+j+q

]

≤ Cνn
j

∑
1≤α2≤ν−1

j∑
h=0

(
%µk
n

)h+α2

‖vh,α2

k ‖+ C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+j

+Cνn
j

∑
1≤α1+α2≤ν−1

α1≥1

α1∑
s=1

s(p−1)−α1+j∑
h=0

(
%µk
n

)s+h+α2

‖vs+h,α2

k ‖

≤ Cνn
j

∑
1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖+ C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+j(2.33)

for some Cα,j, Cα,j,ν , C
′
α,j, C

′
α,j,ν , Cs,α,j, Cs,α,j,ν , Cν , C

′
ν > 0.
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By the Calderón-Vaillancourt’s Theorem A.3, by (2.31), (2.32) and (2.33) we get:

‖[aj,Wn,k]D
j
xuk‖ ≤ C|Õν |02,2 · ‖uk‖+

∥∥∥ op
[( ∑

1≤α≤ν−1

1

α!
∂αξ wn,k ·Dα

xaj

)
ξj
]
uk

∥∥∥
≤ C ′ν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nq+j + Cνn

j
∑

1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

for some C,Cν , C
′
ν > 0. �

3. Estimates from below

In this section we want to produce estimates from below of the L2-norms of the functions vk
and vα,βk , and then of a linear combination σk(t) of the L2-norms of vα,βk , α + β ≥ 0.

We start with the estimate of ‖vk(0, ·)‖. For n as in (2.9) and k large enough, from (2.10)
we have that

supp ĝk = supp ψ̂(ξ − n) ⊆ {ξ ∈ R : h(%µk(ξ/n− 1)) = 1}.(3.1)

Therefore

vk(0, x) = Wn,kuk(0, x) =

∫
eixξwn,k(0, x, ξ)ĝk(ξ)d̄ξ

=

∫
eixξ%

1/2
k h (%k(x− xk))h (%µk(ξ/n− 1))︸ ︷︷ ︸

1

e−ixkξψ̂(ξ − n)d̄ξ

= %
1/2
k h (%k(x− xk)) ei(x−xk)nψ(x− xk)

and

‖vk(0, ·)‖2 =

∫
%k|h (%k(x− xk)) |2|ψ(x− xk)|2dx =

∫
|h(y)|2|ψ(y/%k)|2dy(3.2)

≥
∫
|h(y)|2dy = ‖h‖2 > 0

if k is large enough, since ψ(0) = 2 and %k → +∞.
Now, to produce an estimate from below of ‖vk(t, ·)‖, our idea is to follow the energy method,

producing a ”reverse energy estimate”. To this aim, denoting by 〈·, ·〉 the scalar product on
L2, we consider

d

dt
‖vk(t, ·)‖2 = 2 Re〈∂tvk, vk〉

= 2 Re i〈Pvk, vk〉 − 2 Re iap(t)〈Dp
xvk, vk〉 − 2 Re i

p−1∑
j=0

〈(aj(t, x)Dj
xvk, vk〉.(3.3)

We compute separately estimates from below of each term in formula (3.3). By definition of vk
we have that

Pvk = PWn,kuk = Wn,kPuk + [P,Wn,k]uk =

= 0 + [Dt + ap(t)D
p
x,Wn,k]uk +

p−1∑
j=0

[aj(t, x)Dj
x,Wn,k]uk,

since Puk = 0.
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Developing the symbol of the commutator [Dt + ap(t)D
p
x,Wn,k] and using the fact that wn,k

is the solution of Hamilton’s equation (2.14) we obtain, by Theorem A.1:

σ ([Dt + ap(t)D
p
x,Wn,k]) (t, x, ξ) = Dtwn,k + ap(t)σ ([Dp

x,Wn,k])

= Dtwn,k + ap(t)

p∑
α=1

1

α!
∂αξ ξ

p ·Dα
xwn,k

= (Dt + pap(t)ξ
p−1Dx)wn,k + ap(t)

p∑
α=2

(
p

α

)
ξp−αDα

xwn,k

= ap(t)

p∑
α=2

(
p

α

)
ξp−αDα

xwn,k.

Defining then

fk := op

(
ap(t)

p∑
α=2

(
p

α

)
ξp−αDα

xwn,k

)
uk +

p−1∑
j=0

[aj(t, x)Dj
x,Wn,k]uk,(3.4)

we have that

Pvk = fk

and hence from (3.3) we get

d

dt
‖vk(t, ·)‖2 = 2 Re i〈fk, vk〉 − 2 Re iap(t)〈Dp

xvk, vk〉 −
p−1∑
j=0

2 Re i〈ajDj
xvk, vk〉

= 2 Re i〈fk, vk〉 −
p−1∑
j=0

〈(iajDj
x + (iajD

j
x)
∗)vk, vk〉(3.5)

since Re i〈Dp
xvk, vk〉 = 0. Now,

σ(iaj(t, x)Dj
x)
∗ =

∑
α≥0

1

α!
∂αξD

α
x (iaj(t, x)ξj) =

j∑
α=0

(
j

α

)
Dα
x (−iRe aj − Im aj(t, x))ξj−α,

and hence

p−1∑
j=0

σ[(iajD
j
x) + (iajD

j
x)
∗] =

p−1∑
j=0

[
−2 Im ajξ

j +

j∑
α=1

(
j

α

)
Dα
x (−iRe aj − Im aj) ξ

j−α

]

= −2

p−1∑
j=0

Im ajξ
j +

p−2∑
h=0

p−1∑
j=h+1

(
j

h

)
Dj−h
x (−iRe aj − Im aj) ξ

h

= −2 Im ap−1ξ
p−1

+

p−2∑
h=0

[
−2 Im ah +

p−1∑
j=h+1

(
j

h

)
Dj−h
x (−iRe aj − Im aj)

]
ξh.
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Substituting in (3.5), we have that there exist postive constants A1, c
′ such that

d

dt
‖vk(t, ·)‖2 ≥ −2‖fk‖ · ‖vk‖+ 2〈Im ap−1D

p−1
x vk, vk〉 − A1‖vk‖2

+

p−2∑
h=1

[
2〈Im ahD

h
xvk, vk〉+

p−1∑
j=h+1

(
j

h

)
〈(Dj−h

x (iRe aj + Im aj))D
h
xvk, vk〉

]

≥ 2〈Im ap−1D
p−1
x vk, vk〉 − 2‖fk‖ · ‖vk‖ − A1‖vk‖2 − c′ n

p−1

%k
‖vk‖2,(3.6)

since

|〈Im ahD
h
xvk, vk〉| ≤ cnh‖vk‖2 ≤ cnp−2‖vk‖2 ≤ c

np−1

%k
‖vk‖2

because of the support of wn,k, and analogously

|〈(Dj−h
x (iRe aj + Im aj))D

h
xvk, vk〉| ≤ c

np−1

%k
‖vk‖2.

Now we want to give estimates of the terms in (3.6). This is done in the following Propositions
3.1 and 3.2.

Proposition 3.1. Let n = %ak with a ≥ µ ≥ 2. Then, for all ν ∈ N there exists Cν > 0 such

that, for every t ∈
[
0,

%k
np−1

]
with k large enough:

〈Im ap−1(t, x)Dp−1
x vk, vk〉 ≥

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − C np−1

%k

)
‖vk‖2(3.7)

−Cν%k4+ 1
2

(
%k

µ+1

n

)ν
nq+p−1‖vk‖,

for some fixed C > 0.

Proof. We split

Im ap−1(t, x)Dp−1
x = Im ap−1(t, xk + pAp(t)n

p−1)np−1

+ Im ap−1(t, xk + pAp(t)n
p−1)(Dp−1

x − np−1)(3.8)

+
(
Im ap−1(t, x)− Im ap−1(t, xk + pAp(t)n

p−1)
)
Dp−1
x

and set

I1 := Im ap−1(t, xk + pAp(t)n
p−1)np−1,

I2 := Im ap−1(t, xk + pAp(t)n
p−1)(Dp−1

x − np−1)

I3 := (Im ap−1(t, x)− Im ap−1(t, xk + pAp(t)n
p−1))Dp−1

x .

We have

〈I1vk, vk〉 = Im ap−1(t, xk + pAp(t)n
p−1)np−1‖vk‖2.(3.9)

To estimate 〈I2vk, vk〉, we localize at frequency n by means of the function χ1,k defined in (2.22)
and write

I2vk = χ1,k(Dx)I2vk + (1− χ1,k(Dx))I2vk

= Im ap−1(t, xk + pAp(t)n
p−1)[χ1,k(Dx)(D

p−1
x − np−1)vk

+ (1− χ1,k(Dx)) (Dp−1
x − np−1)vk],
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so, denoting by

J1 := ‖χ1,k(Dx)(D
p−1
x − np−1)vk‖,(3.10)

J2 := ‖ (1− χ1,k(Dx)) (Dp−1
x − np−1)vk‖,(3.11)

we have

‖I2vk‖ ≤ | Im ap−1(t, xk + pAp(t)n
p−1)|(J1 + J2).(3.12)

By Calderon-Vaillantcourt’s Theorem A.3,

J1 ≤ C|χ1,k(ξ)(ξ
p−1 − np−1)|02,2‖vk‖ ≤ C ′

np−1

%µk
‖vk‖(3.13)

for some C,C ′ > 0, since by (2.23):

|χ1,k(ξ)(ξ
p−1 − np−1)| = |χ1,k(ξ)(ξ − n)(ξp−2 + nξp−3 + n2ξp−4 + . . .+ np−2)|

≤ c
n

%µk
(p− 1)np−2 = c′

np−1

%µk
,

for some c, c′ > 0, and for all γ = γ1 + γ2 with |γ| ≤ 2 there are constants Cγ1 , Cγ > 0 such
that:

|∂γ1ξ χ1,k(ξ)∂
γ2
ξ (ξp−1 − np−1)| ≤


Cγ1

np−1

%µk
γ2 = 0

Cγn
p−1−γ2 ≤ Cγ

np−1

%µk
γ2 ≥ 1.

As it concerns (3.11), by definition of vk we write

(Dp−1
x − np−1)vk =

(
Wn,k(D

p−1
x − np−1) + [Dp−1

x − np−1,Wn,k]
)
uk.(3.14)

Since σ([Dp−1
x − np−1,Wn,k]) =

∑p−1
α=1

(
p−1
α

)
ξp−1−α%αkw

α,0
n,k, we have that

[Dp−1
x − np−1,Wn,k] =

p−1∑
α=1

(
p− 1

α

)
%αkW

α,0
n,kD

p−1−α
x(3.15)

and therefore, by (3.11), (3.14), (3.15), the Calderon-Vaillantcourt’s Theorem A.3 and (2.28),
for every ν ∈ N there are constants C,C ′ν , C

′′
ν > 0 such that:

J2 ≤ ‖ (1− χ1,k(Dx))Wn,k(D
p−1
x − np−1)uk‖

+

p−1∑
α=1

(
p− 1

α

)
%αk‖(1− χ1,k(Dx))W

α,0
n,kD

p−1−α
x uk‖

≤ C
( ∣∣σ ((1− χ1,k(Dx))Wn,k(D

p−1
x − np−1)

)∣∣0
2,2

+

p−1∑
α=1

%αk
∣∣σ ((1− χ1,k(Dx))W

α,0
n,kD

p−1−α
x

)∣∣0
2,2

)
‖uk‖

≤ C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
(np−1 + %kn

p−2 + . . .+ %p−1
k )nq

≤ C ′′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+p−1.(3.16)
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Substituting now (3.13) and (3.16) in (3.12) we come to

‖I2vk‖ ≤ C
np−1

%µk
‖vk‖+ Cν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nq+p−1(3.17)

for some C,Cν > 0, and hence

〈I2vk, vk〉 ≥ −C
np−1

%µk
‖vk‖2 − Cν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nq+p−1‖vk‖.(3.18)

Finally, to estimate 〈I3vk, vk〉, we localize in a neighborhood of xk + pAp(t)ξ
p−1 by defining, for

h as in (2.7), the function

χ2,k(x) := h

(
%k
x− xk − pAp(t)ξp−1

4pcp

)
,(3.19)

where cp is the constant defined in Lemma 2.2. We have that

suppχ2,k ⊆
{
x : |x− xk − pAp(t)ξp−1| ≤ 2pcp

%k

}
(3.20)

and

supp (1− χ2,k) ⊆
{
x : | x− xk − pAp(t)ξp−1| ≥ pcp

%k

}
.(3.21)

We now claim that

supp(1− χ2,k) ∩ suppWα,β
n,k = ∅ ∀t ∈

[
0,

%k
np−1

]
.(3.22)

This holds true because on the support of wα,βn,k , given by Lemma 2.2, we have that, for all

t ∈
[
0,

%k
np−1

]
,

|x− xk − pAp(t)ξp−1| ≤ |x− xk − pAp(t)np−1|+ p|Ap(t)||ξp−1 − np−1|

≤ cp
%k

+ p sup
[0,T ]

|ap| · t · |ξ − n| · |ξp−2 + nξp−3 + . . .+ np−2|

≤ cp
%k

+ cp
%k
np−1

n

2%µk
(p− 1)np−2 ≤ p

cp
%k
,

by the definition of cp. Therefore (3.22) is proved and

I3vk = (1− χ2,k(x))I3vk + χ2,k(x)I3vk = χ2,k(x)I3vk.

Then, by Lemma 2.4:

‖I3vk‖ = ‖χ2,k(x)I3vk‖ = | Im ap−1(t, x)− Im ap−1(t, xk + pAp(t)n
p−1)| · ‖χ2,k(x)Dp−1

x vk‖

≤
(

sup
[0,T ]×R

| Im ∂xap−1(t, x)|
)
· |x− xk − pAp(t)np−1| · ‖χ2,k(x)Dp−1

x vk‖

≤ c

%k
‖Dp−1

x vk‖ ≤
c

%k

(
c1n

p−1‖vk‖+ Cν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+p−1

)

≤ C ′
np−1

%k
‖vk‖+ C ′ν%k

3+ 1
2

(
%k

µ+1

n

)ν
nq+p−1,

for some c, C ′, C ′ν > 0, and so

〈I3vk, vk〉 ≥ −C ′
np−1

%k
‖vk‖2 − C ′ν%k3+ 1

2

(
%k

µ+1

n

)ν
nq+p−1‖vk‖.(3.23)
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Summing up (3.9), (3.18) and (3.23) we finally get the desired estimate (3.7). �

Proposition 3.2. Let n = %ak with a > µ+ 1. Then for all ν ∈ N there exists Cν > 0 such that
the function fk defined in (3.4) satisfies

‖fk(t, ·)‖ ≤ C%2
kn

p−2

p∑
j=1

‖vj,0k ‖+ Cνn
p−1

∑
1≤α1+α2≤ν(p−1)

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

+Cν n
q+p−1%

4+ 1
2

k

(
%µ+1
k

n

)ν
for some fixed C > 0 and for every t ∈ [0, %k/n

p−1] with k large enough.

Proof. Let us recall that

fk = op

(
ap(t)

p∑
α=2

(
p

α

)
ξp−αDα

xwn,k

)
uk +

p−1∑
j=0

[aj(t, x)Dj
x,Wn,k]uk,(3.24)

and estimate the above terms separately. For α = p

op(ap(t)D
p
xwn,k)uk =

∫
eixξap(t)D

p
xwn,k(t, x; ξ)ûk(t, ξ)d̄ξ

= ap(t)%
p
k

∫
eixξwp,0n,k(t, x; ξ)ûk(t, ξ)d̄ξ

= ap(t)%
p
kW

p,0
n,k(t, x;Dx)uk(t, x) = ap(t)%

p
kv

p,0
k (t, x)

and hence

‖ op(ap(t)D
p
xwn,k)uk‖ ≤ C%pk‖v

p,0
k ‖(3.25)

for some C > 0.
For 2 ≤ α ≤ p− 1, by (2.30) we have:

‖ op(ap(t)ξ
p−αDα

xwn,k)uk(t, ·)‖ ≤ C%αk‖W
α,0
n,kD

p−α
x uk‖

≤ C ′%αk

(
np−α

p−α∑
j=0

‖vα+j,0
k ‖+ Cν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nq+p−α

)

≤ C ′′%2
kn

p−2

p∑
s=2

‖vs,0k ‖+ C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+p−1(3.26)

for some C,C ′, C ′′, Cν , C
′
ν > 0, since (%k/n)α ≤ (%k/n)2 and %2

k/n
2 ≤ 1/n = %−ak for 2 ≤ α ≤ p−1

and a ≥ 2.
In order to estimate the second addend of (3.24) we compute, for 0 ≤ j ≤ p− 1:

[ajD
j
x,Wn,k]uk = aj

j∑
h=0

(
j

h

)
(Dj−h

x Wn,k)D
h
xuk −Wn,kajD

j
xuk

= aj

j−1∑
h=0

(
j

h

)
%j−hk W j−h,0

n,k Dh
xuk + [aj,Wn,k]D

j
xuk.
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Then, by Lemmas 2.5 and 2.6, for 0 ≤ j ≤ p− 1, we have that:

‖[ajDj
x,Wn,k]uk‖ ≤ C

j−1∑
h=0

%j−hk ‖W
j−h,0
n,k Dh

xuk‖+ ‖[aj,Wn,k]D
j
xuk‖

≤
j−1∑
h=0

Ch%
j−h
k nh

h∑
s=0

‖vj−h+s,0
k ‖+ Cν%

4+ 1
2

k

(
%µ+1
k

n

)ν
nq+j

+Cνn
j

∑
1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

≤ C%kn
j−1

j∑
s=1

‖vs,0k ‖+ Cν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+j(3.27)

+Cνn
j

∑
1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

for some C,Cν > 0.
By (3.24), (3.25), (3.26) and (3.27):

‖fk(t, ·)‖ ≤ C%pk‖v
p,0
k ‖+ C ′′%2

kn
p−2

p∑
s=2

‖vs,0k ‖+ C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+p−1

+

p−1∑
j=0

[
C%kn

j−1

j∑
s=1

‖vs,0k ‖+ C ′νn
j

∑
1≤α1+α2≤(ν−1)(p−1)+j

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

+C ′ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+j

]
≤ C̃%2

kn
p−2

p∑
s=1

‖vs,0k ‖+ C̃νn
p−1

∑
1≤α1+α2≤ν(p−1)

(
%µk
n

)α1+α2

‖vα1,α2

k ‖

+C̃ν%
4+ 1

2
k

(
%µ+1
k

n

)ν
nq+p−1

for some C̃, C̃ν > 0. �

Summing up, from (3.6), by Propositions 3.1 and 3.2, for every ν ∈ N we come to the
estimate:

1

2

d

dt
‖vk(t, ·)‖2 ≥

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − A
(

1 +
np−1

%k

))
‖vk‖2

−Cν%k4+ 1
2

(
%k

µ+1

n

)ν
nq+p−1‖vk‖ − C%2

kn
p−2

p∑
j=1

‖vj,0k ‖ · ‖vk‖(3.28)

−Cνnp−1
∑

1≤α1+α2≤ν(p−1)

(
%µk
n

)α1+α2

‖vα1,α2

k ‖ · ‖vk‖

for some A,C,Cν > 0. Now, for a > µ+ 1, it is possible to take ν ∈ N sufficiently large so that

sup
k
%k

4+ 1
2

(
%k

µ+1

n

)ν
nq+p−1 ≤Mν(3.29)
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for some Mν > 0. After substituting (3.29) in (3.28), we finally choose a and µ such that

d

dt
‖vk(t, ·)‖ ≥

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − A
(

1 +
np−1

%k

))
‖vk‖ −M ′

ν(3.30)

−C ′νnp−1
∑

1≤α1+α2≤ν(p−1)

(
%µk
n

)α1+α2

‖vα1,α2

k ‖,

for some M ′
ν , C

′
ν > 0; this can be done forµ > p+ 1

µ+ 1 < a ≤ pµ− 2

p− 1
= µ+ 1 +

µ− p− 1

p− 1
,

(3.31)

since %2
kn

p−2 ≤ np−1
(
%µk
n

)j
for all 1 ≤ j ≤ p if 2 ≤ pµ − a(p − 1), and this implies, together

with a > µ+ 1, that we must take µ > p+ 1.

Using now %k

(
%µk
n

)α1+α2

≤
(
%µ+1
k

n

)α1+α2

, we come to

d

dt
‖vk(t, ·)‖ ≥

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − A
(

1 +
np−1

%k

))
‖vk‖ −M ′

−C ′n
p−1

%k

∑
1≤α1+α2≤ν(p−1)

(
%µ+1
k

n

)α1+α2

‖vα1,α2

k ‖

for some constants M ′, C ′ > 0, since ν has been fixed in (3.29).

Arguing in the same way for the functions vα,βk instead of vk, we finally get:

Proposition 3.3. Let n be as in (2.9), a, µ as in (3.31), ν ∈ N sufficiently large so that (3.29)
is satisfied. Then, for every α, β ∈ N0 there exists Cα,β > 0 such that for all t ∈ [0, %k/n

p−1]
with k large enough:

d

dt
‖vα,βk (t, ·)‖ ≥

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − A
(

1 +
np−1

%k

))
‖vα,βk ‖ − Cα,β(3.32)

−Cα,β
np−1

%k

∑
1≤α̃+β̃≤ν(p−1)

(
%µ+1
k

n

)α̃+β̃

‖vα+α̃,β+β̃
k ‖.

From Proposition 3.3 it follows that:

d

dt

((
%µ+1
k

n

)α+β

‖vα,βk ‖

)
≥
(

Im ap−1(t, xk + pAp(t)n
p−1)np−1 − A

(
1 +

np−1

%k

))

·
(
%µ+1
k

n

)α+β

‖vα,βk ‖ − Cα,β(3.33)

−Cα,β
np−1

%k

∑
1≤α̃+β̃≤ν(p−1)

(
%µ+1
k

n

)α+α̃+β+β̃

‖vα+α̃,β+β̃
k ‖.

We now choose s ∈ N sufficiently large so that, for all ᾱ+ β̄ ≥ s+1, using (2.21) and a > µ+1,
we have

np−1

%k

(
%µ+1
k

n

)ᾱ+β̄

‖vᾱ,β̄k ‖ ≤ cs
np−1

%k

(
%µ+1
k

n

)s+1

%
1
2

+2

k nq ≤ c′s(3.34)
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for some cs, c
′
s > 0. In order to satisfy (3.34) it’s enough to take s such that

a(q + p− 1) +
1

2
+ 1 + (s+ 1)(µ+ 1− a) ≤ 0,

i.e.

s ≥
a(q + p− 2) + µ+ 5

2

a− µ− 1
.(3.35)

With this choice of s we define:

σk(t) :=
∑

0≤α+β≤s

(
%µ+1
k

n

)α+β

‖vα,βk ‖.(3.36)

From (3.33) we have that:

d

dt
σk(t) =

∑
0≤α+β≤s

d

dt

[(
%µ+1
k

n

)α+β

‖vα,βk ‖

]

≥
∑

0≤α+β≤s

(
Im ap−1(t, xk + pAp(t)n

p−1)np−1 − A
(

1 +
np−1

%k

))(
%µ+1
k

n

)α+β

‖vα,βk ‖

−Cs
∑

1≤ᾱ+β̄≤s

np−1

%k

(
%µ+1
k

n

)ᾱ+β̄

‖vᾱ,β̄k ‖ − Cs

≥
(

Im ap−1(t, xk + pAp(t)n
p−1)np−1 − As

(
1 +

np−1

%k

))
σk(t)− Cs

for some Cs, As > 0, because of (3.34).
We have thus obtained for the function σk the following differential inequality:

σ′k(t)−Bk(t)σk(t) + Cs ≥ 0 t ∈
[
0,

%k
np−1

]
, k � 1,

Bk(t) := Im ap−1(t, xk + pAp(t)n
p−1)np−1 − As

(
1 +

np−1

%k

)
,

which clearly implies that

σk(t) ≥ e
∫ t
0 Bk(θ)dθ

[
σk(0)− Cs

∫ t

0

e−
∫ τ
0 Bk(θ)dθdτ

]
t ∈
[
0,

%k
np−1

]
, k � 1.

For t = %k/n
p−1 we have

σk

( %k
np−1

)
≥ e

∫ %k
np−1
0 Bk(θ)dθ

[
σk(0)− Cs

∫ %k
np−1

0

e−
∫ τ
0 Bk(θ)dθdτ

]
.(3.37)

Let us focus on the term
∫ %k
np−1

0 Bk(θ)dθ; the choice of xk, %k of Lemma 2.1 gives for it, by the
change of variables θ′ = np−1θ and for k large enough, the following estimate from below:
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∫ %k
np−1

0

Bk(θ)dθ =

∫ %k
np−1

0

Im ap−1(θ, xk + pAp(θ)n
p−1)np−1dθ − As

∫ %k
np−1

0

(
1 +

np−1

%k

)
dθ

≥
∫ %k

0

Im ap−1

(
θ′

np−1
, xk + pAp

(
θ′

np−1

)
np−1

)
dθ′ − 2As

=

∫ %k

0

Im ap−1

(
θ′

np−1
, xk + pap(τk)θ

′
)
dθ′ − 2As

≥M log(1 + %k) + k − 2As,(3.38)

for some τk ∈ [0, θ′/np−1], since Ap(θ
′/np−1)np−1 = θ′ap(τk) by the mean value theorem for

integration.
Similarly it follows that for every τ ∈ [0, %k

np−1 ]:∫ τ

0

Bk(θ)dθ ≥
∫ np−1τ

0

Im ap−1

(
θ′

np−1
, xk + pap(τ

′
k)θ
′
)
dθ′ − 2As ≥ −2As(3.39)

for some τ ′k ∈ [0, θ′/np−1], because of Lemma 2.1, since np−1τ ≤ np−1 %k
np−1 ≤ %k.

Finally, from (3.36) and (3.2) we have ‖σk(0)‖ ≥ ‖vk(0)‖ ≥ ‖h‖ > 0; therefore, substituiting
the estimates (3.38) and (3.39) into (3.37), we have proved the following desired estimate from
below for the function σk(t):

Proposition 3.4. For every M > 0 and k ∈ N let xk, %k be as in Lemma 2.1. Taking µ ≥ 2 in
(2.13) and n as in (2.9) with a, µ satisfying (3.31), it is possible to construct the functions vα,βk
in (2.17) and then to choose s great enough (see (3.35)) such that the function σk(t) defined in
(3.36) satisfies the following estimate from below:

σk

( %k
np−1

)
≥ c(1 + %k)

M , k � 1,(3.40)

for some c > 0.

4. Estimate from above and proof of the main Theorem.

The estimate from above is now quite simple to be obtained and it is shown in the following:

Proposition 4.1. For every M > 0 and k ∈ N let xk, %k be as in Lemma 2.1. Taking µ ≥ 2 in
(2.13) and n as in (2.9) with a, µ satisfying (3.31), it is possible to construct the functions vα,βk
in (2.17) and then to choose s great enough (see (3.35)) such that the function σk(t) defined in
(3.36) satisfies the following estimate from above for all t ∈ [0, %k

np−1 ]:

σk(t) ≤ C%
1
2

+2+aq

k , k � 1,(4.1)

for some C > 0.

Proof. The estimate (2.21) obtained in Section 2 and definition (3.36) immediately give:

σk(t) ≤
∑

0≤α+β≤s

Cα,β

(
%µ+1
k

n

)α+β

%
1
2

+2+aq

k ≤ C%
1
2

+2+aq

k

for some C > 0, since s has been fixed in (3.35). �

We are now ready to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let us assume, by contradiction, that the Cauchy problem (1.2) is well-
posed in H∞ but (1.6) does not hold true. Then at least one of the two conditions (2.3) or (2.4)
does not hold true. As we remarked in Section 2, we can assume, without loss of generality,
that (2.3) does not hold and apply Lemma 2.1. By Propositions 3.4 and 4.1 we come to the
estimate:

c(1 + %k)
M ≤ σk

( %k
np−1

)
≤ C%

1
2

+2+aq

k ,

for positive constants c, C not depending on k, giving rise to a contradiction for k large enough,
if we choose

M >
1

2
+ 2 + aq.

Therefore condition (1.6) must be satisfied and the proof is complete. �

Appendix A

The localized pseudo-differential operators Wα,β
n,k (t, x,Dx) of the present paper have symbols

wα,βn,k (t, x, ξ) depending on the parameter t and belonging to the class S0
0,0 of all functions

p(x, ξ) ∈ C∞(R2) such that for every α, β ≥ 0

|Dβ
x∂

α
ξ p(x, ξ)| ≤ Cα,β;(A.1)

S0
0,0 is a Fréchet space with semi-norms

|p|0`,`′ := max
α≤`,β≤`′

sup
x,ξ∈R

|∂αξDβ
xp(x, ξ)|.(A.2)

The class S0
0,0 corresponds to the classical class Sm%,δ (defined by |Dβ

x∂
α
ξ p(x, ξ)| ≤ Cα,β〈ξ〉m−%α+δβ

instead of (A.1); see [23]) with m = % = δ = 0. In the Sm0,0 classes the usual asymptotic
expansion formula

p(x, ξ) ∼
∑
α≥0

1

α!
∂αξ p1(x, ξ)Dβ

xp2(x, ξ)

fails to be true, and we need to use the expansion formula with a remainder, as in [23, Thm.
3.1, Chap. 2] (see also [20, Thm. A]):

Theorem A.1. Let Pj(x,Dx) be pseudo-differential operators with symbols pj(x, ξ) ∈ S
mj
0,0 ,

j = 1, 2. Then the operator P (x,Dx) = P1(x,Dx)◦P2(x,Dx) has symbol given by the oscillatory
integral

p(x, ξ) =

∫ ∫
e−iyηp1(x, ξ + η)p2(x+ y, ξ)dyd̄η ∈ Sm1+m2

0,0 ,

where d̄η = (2π)−1dη.
Moreover, the following expansion formula holds for every ν ∈ N:

p(x, ξ) =
∑
α≤ν−1

1

α!
∂αξ p1(x, ξ)Dβ

xp2(x, ξ) +

∫ 1

0

(1− θ)ν−1

(ν − 1)!
rθ,ν(x, ξ)dθ,

where

rθ,ν(x, ξ) :=

∫ ∫
e−iyη∂νξ p1(x, ξ + θη)Dν

xp2(x+ y, ξ)dyd̄η ∈ Sm1+m2
0,0 .

We recall from [23, Lemm 2.2, Chap. 7], (see also [20, Thm. B]):
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Theorem A.2. Let pj(x, ξ) ∈ S0
0,0 for j = 1, 2 and define

pθ(x, ξ) :=

∫ ∫
e−iyηp1(x, ξ + θη)p2(x+ y, ξ)dyd̄η.

Then for every ` ∈ N0 there exists a constant C` > 0 such that

|pθ|0`,` ≤ C`|p1|0`+2,`+2|p2|0`+2,`+2

for all θ ∈ [0, 1].

We conclude the appendix with the statement of the Calderón-Vaillancourt’s Theorem about
continuity of pseudo-differential operators with symbols in the class S0

0,0 acting on L2 (see [12]
or [21, Thm. C]):

Theorem A.3. Let p(x,Dx) be a pseudo-differential operator with symbol p(x, ξ) ∈ S0
0,0. Then:

‖p(x,Dx)u‖ ≤ C|p|02,2 ‖u‖

for all u ∈ L2, with a positive constant C independent of p and u.
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