A NECESSARY CONDITION FOR H* WELL-POSEDNESS OF
»-EVOLUTION EQUATIONS

A. ASCANELLI, C. BOITI, AND L. ZANGHIRATI

ABSTRACT. We consider p-evolution equations, for p > 2, with complex valued coefficients.
We prove that a necessary condition for H*> well-posedness of the associated Cauchy problem
is that the imaginary part of the coefficient of the subprincipal part (in the sense of Petrowski)
satisfies a decay estimate as |z| — +oo.

1. Introduction and main result

Given an integer p > 2, we consider in [0,7] x R the linear partial differential operator P of
the form

p—1
(1.1) P(t,x, Dy, Dy) = Dy + a,(t)D% + Y a;(t, x) D3,

J=0

with D = 19, a, € C([0,T};R) and a; € C([0,T];8®) for 0 < j < p —1, (here B® =
B>(R,) is the space of complex valued functions which are bounded on R, together with all
their z-derivatives). We are dealing with a non-kowalewskian evolution operator; anisotropic
evolution operators of the form (1.1) are usually called p—evolution operators. The condition
that a, is real valued means that the principal symbol (in the sense of Petrowski) of P has the
real characteristic 7 = —a,(t)&?; by the Lax-Mizohata theorem (cf. [24]), this is a necessary
condition to have a unique solution, in Sobolev spaces, of the Cauchy problem

o) P(t,z, Dy, Do)u(t,z) = f(t,2) (t,2) € [0,T] x R
' u(0,2) = g(z) xr € R,

in a neighborhood of ¢ = 0. We notice that for p = 2 the operator is of Schrédinger type,
for p = 3 we have the same principal part as the Korteweg-De Vries equation. Many results
of well-posedness in Sobolev spaces of (1.2) are available under the assumption that all the
coefficients a; of (1.1) are real (see, for instance, [1], [2], [3], [9], [14], [15]). On the contrary,
when the coefficients a;(t,z) for 1 < j < p — 1 are not real, the theory is well developed
only in the case p = 2: we know from the pioneering papers [20], [21] that a decay condition
as |r| — 400 on Ima; is necessary and sufficient for well-posedness of the Cauchy problem
(1.2) in H*°. Sufficient conditions for well-posedness in H* and/or Gevrey classes for 2 or
3—evolution equations have been given by many authors (see, for instance, [19], [25], [11], [22],
[10], [16], [17], [13]). The general case p > 2 has been recently considered in [6], proving H>
well-posedness of the Cauchy problem (1.2) under suitable decay conditions, as |z| — 400, on
Im DPa;, for j < p—1and [3/2] < j — 1. These results have been extended to the case of
weighted Sobolev spaces in [8], to the case of first order systems of pseudo-differential operators
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in [4], to the case of higher order equations in [5], and to semi-linear 3-evolution equations in
[7].

As far as we know, there are no results available about necessary conditions for H> well-
posedness for p-evolution equations, p > 3.

In this paper we give a necessary condition for well-posedness of the Cauchy problem (1.2) in
H®> generalizing to the case p > 2 the necessary condition given by Ichinose in [20] for p = 2.
More precisely, in [20] Ichinose considered, for x € R", the operator

(1.3) P=D;—a’,+ Y af (2) Dy, + (),
j=1

with ay € (0,1] and agj),c € B>(R"). He proved that a necessary condition for H* well-
posedness of the associated Cauchy problem is the existence of non-negative constants M, N
such that

n

(1.4) sup

zeR™ wesn—1

0 :
/ Im a{ (z + 2a,0w)w;df| < Mlog(1+ o)+ N Vo> 0,
j=1"0
where S"7! is the unit sphere in R”. The same condition is also sufficient (cf. [21]) only in the
case of space dimension n = 1.

In this paper we assume that there exists a constant m > 0 such that

(1.5) la,(t)| >m  Vte[0,T]
and prove the following:

Theorem 1.1. Let P be the operator in (1.1) with a, € C([0,T];R) satisfying (1.5) and
a; € C([0,T); B>) for 0 <j <p—1. A necessary condition for the Cauchy problem (1.2) to be
well-posed in H* is the existence of constants M, N > 0 such that:

e
(1.6) sup min / Ima,_1(t, z + pa,(7)0)dd < Mlog(1+ o) + N, Vo > 0.
veR 0<r<t<T [,
Remark 1.2. If the coefficient a,(t) vanishes at some point of the interval [0, 7], the well-
posedness in H* of the Cauchy problem (1.2) may fail to be true also if the necessary condition
(1.6) is satisfied (see [18], [6]). In [6], for instance, a Levi-type condition of the form

(1.7) [Tma, 1 (t,2)| < Cay(t)/(x)

is needed to weaken (1.5) into a,(t) > 0 for proving H* well-posedness of (1.2). Notice that
condition (1.7) is consistent with (1.6). In the present paper we focus on the fact that the
dependence on space of the coefficient of the subprincipal part is allowed only accompanied by
a decay condition at infinity.

2. Idea of the proof and auxiliary tools.

We prove Theorem 1.1 by contradiction, taking f = 0 without any loss of generality.

We assume the Cauchy problem (1.2) to be well-posed, so that for every g € H*, there exists
a unique u € C([0,T]; H*) solution of (1.2) and there exists ¢ € Ny := NU {0} and C' > 0
such that

(2.1) lutt, o < Cliglly vt €[0,T],

where || - ||s stands for the norm in the Sobolev space H* (we shall write || - || := || - ||o for
simplicity).
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Then we assume, by contradiction, that (1.6) does not hold. This implies that, for every
M > 0 and k € N there exist a sequence of points x, € R and a sequence g, — +00 such that

ok
(2.2) / Imay,_1(t, z, + pay(7)0)d0 > Mlog(1+ o) +k  VO<7<t<T.
—ok
We can then construct a sequence of initial data g, localized at high frequency ny := of, for
suitable a > 0, so obtaining a sequence uy of solutions of the corresponding Cauchy problem.
Further localizing these solutions in the phase space along the trajectory of the hamiltonian
a,(t)&P, we produce a sequence of functions vz"’g (for a, 5 € Np) satisfying some energy estimates,
because of (2.1).

Taking, finally, a suitable linear combination o(t) of the L%norms |[v{"?(t, )|, we obtain, in
Section 3, that (2.2) implies an estimate from below of o (t); this estimate will contradict an
estimate from above for oy (¢) which is stated and proved in Section 4.

In this section we discuss condition (1.6), construct the sequence {v®’} and collect some
estimates that will be crucial in the proofs of the contradictory estimates from below and from
above of oy (t).

The next section is completely devoted to the proof of the estimate from below (3.40).

In Section 4 we give the estimate from above (4.1), and finally prove Theorem 1.1.

Let us start by remarking that if condition (1.6) does not hold, then at least one of the
following two conditions does not hold:

0
(2.3) sup min / Ima,_(t,z + pa,(7)0)dd < Mlog(1l+ o) + N, Vo >0,
veR 0ST<IST [,
or
0
(2.4) sup min / Imay,_(t, z + pay(7)0)dd < Mlog(l+ o) + N, Vo > 0.
—0

2R 0<T<t<T

0 0
/ Ima,_1(t,z + pa,(1)0)do = / Imay—1(t, z — pa,(7)0)do,
0

-0
we can assume, without any loss of generality, that (2.3) does not hold and obtain then a
contradiction (if (2.4) does not hold we argue in the same way taking —a, instead of a,).
The following lemma will be the key to obtain the desired estimate from below (3.40):

Lemma 2.1. If (2.3) does not hold, then for every M > 0 and k € N there esist vy, € R and
or > 0 such that:

Ok
(ii) / Ima,_1(t, zx, + pa,(7)0)dd > Mlog(1l + o) + k VO<7<t<Ty
0
o
(iii) / Ima,—1(t, zx, + pa,(7)8)dod > 0 Voe [0,0], 0 <7 <t<T.
0

Proof. 1f (2.3) fails to be true, then for every M > 0, k € N there exist yx € R and d;, > 0 such
that foral 0 < 7 <t < T

Ok
(2.5) / Im a1 (t, g + phlay(r))d0 > Mlog(1 + 6) + k.
0
Let us set, for s € [0, 0],

Fi(s) := / Ima, 1 (t, yx + pha,(7))do
0



4 A NECESSARY CONDITION FOR H° WELL-POSEDNESS . ..
and let s; be point of minimum of F}, on [0, d;]. Define then
Ty i = Yr + PSkay(T)
Ok = O — Sp.
Remark that all yg, 0, Sk, T, 0r depend also on M.
For all s € [0, gx] C [0, 0x):

s S5+sk
/ Imay,_1(t, z, + pay(7)0)dl = / Im a,_1(t, yx + pay(7)6')do’
0 Sk

(26) = Fk(S -+ Sk) — Fk(Sk) Z 0
by definition of sg. This proves (iii).
Moreover, F(sx) < Fj(0) = 0 and hence, from (2.6) and (2.5):
Ok Op—sk
/ Ima,_1(t, zx + pa,(7)0)dd = / Ima,_y(t, zx, + pa,(7)0)do
0 0

= Fy(0x) — Fi(sk) > Fi(5)
> Mlog(1+ &) +k > Mlog(1+ o) + k,

proving (7).
Finally, the last inequality implies, for k& — o0,

Ok
/ Ima,_1(t, 21, + pay(7)0)dd > k — +00
0
and hence g, — +o00, because a,_; € B*. O

2.1. Solutions with high frequency initial data. Let us fix, here and throughout all the
paper, a cut-off function h € C*°(R), such that

1 <1/4
(2.7) hy) = { 0 I?ng > 1?27

and a rapidly decreasing function ¢ such that ¢(0) = 2 and

suppt) € {£ € R« h(§) =1},

Define then

(2.8) gi(w) = TN (2 — 1),
where

(2.9) n = oy

for some a > 0 to be chosen later on (see (3.31)), and zy, o as in Lemma 2.1. Note that

(2.10) ge(€) = e &Y (¢ — n),

so g is localized in the phase space around the point (zx,n).
Denote by ug € C([0,T]; H*) the solution of the Cauchy problem

P(t,x, Dy, Dy)ug(t,z) =0 (t,x) € [0,T] x R
(2.11) {uk(O,x) = gr(x) xeR.
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Then, by (2.1) and (2.10) we have, for all ¢ € [0, 7T:
1/2
lur(t, )| < Cllgelly = C(2m) /2 (A<€>2q|§k(€)|2d€)

R 1/2
< C,(2m) V2 ()1 ( / <9>2qw<9>|2d9)
(2.12) < Cine,

for some C,, C} > 0.

2.2. A localizing operator. In this subsection we define, by giving its symbol w, (¢, z, ),
a pseudo-differential operator W, (t, z, D,) which localizes the solutions of (1.2) in the phase
space along the trajectory of the hamiltonian a,(t)&".

Let wy, x(t, z,€) be the solution of the Hamilton’s equation of motion

Ok = {wnk, —ap(t)EP}
(2.13) {wn,k(07 z,§) = woni(x,§) = Q,i,mh (ox(z — 1)) h (0 (&/n — 1)),

with 1 > 0 to be chosen later (see (3.31)), where {-, -} denotes the Poisson brackets defined by
{p(z,8), 4(2,8)} = Oep(x, §)0eq(x, §) — Oep(x, §) D (, §).

Computing the Poisson brackets, equation (2.13) reduces to

{(at + pay(t)€P~10) wy g = 0

(214) wn’k(O,x,f) = wO,n,k(x7£>7

which admits the solution

t
wn,k(t7 x, f) = wO,n,k(m - pAp(t)gp_17 g)a Ap(t) - / ap(T)dT'
0
We thus obtain

(2.15) Wkt 2, €) == 0y h (or(x — x5 — pA(D)EPY)) b (d(E/n — 1))

The following lemma shows that the symbol w,, x(t,z,§) is supported in a neighborhood of
the solution (xy, + pA,(t)nP~', n) of the Hamilton’s canonical equation with initial data (zx,n);

moreover it introduces the sequence of symbols wf:,f which naturally appear in the computation
of 8? Dg W, k-

Lemma 2.2. Let us define, for o, 5 € Ng, > 2 and n as in (2.9), the symbols

(2.16) W (t,2,) = 0 (@)@ OR)E) s seo-rrpty 0 -
§=0},(§/n—1)

Then, for everyt € [0, %} we have that
P

a _ C 1
supp wyy (1) C {(113,5) Do — (o + pAy (P )| < Q—z, §/n—1] < ﬂ}’
k

for ¢, = max{1, p2°~  supy 1y |a,|}, if k is large enough.
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Proof. The estimate |{/n — 1| < 1/(2¢}) trivially follows by definition (2.16) and by (2.7).
Moreover, (2.7) implies, for t € [0, g, /n?~1], p > 2 and (z,€) € supp wgf

€

@ — (2 + pAp ()" < o — (zr + pAp (87| + plAy(H) [~

1 p—2 p—3
< 5— + psup|a,[tn?~" - ‘é - 1‘ : (§> + (é) +...+1
204 [0,T n n n
1 Ok —2 -3
< — 4 psupla,|—; 2P 4+ 2P 4+ ...+ 1
20k [o,T]| p‘QQZL [ ]
1 c
< — +psupla ol < 2
204 [O,T}‘ p‘2QZ ! Ok
for ¢, = max{1,p2" =" supy 1y lap|}, since /n < [§/n — 1] +1 < 1/(20}) +1 < 2 for k large
enough. O

As a consequence of Lemma 2.2, we localize, in the phase space, the solution of (2.11),
defining

(2.17) vt x) = WLt @, Dy)ug(t, x),

n,

where W P(t, 2, D,) is the pseudo-differential operator with symbol wz,f (t,x,&). We shall
denote, throughout all the paper, W, s := WS,’,S(t, z, D,) and v, := v)° for simplicity.

2.3. Useful estimates. In the next sections we need estimates of the L2-norms of the functions
vgﬁ and of both operators W: ];6 and [a;, W, k] acting on u;, . In this subsection we state and
prove all these estimates. Proofs are quite technical, and the main tools for obtaining them,
collected in Appendix A, are the Calderon-Vaillantcourt’s Theorem A.3 and a skillful use of the
expansion formula of the symbol of the product of two pseudo-differential operators (Theorems
A.1 and A.2). To avoid losing his train of thought, the reader can skip these estimates at a
first reading, passing directly to Section 3 and coming back to the estimates at the moment of
their application.

To estimate the L*norms of v; and of vZ"ﬁ we first need estimates of the semi-norms | - 7,

of the symbols wff,f € 5§, defined in formula (A.2) of the Appendix.

Lemma 2.3. Let n = o} witha > p > 2, and t € [O, gﬁl
n

have, for k large enough:

]. Then, for every a, 8 € Ny we

(i) for every v,0 € Ny there exists a constant Cop., > 0 such that, for all (t,z,§) €
[0 Ok ] X R2:

bl np*l

n

Y QO O{,ﬁ %+O— Qlli !
|a§ aa: Wy, k (t7 Z, §)| < Oﬂéﬁ,%UQk — ]
(ii) for every £ € N there exists Co e > 0 such that
0 1
3+
‘wff’;f < Copety
e
(ili) for every h € Ny and v, € N there exists Cy 5,0 > 0 such that

1 N\ Y
(2.18) € 0w 120 < Copane no; " (&) :

n
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Proof. Let us write

aga;wg;,f(t,x,g) = oo Wﬁ(t z,€)
(2.19) = o, +2 Z CLOP W) (o(x — mp, — pAL(1)E71)) - 02 R (o (& /n — 1)).
Y1+y2="

Since || < 2n on supp w!’, by Lemma 2.2 we have that

nk’

02 he+) (au(a — 2x = pAYDE™))] < Cagon (Ap(DIEP 200
e Q2 "
< Ca,a,'yl (Sup ‘ap| - ’£|p2gk> < Cflxa’h <_k>
(0.7 n

for t € [0, or,/nP~1]. Moreover,

) o\
oz (et - 1) < o (%)

Substituting in (2.19) we thus obtain (7), since p > 2.
From (i) and a > pu we get

0 mN Y y
‘w ‘ = sup 8780 Z,f(tmﬁ)‘< sup Ca5709§+0 (%) §C’aﬁgQ,§+
Ll o<t v,0<E n
z,6eR z,£ER

i.e. also (i7) is satisfied.
Finally, (¢ii) follows from (i), since |£| < 2n on supp wff,f and a > p. O

We are now ready to estimate ||vg||. By Calderon-Vaillalntcourt’s Theorem A.3, (ii) of
Lemma 2.3 and (2.12), we have that for all ¢ € [0, g, /n?™]

112
(220)  [ve(t, )| = IWRR(E, - Da)ug(t, )| < C lwn it 2, )y lux(t, )| < C'of™ nf
for some C,C" > 0; similarly, for every «, f € Ny, it follows that
(2.21) loi (8, )| < Capo " n = Casof vt € [0, 0 /m" 7]

for some C, g > 0. To estimate also the derivatives of v,’j’ﬁ we need the following:

2+2+aq

Lemma 2.4. Let n = g} with a > p. For every v,r € N and «, 8 € Ny there exists Cp 5., > 0
such that for all t € [0, o /nP~] with k large enough:

pt1
DL < e g+ Cugpti™ () e,
for a fized constant c; > 0.

Proof. We define the function

(2.22) @ = (% (E-1)).
' 3 \n

By definition (2.7), we have that

3

(2.23) supan € {65 [£ 1] < 2o} e s gl < am),
k

and

(2.24) supp (1 — x1.4) { ‘5 — 1‘ Z 1o }
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This implies, by Lemma 2.2, that

(2.25) supp(1 — 1) Nsupp w ,f 0.

Localizing now at frequency n
Dyvp? = xa (D) Dy + (1 — X14(Da)) Dyop”

(D) DI Z ( ) (1 — X (D)) (DI Dr

and applying Calderén-Vaillancourt’s Theorem A.3, we come to:
1D (8, ) < Ixaw(©ET18, - N1l

(2.26) +Z ( )

Note that [x1,(£)E"[9, < cin” for some ¢ > 0, because of (2.23); to estimate the second term
of (2.26), by Theorem A.1 and (2.25) we write, for every integer v > 1:

. A |0
o (U= xarPDW D) | ]

a((1—xl,k<Dx>>Ws,sz;-j): S 00— @)D e )

0<y<r—1

+/ U [ e mor = xante s on D2z e 4 06 dyanas

(2.27) == /0 %Ouaa 9,1’,6)

where
Oults,,€) = // e (1 — x1k(€ + On) Diwiy 177 (t,x + y; )€ dydn.

Writing €9 = 377 ("7) (& + On)(—6n) 7" and e~ (—p)rih = D;~/=he=1 we have,
integrating by parts:

r—j i ‘ X
0= =5 (", )or [ avnaste s on -6+ o0 0 4 i)
h=0

-D;’j’he’iy”dydn

r—j

= 3 (i (T L ) ot [ [ emagate +n) - (¢ + o)

h=0

D;’” j=h aﬂﬁ(t x +y; §)dydn

r—j .
_ Z(_Dr*j*fwl (T . ]>‘9rjhgz+rjh // e—z‘ynagxl’k(g + 97)) . (5 + 97])h
h=0

w1 @ 4y &) dydn.
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By Theorem A.2, (2.22), (2.23) and Lemma 2.3, for 6 € [0, 1] we have that
v+r—j—h|qu a+v+r—h,
|Oy(t,9)|372 > ZchQ T |8§X1,k( )5 |44 W), + i ﬁ(t7$§f)|2,4
o\ v
i 0 iy

Ca ST V+T a=h =k ho2
Z 1,80k (n n-og
X Qu “(n - vdr—j+ 44
ZC&,&',V{F,}L <_k> (_) Qk ok
h—0 n Ok

s '
= C,ﬂvmgk ( kn ) n'’

for some ¢y, Cy v s Cé,ﬂﬂjmh, Copuwr; >0, since (n/op)" < (n/og) ™ for 0 < h <r—j.
Substituting in (2.27) and integrating with respect to € we thus have that

IN

IN

. ALY
(2.28) o (1= xin(D)We D7)

2,2

Q,u—i-l
0 k s
S ’Ol/|2,2 S Ca,ﬁ,ur](gk ( n ) n'7.

Substituting in (2.26), and taking into account (2.12), we have that

e A
s s 4+ +7 1% _
H%ﬁ%nﬂs@mwﬂwij ' sl (};)www

n

IN

4+ QMH
QWWW+%W%2(2)WW

for some C7, 5, ., Ca g > 0, since ()" <1 for every j. O

The following two lemmas give estimates of some pseudo-differential operators acting on the
functions uy.

Lemma 2.5. Let n = o} with a > p. Then for every o,v, X\ € Ny the operators W, ,Z(t x,D,)
satisfy

A

(2.29) WDy = cjal DY W7,
5=0
for some cy,...,cx > 0. Moreover, there are constants C\ > 0 and, for allv € Ny, Cy 42, >0

such that for all t € [0, ox/nP~"] with k large enough:

1
230) IWH( - DDt )] € O3 el g 7 4 ool Gg)wﬂ

7=0

Proof. Let us first prove (2.29) by induction on A € N.
For A = 1 we clearly have W/ D, = D, W/ kWUH’T
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Let us assume (2.29) to be true for every A’ < A and let us prove it for A\. By Theorem A.1:
WDy = DWWl + Wi, D

n,k

A
1 o
= D)W} — op (Z — 0zt Dgwnfg>

a=1

«

A

A o o

= o= Y () e (i),
a=1

By the inductive assumption, we thus have that

A
WDy = DyWT — 23()@(ka¢ﬁa%WM”Q
a=1
A A—a
— DQ/ZWS’Q _ Z Z Ca \ ng-i-fD/\ a— EWU-FOH—ZKY
a=1 (=0

A
= " el DY W
a’=0
Therefore (2.29) is proved and, applying Lemma 2.4 for j < A—1, we have that for every v € N:

A
HWZ}Z(ta " Dx)D;\Uk(t, I < Z CJ’Q)]@HD;\_JUZJFJ’VH

pt1N\ Y
j A= |[..0+iry d+3 [ O A—j+
<> ¢, <01n Hog ™7 + Cojyawoy R
j=0

+eraillof M

pu+1
< Y A+ Cornaat (E0) e
=0
for some C}, Cy 2, > 0. This proves (2.30). O

Lemma 2.6. Let a; = a;(t,x), for 0 < j < p—1, be the coefficients of the operator (1.1), and
let n = o} witha > pu+1> 2. Then, for every v € N there exists C,, > 0 such that

a1ta +1
Wk DI < O,n 3 G\ e 4 gt (G e
I[aj, Wi k] Diu(t, -] n o ol + Cuo —)n

1<artae<(v—1)(p—1)+j

for all t € [0, o, /nP~1] with k large enough.
Proof. By Theorem A.1, for all v € N

o ([a;(t, x), W i(t, 2, Do) D2) = o([az, Wr]) - €
1 . 1— 0!
(2.31) = — <1<;_1aa?w"’k : Dgaj> ¢l _/O ﬁ(%j(t,@,x,f)d&

where

@I/(t7 97 Z, 5) = // e_iynagwn,k<t7 xvf + QU)DZCLJ@ T+ y) : gjdydn
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Arguing as in the proof of Lemma 2.4 we can estimate, by Theorem A.2 and Lemma 2.3:

j 0

0,19, = Z (2) 9j‘h/ O wn i (t, ;€ +0n) - (€ + 0n)" DYa(t, = +y) DI "e™Vdydn

i
(en)

2,2
0

M“

< ) ‘// TV w g (t, 5 €+ O) - (§ 4 On)" DI " ay(t, @ + y)dydn

0 2,2

>
<l

v v4j— 0
< C'j ‘Shagwnvk(t,x;ﬁ)‘m . ‘Dzﬂ haj(t )

}4,4
(2.32) < Cunigt (Q—Z)

n

>
Il
o

Q)

for some C;,C, > 0, since a; € C([0,T]; B*) for 0 < j <p— 1.
In order to estimate now the first term of (2.31), we previously compute, by the Faa di Bruno
formula:

Wy = Z ?0'42!@,1/2 0‘”h< p(x — oy — pAp(t)fp_l)) . 8?%(9’5(5 — 1))

n
altoar=o

= Q;lg/Qh(Qk(ﬂﬁ — xp — pA(t)EP~ 1)) h<Qk <§ 1>)
- > Cuah (onle 2 - pA,(0E7)

'042 _
altaz=a rit...+rs=ay
ar>1 rp>1

3 [aula — o = pA (O] -+ 07 [on(e — 21— pALDE )]
()

B (%Z) 952’1(&(@” = A0 (g (5 1))
+ 2 S a(aam)” e

altaz=a rit...+rs=ai
ar1>1 1<rp<p—1

() 0 st = 0 e (£ - 1)

for some C;,, C;, > 0. Coming back to the first term of (2.31) and taking into account the
definition (2.15) of w,, x:

041'042

1 | Deaj (o"\° .
E — 0 D% | & E =70 [ Zk 0,0 ¢
( Oz!aE Wnok Ia]) &< o <n) Wagy &

1<a<v—1 1<a<v—1

D¢ a] ’ 1 Qz “ 8,2 s(p—1)—a1+j
+ Z Z Z Csrgk A ( ) E wn,k é

1<a<v—1 aj+taz=«a ! 4. Frs=aq
a1>1 1<rp,<p—1
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and hence

Jor [( 3 Gitgune: Peas)elu

1<a<v—1
AN .
< Y (%) Iwini]
1<a<v—1
u ag a1
D DS Cog  SUD. 1]|Ap(t>|“1@2”( ) Z{]Wj,j?DSPl)—alﬂu [
1<a<v—1 ai+ags=a
a1>1

Applying (2.30), since s < ay, > 2 and 0 < j < p — 1, we thus obtain, for ¢ € [0, g /nP']:

w[( 3 ot vie)e]ul

<a<v-—1
N\ o J p+1
' Ok h.j—hj, ha Atg Ok j+q
< Y o () [ e+ ol (A2
1<a<v—1 h=0
N o2
+ >, ¢C ( )al g (%
E , J np—1 k n
1<a<v—1 ai1taz=a
a1>1
ai s(p—1)—a1+j
§ E h, s(p—1)—ai+j—h||,,s+h,a2
: |:Os,o¢,j O H/Uk H
s=1 h=0
1 PN Y )
+Csa ‘U(Qi—’—i Qk ?’Ls(pil)ialJrJJrq
77]7 n
1L (0% ] h v
i Y Ok 9 j
< Cn’ 5 <—k =) o ||+C’,, k n?t
n n n
1<a<v—-1 h=0

TP DD

Jr
/kf Q1 Ta2 1
n n«l (r—2)
1<a<v—1 aitas=a

() it o™ () o

h+aw 1 141 ‘
) et et (2 e

' a; s(p—1)—ai+j Qlu s+h+as
D VD YR VN ) I U

1<ai+as<v—1 s=1
Oél>1

W\ o1tog pt1N Y
(2.33) < C,n’ > <&> 02192 + C” g, Aty <9k_> nd+i

\n n
1<ar+a2<(v—1)(p—1)+j

N\
s}

AN
a
3&.
<o
[en}
7N
S |[§:

! ! /
for some C, j,Cy v, C Ca; s Csa,js Csaj, Cu, C), > 0.

a,j?
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By the Calderén-Vaillancourt’s Theorem A.3, by (2.31), (2.32) and (2.33) we get:

oy, Wil Dl < C1OR - el +[|op [( 32 00w iy )&

1<a<v—-1
pH1N\ Y N\ o1tag
g [ a+j j O a1,
< Gy n n + Cyn Z n vl
1<ar+ae<(v—1)(p—1)+j
for some C,C,,C!, > 0. O

3. Estimates from below

In this section we want to produce estimates from below of the L2-norms of the functions vy,
and v,’j’ﬁ, and then of a linear combination oy () of the L?-norms of v,j"ﬂ, a+p>0.

We start with the estimate of ||vg(0,-)||. For n asin (2.9) and k large enough, from (2.10)
we have that

(3.1) supp gx = supp (¢ —n) C {€ € R: h(gf(¢/n—1)) = 1}.
Therefore

00(0, %) = Wt (0, ) / ¢, (0, 2, )G (€)de

= [ <6 aute — mu)) h(eh(€/n — D) (e — n)ag

1
= 0 *h (ox(w — 1)) EE™Mp(x — )

and

(3.2) lve (0, )]* = / orlh (on(w — zx)) P[(@ — 2x)[Pdw = / [()I*1¢(y/ o) P dy

> / Ih(y)Pdy = [[B]? > 0

if k& is large enough, since ¥(0) = 2 and g — +00.

Now, to produce an estimate from below of ||vy (¢, -)||, our idea is to follow the energy method,
producing a "reverse energy estimate”. To this aim, denoting by (-,-) the scalar product on
L?, we consider

d
E”Uk(ta )”2 =2 Re<8tvk; Uk>

p—1
(3.3) = 2Rei(Puy, v;) — 2Reia,(t)(DPug, v,) — 2 ReiZ((aj(t, x) D, vg,).

Jj=0

We compute separately estimates from below of each term in formula (3.3). By definition of vy
we have that

ka = PWn,kuk = kaPuk —+ [P, Wn,k]uk =
p—1
=0+ Dy + ap(t) D2, Woilur + > _[a;(t, x) DL, Wi ilur,
7=0

since Puy = 0.
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Developing the symbol of the commutator [D; + a,(t)D2, W, ] and using the fact that w,
is the solution of Hamilton’s equation (2.14) we obtain, by Theorem A.1:

o ([Dt + ap(t)Dga Wn,k]) (tv Z, 5) = thn,k + ap(t)a ([Dga Wn,k])

1
= Dywn . + ay(t) Z 50?5” - Dywn k
a=1 "

= (D08 Do+ (03 (2 ) Dz

(0]
= a6 <§> =0 D%, 1.

a=2

Defining then

P p—1
(3.4) fr:=op <ap(t) Z <Z> gPQDgwnk) Ug + Z[aj(t,x)Di,, Wk Jug,

a=2 §=0

we have that

Pug = [
and hence from (3.3) we get
d — .
%H’Uk(t7 II? = 2Rei{fy,vr) — 2Reia,(t){(DPuy, v) — Z 2Rei(a; Dl vy, vy)
=0
p—1
(35) = 2 Rei(fk, Uk> — <(ZCL]D56 + (Z'GjDi)*ﬁJk, Uk>
=0
since Rei(DPv, vi) = 0. Now,
i,
. F\k 1 ATV [+ N¢Eq) J « . j—a
o(ia;(t,z)D1)* = Z 585 D3 (ia(t,x)&7) = <a) DY (—iRea; —Ima,(t,x))& ™,
a>0 a=0
and hence
pil . . pil . J ] .
o[(ia; D) + (ia; D2)*] = [—2 Ima;& + Z <i> D¢ (—iRea; — Ima;) 5]_0‘]
=0 =0 a=1

p—1 p—2 p-1 .
= -2 Z Ima;& + Z (2) Di7"(—iRea; — Imay) &"

=0 h=0 j=h+1
= —2Ima, &1
p—2 p—1 .
3| -2mas 3 (1) Dg—u_meaj_lmaj)] o
h=0 j=h+1
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Substituting in (3.5), we have that there exist postive constants A;, ¢ such that
d

oot NP = =20 fell - loll + 2(Tm a2 DE g, ve) — A flog*
p—2 p—1 .
+ 2 Imahthk,vk + J Di7"(iRea; + Ima,; thk,vk
x h x J J x
h=1 j=h+1
_ nP~!
(3.6) > 2(Ima, DY oy, vp) = 2|\ fill - lowll = Adflowl” — ¢ o w12,
since
p—1
[(Im @, Doy, )| < en® o> < en? |2 < e |ug?
because of the support of w, , and analogously
—h h nP~! 2
(D3 "(iRe a; + Imay)) Dyvg, vg)| < c—— |||

Now we want to give estimates of the terms in (3.6). This is done in the following Propositions
3.1 and 3.2.

Proposition 3.1. Let n = o} with a > p > 2. Then, for all v € N there exists C, > 0 such
that, for every t € [O, %] with k large enough:
n

p—1
(3.7)  (Ima,_1(t, x)Dﬁ_lvk, Vg) > (Im ap—1(t, x +pAp(t)np_1)np_1 - C nQ ) ||"UkH2
k

1 (o _
~Cuptt (Z)

for some fized C' > 0.
Proof. We split
Ima, (¢t,2)D?" =Tma, (t, v + pA,(t)nP " nP~?
(3.8) +Ima, (¢, z) + pA,(t)n?~ ) (D2~ — nP )
+ (Ima,_1(t,z) — Im a,_1 (¢, zx + pA,(t)n?~ 1)) D271

and set
I :=Tma, (¢, z + pA,(t)nP~ 1 )nP~t
I :=TIma, 1 (t, zp + pA,()nP~1) (D21 — np~1)
I3 = (Imay, 1 (t,x) — Ima, 1 (t, zx + pAp(t)npil)) Dy
We have
(3.9) (Livg, vi) = Tmap-y (, @ + pAp ()0~ )P~ o

To estimate (Irug, vy), we localize at frequency n by means of the function y; x defined in (2.22)
and write

Ly, = x1,5(D2) Lvr + (1 = x1,6(Dg)) Lovy,
= Tm a1 (t, z), + pA, ()P 1) X1k (Da) (DL = 0P~ )y,
+ (1= x1.(D2)) (D27 = 0P Huy],
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so, denoting by

(3.10) Ji = X (D) (D27 = P~ D],
(3.11) Jo = || (1 = x1,6(Dx)) (DEH = P~y
we have
(3.12) | ook || < [Tma, 1 (t, 2 + pA, ()P H)|(J1 + Ja).
By Calderon-Vaillantcourt’s Theorem A.3,

1 1,10 P!
(3.13) Ji < Clxap(©E =" ) gallvell < C'— v

k

for some C,C" > 0, since by (2.23):
k(™ =P = Ixan() (€ = n)(E 2 + g + 0%+ 7

n np~1
<c—(p—1nP 2=/ ,
Ok ok

for some ¢, ¢ > 0, and for all v = vy + 72 with |y| < 2 there are constants C.,,, C, > 0 such
that:

np~1

SR =
s ©oPEt - < G o
CynP~ 1" < Cy—— 7 > 1
Ok
As it concerns (3.11), by definition of v we write
(3.14) (D2t =P Nop = (Waw(DEH = 0P 1) + (D21 — 0P~ Wi i]) uge

Since o ([DP~' — nP~1 Wi]) = S2°20 (pgl)é”‘l—“gng;g, we have that

p—1
—1 a —1—«
(3.15) (D27 — Tt W] = > <p . )92“%}317?2 !

a=1

and therefore, by (3.11), (3.14), (3.15), the Calderon-Vaillantcourt’s Theorem A.3 and (2.28),
for every v € N there are constants C, C),, C? > 0 such that:

Jy < (1 = X16(D2)) Wi o (DE™H = 0P~ Dy |

+ Z ( )Qk (1= xa k(Dx))Wz}SDﬁ_l_aukH

< 4+1 QZH ’ p—1 p—2 oM
<o, - (NP ot 4+ 0 )n

+1
(3.16) < Crgit <Ql’: ) nttr1,
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Substituting now (3.13) and (3.16) in (3.12) we come to

p—1 1 PN
3.17 Lyl < Cn vl + C’Vg4+2 S natPt

7 k

O n
for some C,C,, > 0, and hence

npP~1 it (o _

(3.18) () 2 =€l = Cut™ (%) e )

k

Finally, to estimate (I3vy,vy), we localize in a neighborhood of zj + pA,(t)€P~! by defining, for
h as in (2.7), the function

(3.19) Xok(z):=h (Qk

where ¢, is the constant defined in Lemma 2.2. We have that

T — T — QDAP(t)SP*1
4pe, ’

2
(3.20) supp xa.x C {:c Ca—ap — pA(H)EPTH < ﬁ}
Ok

and
(3.21) supp (1 — xax) C {x D@ — ap — pAL(H)EPTH > ]ﬁ} )

Ok
We now claim that
(3.22) supp(l — x2,%) N supp Wskﬁ = Vt € [0, %} :
This holds true because on the support of wf:,’f , given by Lemma 2.2, we have that, for all
te [0,&},

np~1

| — @, = pA()E | < |2 — @ — pAp(O)n" | + plAp()][EF — P

C
<Lt psuplay|-t- € —n|- [ +n P 4+ +nP?
Ok [0, 7]

c Ok N s Cp
<t ——sup— 1 <p-,
Ok pn”_12QZ< ) Ok

by the definition of ¢,. Therefore (3.22) is proved and
Tyvr, = (1 = x2.(7)) I30x + Xok(2) I3vr = X2k (7) [3vp.
Then, by Lemma 2.4:

Tsoe ]| = [P (z) Isvrl| = [ Tmay (8, 2) — Tm ap_ (£ 2 + pA, (7Y - [ xax(@) D2 vy
< (sup [mduay(t,2)]) - o = @ = pAy (0" xas(z) DE o
[0,T)xR
1 ut1\ Y
< Sl < < (et ol + Coot (g—> e
Ok Ok n
p—1 ptIN\ Y
< O ol + Lot (9—) -1
Ok n

for some ¢,C",C!, > 0, and so
-1

S _ P 2 v 341 o' ” g+p—1
(3.23) (I3vg, vp) =2 —C . lorll” = Coow™= { = | n™" ol
k
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Summing up (3.9), (3.18) and (3.23) we finally get the desired estimate (3.7). O

Proposition 3.2. Let n = o} with a > p+1. Then for allv € N there exists C,, > 0 such that
the function fy defined in (3.4) satisfies

p N\ a1toa2
_ . _ 0 o
1t ) < Cn? 2§jnvi%w+canpl 3 (—ﬁ) oz
j=1

n

1<ar+ae<v(p—1)

1 ptl

+C nq+p—lg4+§ 9%

1%
k n

for some fized C' > 0 and for every t € [0, ox/nP~Y] with k large enough.

Proof. Let us recall that

p p—1
(3.24) fe= op <ap(t) ( )fp *Dgwy, k) uk + Y _[a(t, )DL, Wi iJur,
2

a= 7=0

and estimate the above terms separately. For a = p
op(a,(t) Dhwy . )uy, = / €y (t) DY wy i (t, ; )i (t, €)AE
= 0,00} | Eutl it il )06
= ap(t)ggWh(t, x5 Dy )ug(t, ) = ay(t) foy (¢, )
and hence
(3.25) | op(ap (t) Diwn i )ur | < Cl|op”||

for some C' > 0.
For 2 < a <p-—1, by (2.30) we have:

| op(ap(t)EP =" Dw,Jus(t, | < Cof|Wee DY wy
1\ ¥
< n”ZIIv‘””Hw (G e
< o) -
+1\ ¥
0 il (o, _
C"QZTZP QZ;HUZ ||+O;Qk 2 <k7> ndtp 1

for some C,C",C", C,,, Cl, > 0, since (gr/n)* < (gx/n)* and o3 /n* < 1/n = g for2 < a < p—1
and a > 2.
In order to estimate the second addend of (3.24) we compute, for 0 < j <p—1:

(3.26)

IN

7 .
la; D3, Wil = a; ) (2) (DI~ W, 1) DM uy, — Wi, a D2y
h=0
7j—1 .
= a (2) or "W Dy, + [ag, Wi k] Dl ug,.
0

h=
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Then, by Lemmas 2.5 and 2.6, for 0 < 7 < p — 1, we have that:

—1
Ila; D3, Wi pJug]| < Z WO Dlug || + [|[ag, Wi x] Dju|
h=0
Jj—1 1N Y
< S aud e 31 ) () e
h=0 s=0 n
Qu ai+a2
J k. 1,02
+Cyn > (n) [
1<a1+a2<(1/—1)(p—1)+j
Arld Qu+1 v ‘
(3.27) < Copn’~ IZWOH +Cuoy * ('fT) n?*

. Qu ai+a2
+Cyn? > (—) logre|
n

1< +as<(v—1)(p—1)+j

for some C,C, > 0.
By (3.24), (3.25), (3.26) and (3.27):

p 141
_ s 4+3 (0 _
I < Ol + oS o)+ ol () oo
5=2

p—1 J Qu a14as
DS SITLELZ D VR ¢ R b
J=0 = 1<an+az<(v—1)(p—1)+j
put1
+C' o, s (O nq+j
n
B D _ Q# a1taz
< CQinP*ZHszH+Omp*1 > (%) e
2

1<ar+ae<v(p—1)
put1
~ 4+l Qk 1
‘f‘Cka 2 ( " Q-HD

for some C,C, > 0. O

Summing up, from (3.6), by Propositions 3.1 and 3.2, for every v € N we come to the
estimate:

p—1
L ot P > (Im 4y (b, 2+ A, (7 ! — A (1 n )) ol
2dt Ok

v p
or" — - ,
(3.28) o () - et S 1) -

j=1
1w\ orto
~Con?™t Y <&> o2 s
1<ar+ae<v(p—1) "

for some A, C,C), > 0. Now, for a > p+ 1, it is possible to take v € N sufficiently large so that

pHLIN Y
(3.29) sup Qk4+% (Qk ) ndtP=l < A,
k n
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for some M, > 0. After substituting (3.29) in (3.28), we finally choose a and u such that

d p1
330) (e = (st + et = 4 (1422 Yl - b
k

QM altaz
~Ct YT (g) o1l
)

1<ar+oae<v(p-1

for some M], C], > 0; this can be done for

w>p+1

3.31 -9 —pn—1
(3.31) S B

l<a<
n+ a_p—l b1 ,

J
since gin?~? < npP~! <%> forall 1 < j <pif2 < pu—a(p—1), and this implies, together
with a > p+ 1, that we must take p > p + 1.

. o altasg QI.L+1 a1tag
Using now gy (f) < (k—) , we come to

- n

d p1
llon(t ) = (1t paytoye ot = 4 (1422 ) - 1
k

np~1

41N c1taz
' Ok a1,a2
et () e
)

1<ai+az<v(p—1

for some constants M’, C’ > 0, since v has been fixed in (3.29).
Arguing in the same way for the functions v,(j’ﬁ instead of vy, we finally get:

Proposition 3.3. Let n be as in (2.9), a, i as in (3.31), v € N sufficiently large so that (3.29)
is satisfied. Then, for every o, 3 € Ny there exists Co 5 > 0 such that for all t € [0, o /P!
with k large enough:

d op 1y, p—1 n?~! o8
(3.32) [0 (8, )l = { Tmapa (8, @ + pA ()" )™ — A1+ . vy’
k

1y G+8 N
S (E) e
n k '

1<a+B<v(p—1)

| = Cap

—Ca,p

From Proposition 3.3 it follows that:

d ptly oth p—1
— <(Qk—) Hv,‘;’BH > <Im ap—1(t, xp —|—]oAp(zf)np’l)nf”’1 —A (1 + n ) >
dt n Ok

Q/H_l a+p
(3.33) ( . ) log Pl = Cas
n
_ i+B+5
np 1 Qu+1 at+a+ _ _
D Y o).

1<a+pB<v(p-1)

We now choose s € N sufficiently large so that, for all @+ 3 > s+ 1, using (2.21) and a > p+1,
we have

p—1 p+1 a+p e p—1 put1y s+l 1
(3:34) () et (A1) s
Ok n Ok n
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for some cg, ¢, > 0. In order to satisfy (3.34) it’s enough to take s such that

1
a(q—l—p—1)+§+1+(s+1)(u+1—a)SO,

i.e.

Jalgtp=2+pts

(3.35)

a—p—1

With this choice of s we define:

u+1y otp
(3.36) ZOEEDY (ng) oI

0<a+pB<s

From (3.33) we have that:

d d (N s
Eak@)— Z EKT [l

0<a+p<s
np—l Q#J’,l Oé+6
> Y (Imap_l(t,xk+pAp(t)np_1)np_1 —A <1+—)) (%) [l
0<a+B<s Ok
_ a+p
np-1 Q;H—l + 5.8
P (i— lo?ll - ¢
— Ok n
1<a+p<s

p—1
> (Im ap_1(t, z) + pA, ()P nP~! — A, (1 + ng )) ok(t) — Cs
k

for some Cy, As > 0, because of (3.34).
We have thus obtained for the function oy the following differential inequality:

Ok
np—1

oh(t) = Bit)on(t) + C, >0 te [0, } k> 1,

p—1
&w:m%mwmmeNW“—&O+u),

which clearly implies that
t
o(t) > eJo Br(6)do |:Uk(0) _ Cs/ e~ Jo Bk(o)deT} te [0, %] k> 1.
0 n

For t = op/nP~! we have

Of QK

(337) % < Ok ) Z ef()np_l By (6)do lo_k(o) . Cs/np_ e_f(;' Bk(e)dgd,r] .
0

%k
Let us focus on the term fO”’H By (6)d0; the choice of xy, o of Lemma 2.1 gives for it, by the
change of variables 6 = n?~10 and for k large enough, the following estimate from below:
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ngﬁl njgﬁl nglil p—l
/ By (0)do = / Ima, (0, z1, + pA,(0)nP " )n?~1d — As/ (1 0 ) do
0 0 0

Ok
Ok o’ o’ pe1 ,
> /0 Im Qp—1 (F, Tk —|—pAp <np_1) n ) df’ — 2143

o o N o
= /0 Im Qp—1 (F, Tk +pap(7k)9) df’ — ZAS

(3.38) > Mlog(1+ gr) + k — 24,

for some 7, € [0,6/nP7], since A,(0'/nP~)nP~t = #a,(7;.) by the mean value theorem for
integration.
Similarly it follows that for every 7 € [0, -2+]:

npP

-1

T nP~tr 9/
(339) /0 Bk<9)d9 > /0 Imap,l (F,Q?k —|—pap(7"/€)(9'> do’ — 2A, > —2A,

for some 7/, € [0,6'/nP~"], because of Lemma 2.1, since n?~'7 < nP~! L < gy
Finally, from (3.36) and (3.2) we have ||ox(0)|| > ||vg(0)]| > ||h]| > 0; therefore, substituiting
the estimates (3.38) and (3.39) into (3.37), we have proved the following desired estimate from

below for the function oy (1):

Proposition 3.4. For every M > 0 and k € N let xy, or be as in Lemma 2.1. Taking pn > 2 in
(2.13) and n as in (2.9) with a, u satisfying (3.31), it is possible to construct the functions v’
in (2.17) and then to choose s great enough (see (3.35)) such that the function oy(t) defined in
(3.36) satisfies the following estimate from below:

(3.40) o ( Ok ) >c(l+o0)™, k>1,

np—1

for some ¢ > 0.

4. Estimate from above and proof of the main Theorem.

The estimate from above is now quite simple to be obtained and it is shown in the following:

Proposition 4.1. For every M > 0 and k € N let xy, or be as in Lemma 2.1. Taking pn > 2 in
(2.13) and n as in (2.9) with a, u satisfying (3.31), it is possible to construct the functions v,f”g
in (2.17) and then to choose s great enough (see (3.35)) such that the function oy(t) defined in
(3.36) satisfies the following estimate from above for all t € [0, -21]:

) pp—1

1 a
(4.1) ou(t) < Co2 T k>,
for some C' > 0.
Proof. The estimate (2.21) obtained in Section 2 and definition (3.36) immediately give:

Q“H o Lo+ 1yo+
5 aq 5 aq
oty < > Oa,ﬁ( ) o< Cg

k
n
0<a+B<s

for some C' > 0, since s has been fixed in (3.35). O

We are now ready to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let us assume, by contradiction, that the Cauchy problem (1.2) is well-
posed in H* but (1.6) does not hold true. Then at least one of the two conditions (2.3) or (2.4)
does not hold true. As we remarked in Section 2, we can assume, without loss of generality,
that (2.3) does not hold and apply Lemma 2.1. By Propositions 3.4 and 4.1 we come to the
estimate:

Ok 1494a
c(1+o00)" <oy (np*l) <Cop ™,

for positive constants ¢, C' not depending on k, giving rise to a contradiction for £k large enough,
if we choose

1

Therefore condition (1.6) must be satisfied and the proof is complete. O

Appendix A

The localized pseudo-differential operators Wf }f(t, x,D,) of the present paper have symbols

wz,’f (t,x,&) depending on the parameter ¢ and belonging to the class 5870 of all functions
p(z, &) € C°°(R?) such that for every a, 3 >0

(A1) |D70Ep(,)] < Cag;
58,0 is a Fréchet space with semi-norms

0 ._ @ nB
(A-2) Ple := max, sup [0 Dop(e, ¢l

The class S{ ) corresponds to the classical class ST (defined by [Ddgp(x,&)| < Co,p(&)mH0P
instead of (A.1); see [23]) with m = ¢ = 0 = 0. In the SF classes the usual asymptotic
expansion formula

1
p(xa 5) ~ Z aa?pl(l’» g)Dfpg(l', 5)
a>0
fails to be true, and we need to use the expansion formula with a remainder, as in [23, Thm.
3.1, Chap. 2] (see also [20, Thm. A]):

Theorem A.1l. Let Pj(x,D,) be pseudo-differential operators with symbols p;(x,€) € S(T)?({,
j =1,2. Then the operator P(x, D,) = Pi(x, D;)o Ps(x, D,) has symbol given by the oscillatory
integral

pa.8) = [ [ e+ mpala + v, )y € 3
where dn = (27) " tdn.
Moreover, the following expansion formula holds for every v € N:
w0= Y Smonimea+ [ L0, g
x, &) = — x x — 1y, (x, ,
me a<v—1 a! £p1 7 wP2 0 (V_ 1)' ”

where
ro(2,€) = / / e, (2, € + 0n) D%ps(x + v, €)dydi € STAHT,

We recall from [23, Lemm 2.2, Chap. 7|, (see also [20, Thm. B]):
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Theorem A.2. Let p;(x,&) € 5§ for j = 1,2 and define

P, €) = / / e, (i, € + On)pala + y, €)dyd.

Then for every { € Ny there exists a constant Cy > 0 such that

|p0|2,é < C€|p1|2+2,£+2|p2|2+2,e+2

for all 6 € [0, 1].

We conclude the appendix with the statement of the Calderén-Vaillancourt’s Theorem about
continuity of pseudo-differential operators with symbols in the class 5’870 acting on L? (see [12]
or [21, Thm. CJ):

Theorem A.3. Let p(x, D,) be a pseudo-differential operator with symbol p(x,§) € 58’0. Then:

lp(z, Dz)ull < Clplz [lull

for all uw € L?, with a positive constant C independent of p and u.
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