

DR GIULIO FRANCESCO ROMITI (Orcid ID : 0000-0002-3788-8942) BERNADETTE CORICA (Orcid ID : 0000-0001-9460-4435)

Article type : Original Article

Inherited and Acquired Thrombophilia in Adults with Retinal Vascular Occlusion: A Systematic Review and Meta-Analysis.

Giulio Francesco Romiti¹ MD, Bernadette Corica¹ MD, Marco Borgi¹ MD, Giacomo Visioli² MD, Elena Pacella² MD, Roberto Cangemi¹ MD, Ph.D., Marco Proietti³⁻⁵ MD, Ph.D., Stefania Basili¹ MD, Valeria Raparelli⁶ MD, Ph.D.

¹Department of Translational and Precision Medicine, Sapienza – University of Rome, Rome, Italy; ²Department of Sense Organs, Sapienza – University of Rome; ³Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; ⁴Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; ⁵Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; ⁶Department of Experimental Medicine, Sapienza – University of Rome.

Corresponding Author Valeria Raparelli, MD PhD Department of Experimental Medicine Sapienza – University of Rome Viale del Policlinico 151 – 00161 Rome (Italy) Telephone: +39 06 4997 4025 E-mail: valeria.raparelli@uniroma1.it

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/JTH.15068</u>

Manuscript Word Count: 4007 words
Abstract Word Count: 229 words

Tables: 1

Figures: 7

ESSENTIALS:

- The prevalence of thrombophilias in patients with retinal vascular occlusion is unclear.
- Systematic Reviews and Meta-Analysis of 95 studies were performed.
- Similar prevalences were observed in retinal vascular occlusion and the general population.
- Routine thrombophilia screening may not be useful in patients with retinal vascular occlusion.

ABSTRACT

Background: Retinal vascular occlusion is a leading cause of sight loss. Both retinal artery occlusion (RAO) and retinal vein occlusion (RVO) have been associated with hypercoagulable states; however, the burden of thrombophilia in these patients is unclear.

Objectives: This study aims at estimating the prevalence of inherited and acquired thrombophilias in adults with RAO or RVO, through a systematic review and metaanalysis of the literature.

Patients/Methods: Pubmed and EMBASE were systematically searched from inception to 29th February 2020. All studies reporting prevalences of Factor V Leiden (FVL) and Prothrombin (F-II) G20210A mutations, MTHFR C677T and PAI 4G polymorphisms, Antithrombin III (AT-III), Protein C (PC) and Protein S (PS) activity deficiencies, hyperhomocysteinemia and antiphospholipid (APL) antibodies in adults with RAO or RVO were included. Pooled prevalences and 95% Confidence Intervals (CI) were calculated.
Results: Ninety-five studies were included; FVL and F-II mutations were found in 6% (95%CI: 5-8%) and 3% (95%CI: 2-4%) of individuals with RVO, respectively, while AT-III, PC and PS activity deficiencies were found in less than 2%. The MTHFR C677T and PAI 4G homozygous polymorphism were observed in 13% (95%CI: 10-17%) and 23% (95%CI: 16-31%) of RVO, respectively; 8% presented APL antibodies. Similar findings were observed in individuals with RAO.

Conclusions: Compared to healthy subjects, patients with retinal vascular occlusion showed similar prevalences of inherited and acquired thrombophilias. These findings do not support routine thrombophilia screening in individuals with RAO or RVO.

Key Words: Retinal Vein Occlusion, Retinal Artery Occlusion, Thrombophilia, Systematic Review, Meta-Analysis.

INTRODUCTION

Vascular occlusion of the retina is one of the major causes of vision loss throughout the world.[1] Vascular occlusion may occur as Retinal Artery Occlusion (RAO) or Retinal Vein Occlusion (RVO); both conditions are also categorized based on the anatomic site of the obstruction as central RAO (CRAO), branch RAO (BRAO), central RVO (CRVO) and branch RVO (BRVO).

The pathophysiology of retinal vascular occlusion is multifactorial, with a wide range of modifiable and non-modifiable risk factors[2] including aging, hypertension, diabetes and dyslipidemia.[3,4] Even hypercoagulable states - which may predispose subjects to a higher risk of blood clot formation - has been associated with a higher incidence of both RAO and RVO in several population-based cohorts. Several gene variants have been already identified and linked to an increased risk of thrombosis (especially venous thromboembolism [VTE]), including mutations in genes encoding coagulation factors (e.g. Factor V and Factor II) or natural anticoagulants (Antithrombin III, Protein C, Protein S).[5,6] Unusual form of VTE, i.e. thrombosis occurring at different sites than lower limbs, have been linked to genetic variants of hemostasis traits;[7] however, clinical studies have provided conflicting findings on the clinical significance of both inherited (e.g. Factor V Leiden (FVL) Mutation, Prothrombin (F-II) G20210A mutation) and acquired (i.e. Antiphospholipid (APL) antibodies syndrome) thrombophilias in the pathogenesis of retinal vascular occlusions.[8,9] Beyond well-known acquired and inherited thrombophilia, casual VTE risk factors, other conditions including PAI-1 and MTHFR variants, as well as hyperhomocysteinemia, failed in explaining a higher risk of VTE;[10,11] nevertheless, they have been linked to a higher incidence of retinal vascular occlusion with conflicting results, and their assessment is sometimes part of the diagnostic work-up of these patients. A better understanding of the strength of the association between hypercoagulability and retinal vascular occlusion may inform on the management of patients with both RAO and RVO, with important consequences on diagnostic work-up and treatment.

This study aims to provide a systematic review and meta-analysis of studies reporting the prevalence of several inherited and acquired thrombophilias in adults with RAO or RVO.

METHODS

This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations (http://www.prisma-statement.org).

Search Strategy

A systematic and comprehensive literature search was performed on Pubmed and EMBASE databases, from inception to 29th of February 2020. Keywords used and combined in the search strategy comprised a combination of terms relevant to the research question, including 'Retinal Vein Occlusion', 'Retinal Artery Occlusion', 'Thrombophilia', and terms related to the hypercoagulable states investigated. The full search strategy is listed in the supplementary materials.

Studies Selection

According to PRISMA guidance, all records retrieved from the search were systematically screened in parallel and independently by two authors (BC and MB), according to their titles and abstracts. Each record included after the first phase was then independently evaluated for full-text eligibility by two authors (BC and MB); conflicts were resolved by collegial discussion, with a third author when necessary (GFR). Inclusion criteria were: i) studies on adults with RAO, RVO or their specific forms (CRAO, BRAO, CRVO, BRVO); ii) studies reporting the prevalence of following thrombophilias: F-V Leiden mutation (rs6025); F-II G20210A mutation (rs1799963); Antithrombin III (AT-III) deficiency; Protein C (PC) deficiency; Protein S (PS) deficiency, hyperhomocysteinemia, methylenetetrahydrofolate reductase (MTHFR) C677T mutation (rs1801133), plasminogen activator inhibitor-1 (PAI) 4G mutation (rs1799889), and antiphospholipid antibodies (APL). Exclusion criteria were: i) studies with less than <20 patients for each disease (RAO or RVO); ii) studies that did not report data on the aforementioned thrombophilic conditions; iii) studies that investigated highly selected cohorts, i.e. only adults presenting with retinal vascular occlusion and no existing comorbidities or predisposing conditions, or cohort composed of only very young patients (<40 years old); iv) conference abstracts, comments, editorials, case reports, systematic reviews and meta-analysis; v) article written in languages other than English. In the case of two or

more studies based on the same cohort of subjects and exploring the same outcome(s), only the most recently published was selected and included in the systematic review and meta-analysis.

Data Extraction and Quality Assessment

Data from the studies included were extracted independently by two co-authors (BC and MB), under the supervision of a third author (GFR). Data on sample size, type of retinal vascular occlusion, mean or median age, and percentage of males adults were collected, along with the number of patients presenting with each thrombophilia.

All studies included were independently evaluated by two co-authors (GFR and BC) to assess the risk of bias, according to recommendations of the Agency for Healthcare Research and Quality.[12] The screening was performed for five main bias domains (selection bias, performance bias, attrition bias, detection bias and reporting bias). An overall, synthetic grade was produced for each study.

Outcomes Definition

Primary outcomes were the prevalence of the inherited and acquired thrombophilias, i.e. F-V Leiden, F-II G20210A, MTHFR C677T, and PAI 4G mutations, AT-III, PC and PS activity deficiency, hyperhomocysteinemia and APL antibodies. For F-V and F-II mutations, only a small proportion of patients were described as homozygous; also, in several studies, no clear distinction between heterozygous and homozygous mutations was made, so that we computed homozygous patients together with heterozygous carriers. AT-III, PC, and PS activity deficiencies, as well as hyperhomocysteinemia, were defined according to the definition used in the original studies. Patients with heterozygous (CT) or homozygous (TT) MTHFR C677T and PAI 4G polymorphisms were analyzed separately. APL antibodies were defined as positivity for both anticardiolipin (ACA) and anti- β 2 glycoprotein-I antibodies, where available, or the positivity of the only one reported; several studies reported data only on ACA antibodies and were included as well in the analysis.

Statistical Analysis

Prevalences from original studies were pooled and compared using a randomeffects model as for primary analysis; as a secondary analysis, fixed-effect models were also computed.

When pooling prevalences which tend to extreme ranges (i.e. 0% or 100%), the variance of the study may be overestimated, so we conducted our analysis transforming prevalence estimated with the Freeman-Tukey double arcsine method, as previously reported.[13,14] Pooled estimates were reported as pooled prevalence and 95% confidence intervals (CI).

The inconsistency index (I^2) was calculated to measure heterogeneity. According to pre-specified cut-offs, low heterogeneity was defined as an I^2 of <25%, moderate heterogeneity when I^2 falls between 25 and 75%, and high heterogeneity when I^2 was >75%.

In patients with RVO, we also performed two additional secondary analyses: i) we stratified studies according to the localization of the occlusion (CRVO vs. BRVO); ii) we stratified studies according to the risk of bias (low vs. medium/high overall risk of bias). Statistical analysis was performed using Stata 16 (StataCorp, USA).

RESULTS

A total of 2,856 articles were retrieved (2,042 from Pubmed and 814 from EMBASE). After the titles and abstracts screening, a total of 161 full-texts were assessed, of which 66 were subsequently excluded. A total of 95 articles were included in the analysis (Figure S1). Table 1 summarizes the main characteristics and findings of the studies included: 89 reported data on RVO and 11 on RAO. Most of the studies (n=54, 57%) were conducted in Europe; 22 in Middle East or North Africa, 9 in North America, 6 in Asia, and 2 in South America and Oceania. According to the type of thrombophilia, 50 studies explored FVL mutation; 38 reported about F-II G20210A mutation, 35 on hyperhomocysteinemia, 31 on MTHFR C677T mutation, 28 on APL antibodies presence, 24 on PC activity deficit, 22 on AT-III activity deficit and 20 on PS activity deficit, while only six reported about PAI 4G mutation.

The risk of bias was assessed for each study as reported in Table S1: 63 studies were rated at low risk, 24 at medium risk, and 8 at high risk of bias.

Factor V Leiden mutation

Among 3,981 patients with RVO, the pooled prevalence of FVL mutation was 6% (95% CI: 5-8%; I^2 =80%; figure 1A). Significant heterogeneity was found between geographical groups (p=0.016), with the higher prevalence reported in middle east/north African studies (pooled prevalence: 13%, 95% CI: 6-22%). The pooled prevalence of FVL mutation was lower in European (6% [95% CI 4-7%]) and north-American cohorts (5% [95% CI 3-8%]). Similar results were obtained with the fixed-effect model (figure S2A). Only six studies explored the association between FVL mutation and RAO, with a similar pooled prevalence to that of RVO (7%, 95% CI: 2-13%, I^2 =62%, figure 1, panel B), regardless of the model applied (figure S2B).

F-II G20210A mutation

Across 34 studies, a pooled prevalence of 3% (95% CI: 2-4%; I²=54%; figure 2A) was computed with no significant heterogeneity across geographical groups. Five studies reported on the association between RAO and F-II G20210A mutation, with a pooled prevalence of 3% (95% CI: 1-6%, I²=13%; figure 2B). Similar results were shown using a fixed-effect model (Figure S3A-B).

AT-III, PC and PS activity deficiencies

Among the twenty studies reporting on the AT-III deficit in patients with RVO had large heterogeneity in the thrombophilia definition (i.e. cut-off AT-III activity): <100% of normal reference activity (n=1); [Supplementary Reference 7, S7] <81-89% (n=3),[S51,S55,S67] <80% (n=7).[S15,S34,S44,S49,S65,S73,S86] An even lower cut-off was used (n=2),[S74,S75] and in eight studies no clear definition was provided.[S1,S3,S6,S10,S57,S58,S60,S85]

Pooled estimates showed a low prevalence of AT-III deficiency (1%; 95% CI: 0-2%; I^2 = 68%, Figure 3A), with significant heterogeneity across geographical group (p=0.023) and the higher prevalence in middle-east/north-Africans (5%, 95% CI: 1-10%).

Twenty-two studies looked at PC activity deficiency, with a total of 1,738 RVO patients. Nine studies used a definition of <70% of normal reference

activity;[S7,S15,S20,S44,S49,S51,S74,S75,S86] two studies included patients with higher cut-offs (<73%[S34] and <85%[S67]) and only one study adopted lower level

(<60%[S40]). For 10 studies, a clear definition was not

identifiable.[S1,S3,S6,S10,S57,S58,S60,S78,S81,S85] Pooled estimates showed a prevalence of 2% (95% CI 0-3%, I^2 =75%, figure 3B), with significant heterogeneity (p<0.001) between geographical groups: European-based cohorts showed a lower prevalence (0%, 95% CI: 0-1%, I^2 =15%) than middle-east and north-African studies, (pooled prevalence: 13%, 95% CI: 6-22%, I^2 =13%).

Seventeen studies reported data about PS activity deficiency in RVO adults, for a total of 1276 patients. As for the definitions used, five studies adopted a cut-off of <70% of normal reference activity,[S7,S15,S20,S67,S75] and 4 studies used a lower-cut-off (ranging from <65% to <60%).[S40,S44,S49,S86] For eight studies a clear definition of PS activity deficit was not found.[S1,S3,S10,S57,S58,S60,S78,S85] A pooled prevalence of 2% (95% CI:0-4%; I²=74%, figure 3C) was calculated with no significant heterogeneity was across geographical groups and a higher prevalence in middle-east and north-Africans. Similar findings were observed in the fixed-effect models (Figure S4A-C respectively).

Only 4 studies investigated RAO patients.[S34,S48,S59,S65] Pooled prevalence for AT-III activity deficit in adults with RAO was 3% (95% CI: 0-9%, I²=57%, figure S5-A), higher as compared with that observed in RVO; PC and PS activity deficiencies were similarly prevalent in RAO to those in RVO (2%, 95% CI 0-10%, I²=61% and 1%, 95% CI: 0-4, I²=24%, respectively, figure S5B-C). Fixed-effect models for AT-III, PC, and PS activity deficits in RAO are reported in figure S6A-C respectively.

Hyperhomocysteinemia and MTHFR C677T polymorphism

Thirty studies reported data about hyperhomocysteinemia in patients with RVO, for a total of 2,656 patients. High grade of heterogeneity was found according to the definition of hyperhomocysteinemia, based on different cut-offs of homocysteine level: between 15 and 16 µmol/L;[S20,S28,S30,S56,S62,S73,S87,S93] above 16 µmol/L;[S3,S16,S60,S85] and above 15 µmol/L.[S2,S12,S15,S46,S49 S67,S70,S72,S88,S94] Furthermore, five studies reported data based on sex-specific cut-off [S13,S25,S53,S61,S82] and one study according to different cut-offs by sex and age.[S40] Finally, the definition was unclear in 2 studies.[S78,S79] Pooled prevalence of 24% (95% CI: 19-30%, I²=89%, figure 4A) was found across studies included. Non-significant heterogeneity was

observed across different geographical areas, but higher pooled prevalences were found in middle-east/north-African and North-American studies, as compared with European and Asian cohorts. The fixed-effect model showed a slightly lower prevalence (22%, 95% CI: 20-24%, figure S7A).

Overall, 30 studies reported about MTHFR C677T mutations, although several explored only CT or TT mutations. As for heterozygous mutation, a pooled prevalence of 44% (95% CI: 39-48%, I²=77%, Figure 4B) was computed, without significant heterogeneity between geographical groups; middle east and north-African cohorts contributes for the most of the heterogeneity. As for the homozygous C677T mutation, a pooled prevalence of 13% (95% CI: 10-17%, I²=79%, figure 4C) was found, with non-significant heterogeneity between geographical locations (p=0.124): European and Asian-based cohorts showed slightly higher pooled prevalences (15% and 13%, respectively), while south-American and middle-east/North African studies yielded lower estimates (9% and 10%, respectively). Fixed-effect models showed similar results for both CT and TT mutation (Figure S7B-C, respectively).

In patients with RAO, a pooled prevalence of 27% (95% CI: 14-42%, I²=93%, figure 5A) was found for hyperhomocysteinemia across 6 studies. However, when performing a fixed-effect model, pooled prevalence drops to 17% (95% CI: 16-18%, figure S8A) due to the higher weight of an Australian-based population study.[S17]

As for the MTHFR C677T mutation, the prevalence of the heterozygous and homozygous mutation in patients with RAO was respectively 48% (95% CI: 39-56%) and 23% (95% CI 7-43%) across 2 studies (figure 5B-C respectively). Fixed-effect models for both MTHFR C677T heterozygous and homozygous mutation in patients with RAO are reported in figure S8B-C respectively.

PAI 4G mutation

Overall, six studies report about the association between RVO and PAI 4G mutation. As for the heterozygous 4G mutation, a pooled prevalence of 50% (95% CI: 43-57%, I²=58%, Figure 6A) was found across the study included, five of which were from Europe; a pooled prevalence of 25% (95% CI: 16-31%, I²=74%, Figure 6B) was calculated for homozygous 4G mutation. Fixed-effect models produced comparable results (Figure S9A-B).

Since only one study reported data on the prevalence of PAI 4G mutation in patients with RAO, pooled prevalence estimate for this thrombophilia was not computed.

APL Antibodies

Across 24 studies and a total of 2130 patients, a pooled prevalence of 8% (95% CI 5-12%, I²=86%; Figure 6C) was found for the presence of APL antibodies. Non-significant heterogeneity was found between geographical groups (p=0.051), with Asian and European-based cohorts showing lower prevalence (2% and 7%, respectively). Similar results were observed with fixed-effect models (Figure S9C).

In patients with RAO, across 4 studies, the pooled prevalence of APL antibodies was equal to 13% (95% CI: 4-26%, I^2 =77%, figure S10A) when using a random-effect model, and resulted higher with a fixed-effect model (17%, 95% CI: 12-23%, figure S10B).

Comparison in the Prevalence of Thrombophilias between RAO and RVO

Overall, similar prevalences for all thrombophilias were shown with random-effect models (Table S2). However, such findings were not confirmed by the fixed-effect models, for hyperhomocystenemia more prevalent in RVO patients (22% [95% CI: 20-24%] vs. 17% [95% CI: 16-18%], p for heterogeneity: <0.001), while APL antibodies resulted more associated with RAO (pooled prevalence 17% [95% CI: 12-23%] vs. 7% [95% CI: 6-8%], p for heterogeneity: <0.001).

Sensitivity Analysis

In a first sensitivity analysis, we compared pooled estimates in patients with CRVO and BRVO using a random-effect model (Figure 7A). No significant heterogeneity was observed between the two groups in terms of pooled prevalence for each thrombophilia explored. BRVO patients showed a non-significant trend of higher FVL mutation and PS deficiency prevalences, while in CRVO a non-significantly higher prevalence of APL antibodies was observed.

In a second sensitivity analysis, we analyzed pooled prevalences according to the overall risk of bias of the studies (low vs. medium or high risk of bias; Figure 7B). Pooled prevalences of APL antibodies resulted lower in studies with low risk of bias (5%, 95% CI: 3-8% vs. 14%, 95% CI: 7-23% of studies with a medium-high risk of bias, p for

heterogeneity=0.018); on the other side, pooled estimate for hyperhomocysteinemia was higher in low-risk of bias studies (29% 95% CI: 23-35% vs. 17%, 95% CI: 10-25%, p for heterogeneity=0.016). Non-significant trends were also observed for MTHFR C677 homozygous mutation and PC activity deficiency.

DISCUSSION

In this systematic review and meta-analysis, we reported the pooled prevalence of inherited and acquired thrombophilia in over 10.000 patients with retinal vascular occlusion, across 95 studies. Overall, congenital AT-III, PC, and PS activity deficiencies were the least represented inherited thrombophilia in patients with RAO or RVO, while FVL and APL antibodies were the most represented. Moreover, hyperhomocysteinemia, MTHFR C677T, and PAI 4G polymorphism were also highly prevalent. Of note, the distribution of thrombophilias is very similar to that observed in generally healthy populations (Table S3). The only significant differences were observed for AT-III, PC, and PS deficiencies, which were found more prevalent in subjects with RAO and RVO, and also the prevalence of APL antibodies, slightly higher in patients with RAO. Nevertheless, such differences observed might be due to heterogeneity in the definition of these thrombophilic conditions in the original studies, both for the anticoagulant deficiencies and for the presence of APL antibodies.

The total prevalence of inherited thrombophilia in patients with retinal vascular occlusion varies according to the site of the obstruction and geographical setting. When stratifying our results according to geographical locations of the original studies, we found a higher prevalence of FVL mutation in middle-east and north-African cohorts as compared with both European and north-American studies as well as compared with healthy populations from the same regions (13% vs. 0-2%,[15,16] respectively). Similar findings were observed for F-II G20210A mutation, with higher prevalence in patients with RVO from middle-east and north African countries compared to similar general populations (4% vs. approximately 0.5%[17,18] for F-II G20210A, respectively). While our findings may suggest a different degree of association between retinal vascular occlusion and thrombophilic conditions across different ethnicities, we cannot exclude that these results may be driven by few studies, which may have inflated the pooled prevalence in some groups. These findings, however, should be taken carefully into account by treating

physicians, since they might have implications in the management of those ethnicities at higher risk of presenting with thrombophilic conditions.

To our knowledge, our study is the first to comprehensively evaluate the burden of a broad spectrum of thrombophilic conditions in patients with retinal vascular occlusion. The Association between thrombophilia and risk of both RAO and RVO has long been speculated, [19] but with great uncertainty according to existing evidence. Our findings showed that the overall prevalences of inherited and acquired hemostatic disorder in patients with retinal vascular occlusion are broadly similar to those observed in general, unaffected populations. Although younger patients may present a higher prevalence of these thrombophilic conditions, [S48, S51, S87] our study does not demonstrate a higher prevalence of thrombophilia in the overall cohort of patients with RAO and RVO. The vast majority of retinal vascular occlusion, in fact, affects elderly patients, in which traditional cardiovascular risk factors may have a more important underlying role in the onset of the disease. Most of the cohorts included in this analysis, indeed, were mainly composed of elderly, and this may contribute to the overall prevalence of the thrombophilias tested. A potential bias in the pooled prevalence observed, and limited generalizability of the findings to younger patients cannot be excluded. In fact, a greater prevalence of inherited or acquired thrombophilias could be present among young adults with retinal vascular occlusion, since in this subgroup of patients the contribution of other cardiovascular risk factors may be less important. Therefore, the results of this meta-analysis may not apply to all patients with retinal vascular occlusion, especially those with a younger age.

These results are also consistent with previously published studies, that reported no association between retinal vascular occlusion and familiar history of VTE.[20] suggesting that inherited thrombophilias, which are strong and well-known causative factors for familiar susceptibility to VTE, are unlikely of primary importance in the pathogenesis of retinal vascular occlusion.

As for the comparison between RAO and RVO, according to our primary analysis, we did not find any significant differences in terms of prevalence of any of the explored thrombophilic conditions. This may reinforce the hypothesis that RAO and RVO share similar risk factors, including cardiovascular and metabolic comorbidities (hypertension, dyslipidemia, diabetes) and hemostatic disorders. Also, retinal artery and retinal vein present close anatomical relation, since they share a common adventitia sheat, and this

may influence the pathogenesis of vascular occlusions. Particularly, CRVO was associated with compression from the central retinal artery at the lamina cribrosa, where the two vessels are strongly bond. [21–23] However, most of the studies investigated RVO, and evidence regarding RAO is scarce and limited. Actual differences may exist, and further studies may be required to draw definitive conclusions. Similarly, our analysis did not show any significant differences between BRVO and CRVO, supporting the hypothesis that potential pathogenesis differences between these forms of RVO may be sustained by other factors.

The key message and implication of our study may affect the diagnostic work-up of patients presenting with RAO or RVO. Based on our findings, there is no clear evidence to support a mass screening for thrombophilia in the overall cohort of patients with retinal vascular occlusion. Some patients may benefit from a thorough and comprehensive haematological investigation: i) young patients at higher risk of being carriers of thrombophilic conditions, especially in the absence of other risk factors for retinal vascular occlusion; ii) individuals of selected geographical areas, with a higher prevalence of certain thrombophilia; iii) individuals with a family or personal history of venous or arterial thrombotic events, mainly when recurrent or occurring at a younger age; iv) the presence of autoimmune diseases, know to be associated with higher thrombotic risk. Although the identification of specific categories at higher risk of thrombophilia was beyond the scope of this analysis, we do support a careful screening on a case-by-case basis, considering the pre-test probability, the cost-benefit ratio and the potential psychological implication for patients. This approach is consistent with the actual guidance on the management of patients with retinal vascular occlusion.[24]

Limitations

Our analysis has several limitations. First, our review protocol did not include a screening of gray literature; however, given the research question, this is unlikely to have significantly limited the comprehensiveness of our analysis. Second high heterogeneity between studies (both in terms of the definition of thrombophilic conditions and methods used for their assessment) may have influenced our results. Particularly, a high grade of heterogeneity was found for the definition of AT-III, PC and PS deficiencies, and the presence of APL antibodies, and this might have been responsible for the higher

prevalence observed. This definition bias has to be considered in the careful interpretation of our findings. Also, studies exploring the association of F-V and F-II mutations with retinal vascular occlusion barely reported data disaggregated according to the heterozygosity or homozygosity of the genetic variants. A relatively low number of patients with homozygous mutations were computed along with heterozygous carriers. Given that not all studies reported clearly about homozygous individuals, we were not able to produce reliable estimates for these prevalences. Nevertheless, we did not exclude these subjects from the analysis, since this would have led to an underestimation of the actual prevalence of the conditions. Second, most of the studies were based on small cohorts, with a potentially high risk of selection bias, especially for those studies which include only relatively young patients or adults referred for thrombophilia screening by their ophthalmologists. Moreover, a substantial grade of heterogeneity was also found across the studies included, for several thrombophilic conditions. However, we performed our primary analysis with the use of random-effect models, to mitigate heterogeneity and the potential impact of a single study on the overall estimates. We also provide a sensitivity analysis according to the overall risk of bias, to exclude the contribution of studies with a medium or high risk of bias. Finally, relatively few studies investigated the association between thrombophilia and RAO, thus limiting our ability to explore this association.

CONCLUSIONS

In patients with retinal vascular occlusion, pooled prevalences of inherited and acquired thrombophilias were estimated and resulted similar to what observed in the general population. No significant differences were observed in the primary analysis between RAO and RVO patients, nor according to the localization of RVO (i.e. CRVO vs. BRVO). Our findings are consistent with current recommendations, which do not support thrombophilia screening in the diagnostic workup of all patients presenting with retinal vascular occlusion.

Addendum: GFR conceived and designed the study, performed the search, performed the statistical analysis, interpreted data and produced the first draft of the manuscript; BC and MB performed studies selection, extracted the data, performed the bias assessment, contributed to data interpretation and critically revised the manuscript; GV contributed to data interpretation and to the drafting of the manuscript; EP, RC, MP, SB and VR contributed to conception and design of the study and critically revised the manuscript for important intellectual content. All gave final approval and agree to the submission of the manuscript.

Acknowledgements: VR was supported by the Scientific Independence of Young Researchers Program (RBSI14HNVT), Italian Ministry of Education, University and Research (MIUR), Rome, Italy.

EP, MP, SB were supported by a grant (#C26A147HC8/2014) issued by Sapienza – University of Rome, Rome, Italy.

GFR and BC were supported by a grant (#AR11916B84DD8DCE) issued by Sapienza – University of Rome, Rome, Italy

Conflict of interest disclosure: The authors declare no competing financial interests.

Supporting Information: See Supplementary Materials

REFERENCES

2

5

9

10

11

- Song P, Xu Y, Zha M, Zhang Y, Rudan I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors. *J Glob Health* University of Edinburgh; 2019; **9**.
- Recchia FM, Brown GC. Systemic disorders associated with retinal vascular occlusion. *Curr Opin Ophthalmol* Curr Opin Ophthalmol; 2000; **11**: 462–7.
- 3 Varma DD, Cugati S, Lee AW, Chen CS. A review of central retinal artery occlusion: Clinical presentation and management. *Eye (Basingstoke)*. Nature Publishing Group; 2013. p. 688–97.
- Kolar P. Risk factors for central and branch retinal vein occlusion: A meta-analysis of published clinical data. *J Ophthalmol* J Ophthalmol; 2014; **2014**.
 - Gohil R, Peck G, Sharma P. The genetics of venous thromboembolism: A metaanalysis involving ~120,000 cases and 180,000 controls. *Thromb Haemost* Thromb Haemost; 2009; **102**: 360–70.
- 6 Mannucci PM, Franchini M. Classic thrombophilic gene variants. *Thromb Haemost* Thromb Haemost; 2015; **114**: 885–9.
 - Martinelli I. Unusual forms of venous thrombosis and thrombophilia. *Pathophysiol Haemost Thromb* Pathophysiol Haemost Thromb; 2002; **32**: 343–5.
 - Fegan CD. Central retinal vein occlusion and thrombophilia. *Eye*. Royal College of Ophthalmologists; 2002. p. 98–106.
 - Salomon O, Huna-Baron R, Moisseiev J, Rosenberg N, Rubowitz A, Steinberg DM, Davidson J, Sela BA, Seligsohn U. Thrombophilia as a cause for central and branch retinal artery occlusion in patients without an apparent embolic source. *Eye* Royal College of Ophthalmologists; 2001; **15**: 511–4.
 - Klarin D, Busenkell E, Judy R, Lynch J, Levin M, Haessler J, Aragam K, Chaffin M, Haas M, Lindström S, Assimes TL, Huang J, Min Lee K, Shao Q, Huffman JE, Kabrhel C, Huang Y, Sun Y V., Vujkovic M, Saleheen D, et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. *Nat Genet* Nat Genet; 2019; **51**: 1574–9.
 - Lindström S, Wang L, Smith EN, Gordon W, Van Hylckama Vlieg A, De Andrade

M, Brody JA, Pattee JW, Haessler J, Brumpton BM, Chasman DI, Suchon P, Chen MH, Turman C, Germain M, Wiggins KL, MacDonald J, Braekkan SK, Armasu SM, Pankratz N, et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. *Blood* American Society of Hematology; 2019; **134**: 1645–57.

Viswanathan M, Ansari M, Berkman N, Chang S, Hartling L, McPheeters L, Santaguida P, Shamliyan T, Singh K, Tsertsvadze A, Treadwell J. Methods Guide for Comparative Effectiveness Reviews Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions. 2012; : 12-EHC047-EF.

12

13

21

- Andrews P, Steultjens M, Riskowski J. Chronic widespread pain prevalence in the general population: A systematic review. *Eur J Pain (United Kingdom)* 2018; **22**: 5–18.
- Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health 2013; 67: 974–8.
- Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. *Lancet* Elsevier;
 1995; **346**: 1133–4.
- Ridker PM. Ethnic Distribution of Factor V Leiden in 4047 Men and Women. *Jama* American Medical Association (AMA); 1997; **277**: 1305.
- Foy P, Moll S. Thrombophilia: 2009 update. *Current Treatment Options in Cardiovascular Medicine*. Springer Healthcare; 2009. p. 114–28.
- 18 Jadaon MM. Epidemiology of prothrombin G20210A mutation in the mediterranean region. *Mediterr J Hematol Infect Dis* Universita Cattolica del Sacro Cuore; 2011; **3**.
- Chak M, Wallace GR, Graham EM, Stanford MR. Thrombophilia: Genetic polymorphisms and their association with retinal vascular occlusive disease. *British Journal of Ophthalmology*. Br J Ophthalmol; 2001. p. 883–6.
- Zöller B, Li X, Sundquist J, Sundquist K. Venous thromboembolism does not share familial susceptibility with retinal vascular occlusion or glaucoma: a nationwide family study. *J Thromb Thrombolysis* J Thromb Thrombolysis; 2016; **42**: 505–12.
 - Ducharme A, Swedberg K, Pfeffer MA, Cohen-Solal A, Granger CB, Maggioni AP, Michelson EL, McMurray JJ, Olsson L, Rouleau JL, Young JB, Olofsson B, Puu M, Yusuf S. Prevention of atrial fibrillation in patients with symptomatic chronic heart

failure by candesartan in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. *Am Hear J* 2006; **152**: 86–92.

Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation
syndrome: implications for eye diseases. *EPMA J* Springer Nature; 2013; 4.
MacDonald D. The ABCs of RVO: A review of retinal venous occlusion. *Clin Exp Optom* Blackwell Publishing Ltd; 2013; 97: n/a-n/a.

Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, Midena E, Sivaprasad S, Tadayoni R, Wolf S, Loewenstein A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). *Ophthalmologica*. S. Karger AG; 2019. p. 123–62.

FIGURE LEGENDS

Figure 1: Pooled Prevalence for Factor V Leiden mutation in RVO and RAO Legend: Panel A: RVO, Random-Effects model; Panel B: RAO, Random-Effects model

Figure 2: Pooled Prevalence for Factor II G20210A mutation in RVO and RAO Legend: Panel A: RVO, Random-Effects model; Panel B: RAO: Random-Effects model

Figure 3: Pooled Prevalence for Antithrombin III, Protein C and Protein S Activity Deficit in patients with RVO

Legend: Panel A: Antithrombin III deficit, Random-Effects model; Panel B: Protein C deficit, Random-Effects model; Panel C: Protein S deficit, Random-Effects model

Figure 4: Pooled Prevalence for Hyperhomocysteinemia, MTHFR C677T Heterozygous mutation and MTHFR C677T Homozygous mutation in patients with RVO

Legend: Panel A: Hyperhomocysteinemia, Random-Effects model; Panel B: MTHFR C677T Heterozygous, Random-Effects model; Panel C: MTHFR C677T Homozygous, Random-Effects model

Figure 5: Pooled Prevalence for Hyperhomocysteinemia, MTHFR C677T Heterozygous mutation and MTHFR C677T Homozygous mutation in patients with RAO

Legend: Panel A: Hyperhomocysteinemia, Random-Effects model; Panel B: MTHFR C677T Heterozygous, Random-Effects model; Panel C: MTHFR C677T Homozygous, Random-Effects model

Figure 6: Pooled Prevalence for PAI 4G Heterozygous mutation, PAI 4G Homozygous mutation and Antiphospholipid antibodies in patients with RVO Legend: Panel A: PAI 4G Heterozygous, Random-Effects model; Panel B: PAI 4G Homozygous, Random-Effects model; Panel C: Antiphospholipid antibodies, Random-Effects model Figure 7: Sensitivity analysis according to RVO localization and overall risk of bias Legend: Panel A: CRVO vs. BRVO; Panel B: Low vs. High Risk of Bias

AUTHOR	Year	Type of Study	Geographical	N of pts	Type of	Age (Mean ±	Males (n, %)	Thrombophilic cond
			Location		RVO/RAO	SD)		Reported
El-Asrar et al.[S1]	1998	Single Center Cohort	Middle East/North	57	CRVO: 35	48 ± 11.5	44 (77%)	APL antibodies, AT-I
			Africa		BRVO: 22			PS deficit
El-Asrar et al.[S2]	2002	Single Center Cohort	Middle East/North	56	CRVO: 36	43.9 ± 11.4	44 (79%)	HyperHcys
			Africa		BRVO: 12	49.5 ± 7.7		
Adamczuk et al.[S3]	2002	Single Center Cohort	South America	37	CRVO: 37	49 ^a	17 (46%)	APL antibodies, F-V,
								AT-III, PC, PS, Hype
								MTHFR, PAI
Albisinni et al.[S4]	1998	Single Center Cohort	Europe	36	RVO: 36	53	16 (44%)	F-V, F-II
Aras et al.[S5]	2001	Single Center Cohort	Middle East/North	40	CRVO: 19	59 ± 10	21 (53%)	F-V, F-II
			Africa		BRVO: 21			
Arsène et al.[S6]	2005	Single Center Cohort	Europe	234	CRVO: 153	62 ± 14	149 (64%)	F-V, F-II, AT-III, PC
					BRVO: 81			
Ates et al.[S7]	2006	Single Center Cohort	Middle East/North	54	CRVO: 27	22-86	-	AT-III, PC, PS
			Africa		BRVO: 27			
Biancardi et al.[S8]	2007	Single Center Cohort	South America	55	RVO: 55	17-83	23 (42%)	F-V, F-II, MTHFR
Birinci et al.[S9]	2003	Single Center Cohort	Middle East/North	24	CRVO: 24	59.0 ± 3.5	-	APL Antibodies
			Africa					
Bombeli et al.[S10]	2002	Single Center Cohort	Europe	68	RVO: 68	51.6	39 (57%)	F-V, F-II, AT-III, PC,
Boyd et al.[S11]	2001	Single Center Cohort	Europe	66	CRVO: 66	60.3 ± 16.2	-	F-II, MTHFR
Brown et al.[S12]	2002	Single Center Cohort	North America	20	RVO: 20	69.1 ± 10.7	12 (60%)	HyperHcys

Table 1: Main Characteristics of the Studies Included in the Systematic Review21]

Bucciarelli et	2017	Single Center Cohort	Europe	313	RVO: 313	54 [41-63]	147 (47%)	F-V, F-II, HyperHcys
al.[S13]								
Cahill et al.[S14]	2001	Single Center Cohort	Europe	61	RVO: 61	-	-	MTHFR
					RAO: 26			
Chapin et al.[S15]	2015	Two Centers Cohort	South America	37	RVO: 20	51	7 (35%)	APL antibodies, F-V, F-
								AT-III, PC, PS, HyperHo
Cho et al.[S16]	2019	Single Center Cohort	Asia	1928	CRVO: 417	61.2 ± 16.7	217 (52%)	HyperHcys
					BRVO: 1511	62.0 ± 13.1	680 (45%)	
Chua et al.[S17]	2006	Population-based	Oceania	3409	RAO: 3409	66.7	1463 (43%)	HyperHcys
		Cohort						
Ciardella et al.[S18]	1998	Single Center Cohort	North America	30	RVO: 30	66 ± 13	-	F-V
Coniglio et al.[S19]	1996	Single Center Cohort	Europe	48	RVO: 48	46.5	26 (54%)	APL antibodies
Cruciani et al.[S20]	2003	Single Center Cohort	Europe	29	RVO: 29	39.3	15 (52%)	APL Antibodies, F-V, F-
								PC, PS, HyperHcys,
								MTHFR
De Polo et al.[S21]	2015	Single Center Cohort	Europe	37	RVO: 37	74.5 ± 8.8	17 (46%)	F-V, F-II, MTHFR
Demirci et al.[S22]	1999	Single Center Cohort	Middle East/North	50	CRVO: 25	46.7	8 (32%)	F-V
			Africa		BRVO: 25	53.0	9 (36%)	
Di Capua et al.[S23]	2010	Single Center Cohort	Europe	110	CRVO: 62	47 ± 15	29 (47%)	APL Antibodies, F-V, F-
					BRVO: 48	55 ± 9	22 (54%)	MTHFR.
Dodson et al.[S24]	2003	Single Center Cohort	North America	40	RVO: 40	66.1	21 (52%)	F-V, F-II, MTHFR
Dong et al.[S25]	2014	Single Center Cohort	Asia	36	CRVO: 36	60.6 ± 6.3	17 (47%)	HyperHcys, MTHFR.
Fernandez-Vega et	2019	Single Center Cohort	Europe	172	CRVO: 38	62.7 ± 13.2	19 (50%)	MTHFR

al.[S26]					BRVO: 134	63.0 ± 10.1	63 (47%)	
Ferrazzi et al.[S27]	2005	Single Center Cohort	Europe	69	RVO: 69	64.1 ± 14.6	40 (58%)	MTHFR
Gao et al.[S28]	2006	Single Center Cohort	Asia	64	CRVO: 64	59.5 ± 3.8	33 (52%)	HyperHcys
Gao et al.[S29]	2008	Single Center Cohort	Asia	64	CRVO: 64	59.5 ± 3.8	33 (52%)	MTHFR
Ghaznavi et al.[S30]	2016	Single Center Cohort	Middle East/North	73	RVO: 73	52.7 ± 16.2	35 (48%)	HyperHcys
			Africa					
Giannaki et al.[S31]	2013	Single Center Cohort	Europe	51	RVO: 51	70	22 (43%)	F-V, F-II, MTHFR,
Giordano et al.[S32]	1998	Single Center Cohort	Europe	30	CRVO: 18	48 ± 4.3	14 (47%)	APL Antibodies
					BRVO: 10	53 ± 2.1		
Glacet-Bernard et	1994	Single Center Cohort	Europe	75	CRVO: 44	57	28 (64%)	APL Antibodies
al.[S33]					BRVO: 24	67	12 (50%)	
Glueck et al.[S34]	2012	Single Center Cohort	North America	164	CRVO: 132	57 ± 14	55 (42%)	APL Antibodies, F-
					CRAO: 32	52 ± 16	13 (41%)	AT-III, PC, PS, Hy
								MTHFR, PAI
Gori et al.[S35]	2004	Single Center Cohort	Europe	112	RVO: 112	60ª	52 (46%)	PAI
Gottlieb et al.[S36]	1998	Single Center Cohort	North America	21	CRVO: 21	42.1	15 (71%)	F-V
Graham et al.[S37]	1996	Single Center Cohort	Oceania	23	CRVO: 23	60.2 ± 16.2	-	F-V
Greiner et al.[S38]	1999	Single Center Cohort	Europe	116	CRVO: 48	24-91	65 (56%)	F-V
					BRVO: 33			
					CRAO: 21			
					BRAO: 14			
Gumus et al.[S39]	2006	Single Center Cohort	Middle East/North	82	CRVO: 26	57.7 ± 9.4	36 (44%)	F-V, F-II.
			Africa		BRVO: 56			

Hansen et al.[S40]	2000	Single Center Cohort	Europe	54	RVO: 54	56 ^a	32 (57%)	APL Antibodies, F-V, PC
								PS, HyperHcys
Hvarfner et al.[S41]	2003	Single Center Cohort	Europe	166	CRVO: 166	64 ± 15	86 (52%)	F-V
Incorvaia et al.[S42]	2001	Single Center Cohort	Europe	100	CRVO: 50	70.5 ± 8.7	27 (54%)	F-II
					BRVO: 50	68.7 ± 7.8	23 (46%)	
Johnson et al.[S43]	2001	Single Center Cohort	North America	44	CRVO: 44	66.6	30 (68%)	F-V
Kadayifcilar et	2001	Single Center Cohort	Middle East/North	54	CRVO: 22	59.7 ± 12	30 (55%)	APL Antibodies, AT-III,
al.[S44]			Africa		BRVO: 32			
Kalayci et al.[S45]	1999	Single Center Cohort	Middle East/North	52	CRVO: 25	64 ± 15	15 (60%)	F-V, F-II
			Africa		BRVO: 27	57 ± 13	16 (59%)	
Koylu et al.[S46]	2017	Single Center Cohort	Middle East/North	49	RVO: 49	52.1 ± 17.4	39 (80%)	F-V; F-II, HyperHcys,
			Africa					MTHFR
Kuhli et al.[S47]	2002	Single Center Cohort	Europe	142	RVO: 142	52.1	74 (52%)	F-V
Kuhli-Hattenbach et	2016	Two centers Cohort	Europe	25	RAO: 25	42.8 ± 10.8	7 (28%)	APL Antibodies, F-V, F-
al.[S48]								AT-III, PC, PS, HyperHe
Lahey et al.[S49]	2002	Single Center Cohort	North America	55	CRVO: 55	44	25 (45%)	APL Antibodies, F-V, A
								PC, PS, HyperHcys
Larsson et al.[S50]	1999	Single Center Cohort	Europe	129	CRVO: 129	59	74 (57%)	F-11
Larsson et al.[S51]	1999	Single Center Cohort	Europe	37	CRVO: 37	40.5	21 (57%)	AT-III, PC
Larsson et al.[S52]	2000	Single Center Cohort	Europe	116	CRVO: 116	60.1	67 (58%)	MTHFR
Lattanzio et al.[S53]	2006	Single Center Cohort	Europe	58	CRVO: 58	39.8 ± 9.6	38 (66%)	HyperHcys
Linna et al.[S54]	1996	Single Center Cohort	Europe	46	CRVO: 28	40.5	24 (52%)	F-V
					BRVO: 18			

Loewenstein et	1999	Single Center Cohort	Middle East/North	59	RVO: 59	61.4 ± 12.9	29 (49%)	F-V, AT-III
al.[S55]			Africa					
Manaviat et al.[S56]	2006	Single Center Cohort	Middle East/North	21	RVO: 21	52.5 ± 12.7	14 (67%)	HyperHcys
			Africa					
Marcucci et al.[S57]	2001	Single Center Cohort	Europe	100	RVO: 100	59ª	54 (54%)	AT-III, PC, PS
Marcucci et al.[S58]	2003	Single Center Cohort	Europe	55	CRVO: 26	57ª	24 (44%)	AT-III, PC, PS
					BRVO: 29			
Marcucci et al.[S59]	2007	Single Center Cohort	Europe	41	CRAO: 25	69.6 ± 12.8	20 (49%)	APL, F-V, F-II, AT-III, PC
					BRAO: 16			PS, HyperHcys
Martinez et al.[S60]	2014	Single Center Cohort	Europe	100	CRVO: 26	60.0 ± 13.5	18 (69%)	F-V, F-II, AT-III, PC, PS,
					BRVO: 74	59.0 ± 12.4	40 (54%)	HyperHcys
Minniti et al.[S61]	2014	Single Center Cohort	Europe	91	RVO: 91	57 ± 12	51 (56%)	HyperHcys, MTHFR
Moghimi et al.[S62]	2008	Single Center Cohort	Middle East/North	54	CRVO: 54	59.8 ± 12.7	32 (59%)	HyperHcys
			Africa					
Mrad et al.[S63]	2014	Single Center Cohort	Middle East/North	88	CRVO: 20	51.5 ± 18.5	62 (70%)	F-V, F-II
			Africa		BRVO: 68	49.5 ± 17.7		
Mrad et al.[S64]	2014	Single Center Cohort	Middle East/North	72	RVO: 72	48.5 ± 17.4	50 (69%)	MTHFR
			Africa					
Nagy et al.[S65]	2008	Single Center Cohort	Europe	28	RAO: 28	61.1 ± 12.3	16 (57%)	F-V, F-II, AT-III, PC, PS
Nalcaci et al.[S66]	2019	Single Center Cohort	Middle East/North	40	CRVO: 18	41.6 ± 10.0	22 (55%)	F-V, F-II, MTHFR
			Africa		BRVO: 22			
Napal et al.[S67]	2016	Single Center Cohort	Europe	170	RVO: 170	68 ± 11	93 (55%)	APL Antibodies, F-V, F-
								AT-III, PC, PS, HyperHo

Nema et al.[S68]	2018	Single Center Cohort	Asia	50	RVO: 50	54.6 ± 13.9	18 (36%)	F-V, MTHFR
Paccalin et al.[S69]	2006	Single Center Cohort	Europe	68	RVO: 68	32-90	30 (44%)	APL Antibodies
Palmowski-Wolfe et	2005	Single Center Cohort	Europe	253	CRVO: 93	-	-	HyperHcys
al.[S70]					BRVO: 70			
					CRAO: 41			
					BRAO: 49			
Palmowski-Wolfe et	2007	Single Center Cohort	Europe	254	CRVO: 93	66.5 ± 11.2	-	APL Antibodies
al.[S71]					BRVO: 67			
					CRAO: 41			
					BRAO: 53			
Pianka et al.[S72]	2000	Single Center Cohort	Middle East/North	21	CRVO: 21	58.6 ± 2.7	-	HyperHcys
			Africa					
Ponto et al.[S73]	2019	Single Center Cohort	Europe	92	CRVO: 61	64	34 (56%)	APL Antibodies, F-
					BRVO: 31	63	17 (55%)	AT-III, HyperHcys
Rehak et al.[S74]	2010	Single Center Cohort	Europe	121	CRVO: 79	63.5	57 (47%)	F-V, AT-III, PC
					BRVO: 42			
Risse et al.[S75]	2014	Single Center Cohort	Europe	139	CRVO: 88	67.3 ± 12.9	50 (57%)	APL Antibodies, F-V
					BRVO: 51	65.9 ± 11.7	26 (51%)	AT-III, PC, PS, MTH
Russo et al.[S76]	2015	Single Center Cohort	Europe	113	RVO: 113	18-77	57 (50%)	F-V, F-II, MTHFR, F
Salomon et al.[S77]	1998	Single Center Cohort	Middle East/North	102	RVO: 102	59.9 ± 16.1	58 (57%)	F-V, F-II, MTHFR
			Africa			64.0 ± 12.9	_	
Sartori et al.[S78]	2013	Single Center Cohort	Europe	132	RVO: 132	53.6 ± 16.7	77 (58%)	APL Antibodies, F-
								PC, PS, HyperHcys

Schockman et	2015	Single Center Cohort	North America	191	CRVO: 172	57 ± 15	75 (39%)	APL Antibodies, F-V, F
al.[S79]					BRVO: 19			HyperHcys
Scott et al.[S80]	2001	Single Center Cohort	Europe	45	CRVO: 24	38.7ª	11 (46%)	APL Antibodies, F-V
					BRVO: 21	46.8ª	8 (38%)	
Sinawat et al.[S81]	2017	Single Center Cohort	Asia	100	CRVO: 70	36.5 ± 8.7	32 (46%)	APL Antibodies, PC, P
					BRVO: 30	43 ± 8.2	17 (57%)	
Sodi et al.[S82]	2011	Single Center Cohort	Europe	103	CRVO: 103	67.4 ± 7.7	54 (52%)	APL Antibodies, F-V, F
								HyperHcys, MTHFR
Sofi et al.[S83]	2008	Single Center Cohort	Europe	127	BRVO: 127	65 ^a	53 (42%)	MTHFR
Soltanpour et	2013	Single Center Cohort	Middle East/North	73	RVO: 73	52.7 ± 16.2	35 (48%)	MTHFR
al.[S84]			Africa					
Sottilotta et al.[S85]	2010	Single Center Cohort	Europe	105	RVO: 105	-	46 (43%)	F-V, F-II, AT-III, PC, P
								HyperHcys, MTHFR
Tekeli et al.[S86]	1999	Single Center Cohort	Middle East/North	45	CRVO: 31	56 ± 2	25 (56%)	AT-III, PC, PS
			Africa		BRVO: 14			
Vieira et al.[S87]	2019	Single Center Cohort	Europe	60	CRVO: 35	64.0 ± 13.5	35 (58%)	APL, F-V, F-II, HyperH
					BRVO: 25			MTHFR, PAI
Vine et al.[S88]	2000	Single Center Cohort	North America	74	CRVO: 74	69.8	29 (39%)	HyperHcys
Weger et al.[S89]	2003	Single Center Cohort	Europe	136	RAO: 136	69.8 ± 10.1	78 (57%)	F-V, F-II
Weger et al.[S90]	2005	Single Center Cohort	Europe	294	BRVO: 294	67.0 ± 11.4	128 (44%)	F-V, F-II
Weger et al.[S91]	2002	Single Center Cohort	Europe	105	RAO: 105	69.1 ± 10.6	59 (56%)	HyperHcys, MTHFR
Weger et al.[S92]	2002	Single Center Cohort	Europe	84	BRVO: 84	68.1 ± 11.1	37 (44%)	MTHFR
Weger et al.[S93]	2002	Single Center Cohort	Europe	78	CRVO: 78	68.7 ± 11.4	33 (42%)	HyperHcys, MTHFR.

Yildirim et al.[S94]	2004	Single Center Cohort	Middle East/North	33	RVO: 33	61	15 (45%)	HyperHcys
			Africa					
Yioti et al.[S95]	2013	Single Center Cohort	Europe	48	RVO: 48	64 [53-70]	34 (71%)	F-V, F-II

Legend: AT-III: Antithrombin-III Activity Deficiency, F-V: Factor V Leiden Mutation; F-II: Factor II G20210A Mutation, HyperHcys: Hyperhomocysteinemia; MTHFR: MTHFR C677T Mutation; PAI: PAI 4G Mutation; PC: Protein C Activity Deficiency; PS: Protein S Activity Deficiency

	N	Factor V Leiden – KV	0	04	D			
Author Yea	r pati	ents	ES (95% CI)	Weight			N. of	
Aiddle East/North Af Aras 200 Demirci 199 Gumus 200	ica 1 40 9 50 6 82		0.05 (0.01, 0.17) 0.08 (0.03, 0.19) 0.18 (0.11, 0.28)	1.90 2.05 2.32	Author	Year	patients	
alayci 199 oylu 201 pewenstein 199 Irad 201	9 52 7 49 9 59 4 88		0.08 (0.03, 0.18) 0.12 (0.06, 0.24) 0.08 (0.04, 0.18) 0.48 (0.38, 0.58)	2.07 2.03 2.15 2.35	North America			
lalcaci 201 alomon 199 ubtotal (I^2 = 87.6%	9 40 8 102 b, p = 0.00		0.13 (0.05, 0.26) 0.07 (0.03, 0.13) 0.13 (0.06, 0.22)	1.90 2.42 19.20	Glueck	2012	32	-
outh America damczuk 200 liancardi 200	2 37	·	0.00 (0.00, 0.09)	1.85				
ubtotal ($I^2 = .\%$, p	, 55 = .)		0.02 (0.00, 0.06)	3.96	Europe			
lbisinni 199 rsène 200	8 36 5 234		0.11 (0.04, 0.25) 0.05 (0.03, 0.09)	1.83 2.69	Greiner	1999	35	_
ombeli 200 ucciarelli 201 ruciani 200	2 68 7 313 3 29		0.04 (0.02, 0.12) 0.05 (0.03, 0.09) 0.00 (0.00, 0.12)	2.22 2.74 1.68	Kuhli–Hattenbach	2016	25	
e polo 201 i Capua 201	5 37 0 110		 0.14 (0.06, 0.28) 0.06 (0.03, 0.13) 0.02 (0.02, 0.13) 	1.85 2.45	Marcucci	2007	41	•
iannaki 200 reiner 199	3 40 3 51 9 81		0.03 (0.00, 0.13) 0.08 (0.03, 0.18) 0.22 (0.15, 0.32)	2.06 2.31	Nagy	2008	28	
ansen 200 varfner 200 ubli 200	0 54 3 166 2 142		0.02 (0.00, 0.10) 0.12 (0.08, 0.18) 0.10 (0.06, 0.16)	2.09 2.59 2.54	Weger	2003	136	-
inna 199 Aartinez 201	6 45 4 100		0.10 (0.08, 0.10) 0.04 (0.01, 0.15) 0.07 (0.03, 0.14)	2.34 1.99 2.41	Subtotal (I^2 = 69.4%,	p = 0.01)		<
lapal 201 onto 201 ehak 201	6 170 9 92 0 121	-	0.01 (0.00, 0.04) 0.16 (0.10, 0.25) 0.11 (0.06, 0.18)	2.60 2.37 2.49			0.880	
isse 201 usso 201 artori	4 139 5 113		0.04 (0.02, 0.08) 0.04 (0.02, 0.10)	2.52 2.46	Overall $(1/2) = 61.82\%$	n = 0.02	- 0.880	<
cott 200 odi 201	1 45 1 103		0.03 (0.02, 0.11) 0.00 (0.00, 0.08) 0.08 (0.04, 0.15)	2.42 1.98 2.42		p 0.02)/		
ottilotta 201 /ieira 201	0 105 9 60		0.00 (0.00, 0.04) 0.02 (0.00, 0.09)	2.43 2.15				-
Veger 200 ′ioti 201 Subtotal (I^2 = 73.0%	5 294 3 48 b, p = 0.00		0.07 (0.04, 0.10) 0.02 (0.00, 0.11) 0.06 (0.04, 0.07)	2.73 2.02 62.00				0
lorth America Thapin 201	5 20		0.20 (0.08, 0.42)	1.42				
iardella 199	8 30 8 21		0.03 (0.01, 0.17)	1.71				
ohnson 200	1 44		0.02 (0.00, 0.12)	1.97				
ahey 200 Schockman 201	2 55 5 191	_	0.04 (0.01, 0.12) 0.07 (0.04, 0.11)	2.10 2.63				
ubtotal (I^2 = 14.7%	b, p = 0.32		0.05 (0.03, 0.08)	11.28				
Vema 201	8 50		0.00 (0.00, 0.07)	2.05				
Dceania Graham 199	6 23	-	0.04 (0.01, 0.21)	1.52				
leterogeneity betwe)verall (I^2 = 79.65%	en groups , p = 0.00	s: p = 0.016);	0.06 (0.05, 0.08)	100.00				

Factor V Leiden – RAO

		%
	ES (95% CI)	Weight
	0.06 (0.02, 0.20)	15.36
	0.09 (0.03, 0.22)	15.98
	0.20 (0.09, 0.39)	13.66
•	0.00 (0.00, 0.09)	17.05
	0.14 (0.06, 0.31)	14.44
	0.06 (0.03, 0.11)	23.51
	0.07 (0.02, 0.15)	84.64
\diamond	0.07 (0.02, 0.13)	100.00
	1	
0 .1 .2 .3 .4 .5 .6 Prevalence	.7	

Α

Factor II G20210A – RVO

В

Α

В

ATIII Deficiency – RVO

		N. of			%			N. of			%			N
Author	Year	patients		ES (95% CI)	Weight	Author	Year	patients		ES (95% CI)	Weight	Author	Year	pa
						Middle East/Nor	th Africa		1				(h)	
Middle East/No	orth Africa					Ates	2006	54		0.13 (0.06, 0.24)	4.28	Middle East	North Afric	:a _
Ates	2006	54		0.02 (0.00, 0.10)	4.55	El–Asrar	1998	57		0.19 (0.10, 0.33)	3.91	Ates	2006	54
El–Asrar	1998	57	-	0.07 (0.03, 0.18)	4.55	Kadayifcilar	2001	54		0.04 (0.01, 0.13)	4.28	El–Asrar	1998	57
Kadayifcilar	2001	54	-	0.02 (0.00, 0.10)	4.55	Tekeli	1999	45		0.20 (0.11, 0.34)	4.01	Tekeli	1999	45
Loewenstein	1999	59		0.14 (0.07, 0.25)	4.71	Subtotal $(I^2 = 6)$	65.1%, p = 0.0)4)		0.13 (0.06, 0.22)	16.48	Subtotal (I^	·2 = .%, p =	.)
Tekeli	1999	45		0.02 (0.00, 0.12)	4.20				1					
Subtotal (I^2 =	= 54.6%, p =	= 0.07)		0.05 (0.01, 0.10)	22.55	South America			_!			South Amer	ica	
						Adamczuk	2002	37		0.00 (0.00, 0.09)	3.72	Adamczuk	2002	37
South America									1					
Adamczuk	2002	37		0.00 (0.00, 0.09)	3.82	F			i i					
						Europe	2005	224			F 76	Furope		
						Arsene	2005	234		0.00 (0.00, 0.02)	5./0	Bombeli	2002	65
Europo			1			Cruciani	2002	20			4.59	Hanson	2002	5/
Arcòpe	2005	224			6 71	Hansen	2003	29 54			3.33 4.28	Marcussi	2000	10
Arsene	2005	254		0.00 (0.00, 0.02)	0.71	Larsson	1999	37		0.03 (0.00, 0.14)	3.72	Marcucci	2001	
Bombell	2002	68		0.00 (0.00, 0.05)	4.97	Marcucci	2001	100	<u> </u>	0.00 (0.00, 0.04)	5.05	Marcucci	2003	50
Larsson	1999	37		0.03 (0.00, 0.14)	3.82	Marcucci	2003	56		0.00 (0.00, 0.07)	4.31	Martinez	2014	10
Marcucci	2001	100		0.00 (0.00, 0.04)	5.63	Martinez	2014	100		0.00 (0.00, 0.04)	5.05	Napal	2016	17
Marcucci	2003	56	• <u>·</u>	0.00 (0.00, 0.07)	4.58	Napal	2016	170		0.02 (0.01, 0.05)	5.54	Risse	2014	13
Martinez	2014	100		0.00 (0.00, 0.04)	5.63	Rehak	2010	121		0.02 (0.00, 0.06)	5.25	Sartori	2013	13
Napal	2016	170		0.04 (0.02, 0.07)	6.37	Risse	2014	139		0.01 (0.00, 0.05)	5.34	Sottilotta	2010	1(
Ponto	2019	92	+	0.02 (0.01, 0.08)	5.49	Sartori	2013	132	-	0.01 (0.00, 0.05)	5.07	Subtotal (I^	2 = 74.5%,	p = 0
Rehak	2010	121	-	0.00 (0.00, 0.03)	5.92	Sottilotta	2010	105		0.00 (0.00, 0.04)	5.10			
Risse	2014	139		0.01 (0.00, 0.05)	5.64	Subtotal (I^2 = 2	15.0%, p = 0.2	29)	<u>♦</u> !	0.00 (0.00, 0.01)	62.40	North Amer	ica	
Sottilotta	2010	105		0.00 (0.00, 0.04)	5.70				1			Chapin	2015	20
Subtotal (IA2 =	= 45 0% n =	= 0.05)	0		60.46	North America			1			Glueck	2012	1:
50510101 (1-2-		- 0.05)	×.	0.00 (0.00, 0.01)	00.40	Chapin	2015	20		0.00 (0.00, 0.16)	2.75	Labov	2012	54
North Amorica						Glueck	2012	132	-	0.06 (0.03, 0.11)	5.29	Earley Subtotal /IA	2002	
Chamin	2015	20			2.60	Lahey	2002	55		0.00 (0.00, 0.07)	4.31	Subtotal (I/	z = .%, p =	.)
Chapin	2015	20		0.00 (0.00, 0.18)	2.68	Subtotal $(I^2 = .$.%, p = .)			0.01 (0.00, 0.07)	12.35			
Glueck	2012	132		0.07 (0.03, 0.13)	5.90				i			Asia		
Lahey	2002	55		0.00 (0.00, 0.07)	4.58	Asia			1			Sinawat	2017	1(
Subtotal (I^2 =	= .%, p = .)			0.01 (0.00, 0.08)	13.17	Sinawat	2017	100	-	0.01 (0.00, 0.05)	5.05			
Heterogeneity	between g	roups: p = 0.0)23						I			Heterogene	ity betwee	n grc
Overall $(I^2 = 0)$	57.78%, p =	= 0.00);	\diamond	0.01 (0.00, 0.02)	100.00	Heterogeneity b	etween grou	ps: p = 0.000				Overall (I^2	. = 74.42%,	p = 0
-		3503	T I			Overall $(1^2 = 75)$	5.16%, p = 0.0	0);	Ŷ	0.02 (0.00, 0.03)	100.00			-
			0.05.1.15	.2 .25					0 .05 .1	.15 .2 .25				
			Prevalence						Prevalence	e				

PC Deficiency – RVO

С

Α

Hyperhomocysteinemia – RVO

В

		<i>,</i>							recercizy goas rive			N	of			0/6
Author	Voar	N. of	F	S (05% CI)	% Weight			N. of		%	Author	Year pa	itients		ES (95% CI)	Weight
Autio	Tear	patients			weight	Author	Year	patients	ES (95% CI)	Weight	Middle East/North	Africa	Į.			
Middle East/North Afri	ica										Koylu	2017 49		-	0.08 (0.03, 0.19)	3.07
El–Asrar	2002	56	0).60 (0.46, 0.73)	3.36	Middle East/No	rth Africa		1 		Mrad	2014 72			0.00 (0.00, 0.05)	3.39
Ghaznavi	2016	73	0).44 (0.33, 0.55)	3.60	Koylu	2017	49	0.47 (0.34, 0.61)	3.78	Nalcaci	2019 40			0.10 (0.04, 0.23)	2.89
Koylu	2017	49	0).22 (0.13, 0.36)	3.38	Mrad	2014	72	0.81 (0.70, 0.88)	4.21	Salomon	1998 10)2		0.25 (0.18, 0.35)	3.63
Manaviat	2006	21	0).24 (0.11, 0.45)	2.71	Nalcaci	2019	40	0.17 (0.09, 0.32)	3.53	Soltanpour	2013 73			0.12 (0.07, 0.22)	3.40
Moghimi	2008	54	0).31 (0.21, 0.45)	3.44	Soltanpour	2013	73	0.27 (0.18, 0.39)	4.22	Subtotal (I^2 = 89	0.6%, p = 0.00)		>	0.09 (0.02, 0.22)	16.38
Planka	2000	21	0).14 (0.05, 0.35)	2./1	Subtotal $(1^2 =$	95.3% n = 0.0		0.43 (0.16, 0.73)	15 73			1			
Fildirim Subtotal (IA2 - 75.004	2004	55).27 (0.15, 0.44)	3.10		55.570, p = 0.	,,,,,		15.75	South America					
Subtotal $(1^2 = 75.9\%)$	p = 0.00).52 (0.22, 0.44)	22.50	Furene			I. I		Adamczuk	2002 3/			0.11 (0.04, 0.25)	2.81
South America			i.			Europe	2001			4.42	Biancardi	2007 55		-	0.09 (0.04, 0.20)	3.18
Adamczuk	2002	37		27 (0 15 0 43)	3 19	Boyd	2001	66	0.45 (0.34, 0.57)	4.12	Subtotal $(1/2 = .%)$, p = .)			0.10 (0.04, 0.17)	5.98
Addinezuk	2002	57	,		5.19	Cruciani	2003	29	0.59 (0.41, 0.74)	3.10	Furrence		1			
			i			De polo	2015	37	0.35 (0.22, 0.51)	3.43	Europe Roud	2001 66				2 2 2
Europe			1			Fernandez–Veg	ga 2019	172	0.46 (0.39, 0.53)	4.90	Cabill	2001 60		_	0.08(0.05, 0.17)	2.52
Bucciarelli	2017	313 -	0).13 (0.10, 0.17)	4.01	Ferrazzi	2005	69	0.46 (0.34, 0.58)	4.07	Cruciani	2001 01			0.06 (0.04, 0.16)	2.20
Cruciani	2003	29	0).00 (0.00, 0.12)	3.00	Giannaki	2013	51	0.45 (0.32, 0.59)	3.83	Do polo	2003 29			0.10(0.04, 0.20) 0.27(0.15, 0.43)	2.30
Hansen	2000	54	O).35 (0.24, 0.49)	3.44	Larsson	2015	116	0.15 (0.32, 0.55)	4.64	Di Capua	2013 37	0		0.27 (0.13, 0.43)	2.01
Lattanzio	2006	58).14 (0.07, 0.25)	3.48	Laisson	2000	110		4.04	Dodson	2010 11			0.19(0.13, 0.27) 0.10(0.04, 0.23)	2.80
Martinez	2014	100	0).16 (0.10, 0.24)	3.73	Minniti	2014	91	0.49 (0.39, 0.59)	4.38	Fernandez-Vega	2003 40			0.10(0.04, 0.23) 0.15(0.11, 0.21)	2.09
Minniti	2014	91	0	0.04 (0.02, 0.11)	3.70	Risse	2014	139	0.42 (0.34, 0.51)	4.69	Ferrazzi	2015 17			0.13(0.11, 0.21) 0.29(0.19, 0.41)	3.09
Napal	2016	170	0).36 (0.30, 0.44)	3.90	Russo	2015	113	0.45 (0.36, 0.54)	4.65	Giannaki	2003 02			0.06 (0.02, 0.16)	3.11
Palmowski–Wolfe	2005	163	0).42 (0.35, 0.50)	3.89	Sodi	2011	103	0.48 (0.38, 0.57)	4.54	Larsson	2013 31	6 — '		0.05(0.02, 0.10)	3 70
Ponto	2019	92	0).21 (0.14, 0.30)	3.70	Sofi	2008	127	0.56 (0.47, 0.64)	4.70	Minniti	2000 11	· -	_	0.00 (0.02, 0.11)	3.52
Sartori	2013	132	0).13 (0.08, 0.21)	3.78	Sottilotta	2010	105	0 38 (0 29 0 48)	4 56	Risse	2014 13	9	<u> </u>	0.15 (0.10, 0.23)	3 74
Sodi	2011	103	0).21 (0.15, 0.30)	3.74	Vioira	2010	60		4.01	Russo	2015 11	3		0.15 (0.10, 0.23)	3 71
Sottilotta	2010	105	0).34 (0.26, 0.44)	3.75	Vielia	2019	00		4.01	Sodi	2013 10	3	<u> </u>	0.17 (0.11, 0.25)	3.63
Vieira	2019	60	0).43 (0.32, 0.56)	3.50	weger	2002	84	0.42 (0.32, 0.52)	4.30	Sofi	2008 12	7		0.21 (0.15, 0.29)	3.75
Weger	2002	78	0).21 (0.13, 0.31)	3.63	Weger	2002	78	0.40 (0.30, 0.51)	4.29	Sottilotta	2010 10)5		0.28 (0.20, 0.37)	3.64
Subtotal (I^2 = 91.2%	o, p = 0.00)	<	0).21 (0.14, 0.28)	51.24	Subtotal (I^2 =	38.3%, p = 0.0	06)	0.44 (0.41, 0.48)	68.27	Vieira	2019 60			0.15 (0.08, 0.26)	3.25
			1								Weger	2002 84			0.05 (0.02, 0.12)	3.50
North America						North America					Weger	2002 78		<u> </u>	0.17 (0.10, 0.26)	3.45
Brown	2002	20	0).75 (0.53, 0.89)	2.67	Glueck	2012	132 —	0.35 (0.27, 0.43)	4.72	Subtotal $(I^2 = 70)$.3%, p = 0.00)	\diamond	*	0.15 (0.12, 0.18)	64.70
Chapin	2015	20	0).30 (0.15, 0.52)	2.67	Clucch	2012						l.			
Lahey	2002	55	0).10 (0.04, 0.22)	3.28						North America					
Schockman	2015	191	0).23 (0.18, 0.30)	3.92	A = 1-					Glueck	2012 13	32		0.22 (0.16, 0.30)	3.76
Subtotal (I^2 = 89.5%	o, p = 0.00)		0).31 (0.12, 0.55)	12.54	Asia										
			1			Dong	2014	36	0.50 (0.34, 0.66)	3.39			1			
Asia		_				Gao	2008	64	0.53 (0.41, 0.65)	4.08	Asia		1			
Cho	2019	401	0).14 (0.11, 0.18)	4.04	Nema	2018	50	0.28 (0.17, 0.42)	3.80	Dong	2014 36	; -		0.28 (0.16, 0.44)	2.78
Dong	2014	36	0).22 (0.12, 0.38)	3.17	Subtotal (I^2 =	.%, p = .)	-	0.43 (0.28, 0.60)	11.28	Gao	2008 64	i i-	-	0.22 (0.14, 0.33)	3.30
Gao	2006	64	0).25 (0.16, 0.37)	3.53						Nema	2018 50			0.00 (0.00, 0.07)	3.09
Subtotal (I^2 = .%, p =	= .)		0).19 (0.11, 0.28)	10.74	Heterogeneity	between grou	ps: p = 0.224	i		Subtotal $(I^2 = .\%)$, p = .)			0.13 (0.00, 0.39)	9.18
Heteroaeneitv betwee	en groups: n	= 0.263	1			Overall $(1/2 = 7)$	ν. 2.39%, σ = 0.0)0);	0.44 (0.39. 0.48)	100.00	Hataraganaity bat	ween groups n -	- 0 124			
Overall (1^2 = 88.57%	, p = 0.00):		۵ ۵).24 (0.19, 0.30)	100.00							p = 0.00	- 0.124	1		100.00
00.0770	,		, v					·····	· · · · · · · · · · · · · · · · · · · ·		Overall $(1/2 = 79.0)$	$\mu_{\gamma 0}, \mu = 0.00);$	\sim		0.15 (0.10, 0.17)	100.00
			<u> </u>												1	
		0.1.2	.3 .4 .5 .6 .7 .8 .9 1					0.1.2.3	.4 .5 .0 ./ .8 .9 I				0 1	, , , , , , , , , , , , , , , , , , ,	- 5	
			Prevalence					ŀ	revalence				ο Ρrοι	valence	-	

MTHFR C677T Heterozygous – RVO

С

MTHFR C677T Homozygous – RVO

Α

Hyperhomocysteinemia – RAO

В

MTHFR C677T heterozygous – RAO

N. of N. of % Author Year patients ES (95% CI) Weight Year patients Europe Cahill 2001 26 2012 32 0.61 (0.44, 0.76) 22.99 Weger 2002 105 Subtotal $(I^2 = .\%, p = .)$ North America 77.01 0.44 (0.35, 0.53) 2002 105 2012 Glueck 32 Heterogeneity between groups: p = 0.091 Heterogeneity between groups: p = 0.001 0.48 (0.39, 0.56) 100.00 Overall $(I^2 = .\%, p = .);$
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 Prevalence

MTHFR C677T Homozygous – RVO

Α

PAI 4G Heterozygous – RVO

В

PAI 4G Homozygous – RVO

L

Antiphospholipid Antibodies – RVO

A	Number of studies	Effect Size with 95% Cl		В	Number of studies	v
APL Antibodies				APL Antibodies		
CRVO	22	0.09 [0.05, 0.15] 🛛 🗖 🗖	0 6 2 5	Low Bias	13	0.0
BRVO	16	0.06 [0.01, 0.15] —	0.055	Medium–High Bias	11	0.1
AT–III Deficiency				AT–III Deficiency		
CRVO	12	0.01 [0.00, 0.03]	0 502	Low Bias	8	0.0
BRVO	8	0.00 [0.00, 0.02]	0.392	Medium–High Bias	12	0.0
Factor II G20210A				Factor II G20210A		
CRVO	15	0.04 [0.02, 0.06]	0 474	Low Bias	25	0.0
BRVO	12	0.03 [0.01, 0.05]	0.474	Medium–High Bias	9	0.04
Factor V Leiden				Factor V Leiden		
CRVO	22	0.07 [0.04, 0.10] 📕	0 224	Low Bias	32	0.0
BRVO	16	0.10 [0.05, 0.16] —	0.554	Medium–High Bias	14	0.0
Hyperhomocysteinemia				Hyperhomocysteinemia		
CRVO	14	0.24 [0.17, 0.31] —	0 761	Low Bias	19	0.2
BRVO	5	0.26 [0.13, 0.41]	0.701	Medium–High Bias	10	0.1
MTHFR C677T Hetero				MTHFR C677T Heterozygous		
CRVO	10	0.43 [0.39, 0.47]		Low Bias	18	0.4
BRVO	5	0.43 [0.32, 0.55] –	0.994	Medium–High Bias	6	0.4
MTHFR C677T Homo				MTHFR C677T Homozygous		
CRVO	12	0.15 [0.11, 0.20]	0.015	Low Bias	22	0.1
BRVO	6	0.15 [0.09, 0.21] —	0.915	Medium–High Bias	8	0.1
PC Deficiency				PC Deficiency		
CRVO	12	0.02 [0.01, 0.05]	0.626	Low Bias	8	0.0
BRVO	8	0.03 [0.00, 0.09] 📕 —	0.030	Medium–High Bias	14	0.0
PS Deficiency				PS Deficiency		
CRVO	8	0.03 [0.01, 0.06] 🗖	0 5 7 6	Low Bias	5	0.0
BRVO	5	0.06 [0.00, 0.19] —	0.520	Medium–High Bias	12	0.02
		0.2	.4 .6			

Prevalence

Number of studies	Effect Size with 95% Cl		
13 11	0.05 [0.03, 0.14 [0.07,	0.08]	0.018
8	0.01 [0.00,	0.04]	0.885
12	0.01 [0.00,	0.03]	
25	0.03 [0.02,	0.04] •	0.552
9	0.04 [0.01,	0.08] •	
32	0.07 [0.05,	0.09] •	0.668
14	0.05 [0.01,	0.11] •	
19 10	0.29 [0.23, 0.17 [0.10,	0.35] — — — — — — — — — — — — — — — — — — —	0.016
18 6	0.45 [0.39, 0.40 [0.31,	0.50] — — — — — — — — — — — — — — — — — — —	0.389
22	0.12 [0.09,	0.16] —	0.065
8	0.18 [0.13,	0.24] —	
8	0.01 [0.00,	0.02]	0.097
14	0.02 [0.00,	0.06] ——	
5	0.02 [0.00,	0.06] —-	0.973
12	0.02 [0.00,	0.04] —-	
		0.5	

Prevalence