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Abstract: In numerical simulations of components subjected to low-cycle fatigue loading, the material
cyclic plasticity behavior must be modelled until complete stabilization, which occurs approximately
at half the number of cycles to failure. If the plastic strain per cycle is small, a huge number of cycles
must be simulated, which results into a huge and thus unaffordable simulation time. Acceleration
techniques for shortening this time are useful, although their accuracy needs to be checked. This work
aims to compare different approaches (nonlinear kinematic with “initial” and “stabilized” parameters
and combined nonlinear kinematic and isotropic with the speed of stabilization fictitiously increased).
It considers two benchmarks taken from the literature, in which the material has opposite cyclic
behaviors (hardening, softening). A plane finite element model can be used in both benchmarks, thus
permitting a simulation up to complete stabilization. Results confirm that the common approach of
considering only the kinematic model (calibrated on “initial” or “stabilized” material state) from the
very first cycle could lead to relevant errors. The acceleration technique based on a fictitious increase
in the speed of stabilization leads to accurate results. Guidelines for calibrating this technique on a
material’s hardening or softening behavior are, finally, proposed.

Keywords: nonlinear plasticity; accelerated techniques; cruciform and mold case studies; cyclic
softening/hardening; finite element method

1. Introduction

Structural components can be subjected to mechanical and/or thermal cyclic loading conditions,
which often lead to stress redistribution in structures with localized plasticity regions. Correct
prediction of the local stress–strain history is quite important to estimate the low-cycle fatigue life
of components as accurately as possible. The finite element (FE) method has been proved to be a
convenient tool for this purpose.

A crucial aspect in FE modelling of components undergoing low-cycle fatigue is the choice of an
appropriate elasto-plastic material model. Over the last few decades, several cyclic plasticity models
have been proposed [1–6], and most of them are already implemented in commercial FE software.
The constitutive material model should be able to represent as closely as possible the material behavior
observed during experimental testing. It is also worth noting that it is possible to estimate the durability
of a structure subjected to cyclic loading only if it has reached its steady state response (i.e., complete
material stabilization) [7]. Some metallic materials stabilize approximately at half the number of cycles
to failure [7], whereas other materials never stabilize completely [8]. In either case, if the plastic strain
is small, materials would exhibit a rather slow evolution of their properties and, therefore, a huge
number of cycles must be simulated. When the complexity of the component geometry also leads to
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an FE model with a relevant number of degrees of freedom, the simulation of the cycle-by-cycle model
response could require unfeasible computational time. Such evidence has been recently reported in [9],
for notched 316 steel samples. Several block loading histories were applied to achieve stabilization.
Local ratcheting curves up to stabilization were simulated with FE analysis. Results obtained with the
Ahmadzadeh-Varvani (A-V) kinematic hardening model were compared with measured values.

Some alternative methods have thus been proposed in the literature to alleviate the above-
mentioned computational burden. Some authors [10,11] have suggested that only a few cycles be
simulated. This procedure, although not well defined, seems suitable if a thermal loading with creep
is imposed, as the presence of visco-elasticity generally tends to significantly reduce the time to
stabilization. A different approach has been proposed by [12,13], who suggest using a kinematic model
with stabilized material properties already from the beginning of FE analysis. Some other authors
have proposed more sophisticated approaches with an attempt to follow the material evolution from
the initial transient up to stabilization. An extrapolation technique, which significantly reduces the
calculation time, has been developed by [14], if creep constitutes the damage criterion. To evaluate the
stabilized cyclic behavior directly, the direct cyclic algorithm (DCA) was developed in [15]. DCA uses
a combination of Fourier series and time integration of the nonlinear material behavior to obtain the
stabilized response of a component iteratively [16]. As pointed out in [16], due to the characteristics
of DCA and the inevitable numerical error caused by the approximation and convergence problem,
this method seems not always able to provide accurate solutions for complicated engineering problems.
As an alternative acceleration procedure, the cycle-jumping procedure has been devised in [17,18].
This technique makes use of the Taylor’s expansion to bypass the calculation of some intermediate
cycles, based on the fact that the stress redistribution is quite small over time. Even if quite promising,
this approach has not yet been implemented in commercial code and thus requires a heavy additional
programming effort. Finally, in [19], the material property evolution is accelerated by fictitiously
increasing a parameter that governs the speed of stabilization in the presence of creep, and for either
cyclic hardening or softening behavior. Despite its simplicity, this method seems able to preserve the
physics of the cycle-by-cycle evolution of material properties. Furthermore, the method appears to be
useful, especially in cases dealing with materials that exhibit a rather slow cyclic evolution like in [20].

In the present study, this latter accelerated technique was investigated by considering different
material behaviors and loading conditions. For this purpose, two different case studies are presented:
a mold for continuous casting of steel (cyclic softening, thermal loading) and a cruciform welded
joint (cyclic hardening, displacement-controlled loading). These two cases were selected from those
available in the literature, as they are characterized by a quite simple geometry that also allows a
complete simulation without an accelerated technique to be performed, to be used as a reference.

2. Theoretical Background of Cyclic Plasticity Models

The elasto-plastic material behavior under cyclic loading can be represented by a combined
kinematic and isotropic material model. A kinematic model captures the Bauschinger effect, since it
assumes that, under a progressive yielding, the yield surface translates in the stress space (see Figure 1a),
at the same time maintaining a constant size [1–6]. By contrast, the isotropic model (see Figure 1b)
assumes that, at any stage of loading, the center of the yield surface remains at the origin and it expands
homothetically in size as plastic strain develops.

The von Mises yield surface can be represented as [1–6]:√
3
2
(S−X) : (S−X) −R− σ0 = 0 (1)

where S is the deviatoric stress tensor, X is the backstress (kinematic) tensor, R is the drag stress, and
σ0 is the initial yield stress before any plastic deformation. The kinematic part (translation of the yield
surface) is controlled by X, whereas the isotropic part (homothetic expansion of the yield surface) is
managed by R.
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Different kinematic models have been developed to relate the backstress X to the plastic strain
εpl [1–6]. The Armstrong and Frederick (A-F) nonlinear kinematic model is described by the following
equation [1–6]:

dX =
2
3

Cdεpl − γX dp (2)

where C is the hardening modulus and γ is the recover parameter, which controls the decay of C in
dependence on the accumulated plastic strain, p = (2/3 dεpl: dεpl)1/2. Decomposition of the backstress
into several A-F models gives the Chaboche model [1–6]. Nevertheless, the A-F model already gives a
satisfactory description of the material behavior considered in the present work, as can be seen in [8,21].
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Figure 1. Schematic evolution in stress space and in uniaxial tension of (a) the nonlinear kinematic and
(b) the nonlinear isotropic material models.

Very often, a nonlinear isotropic model (known also as the Voce model [22]) is adopted for
modeling material strain hardening or softening. Expansion of the yield surface is described with the
change in the drag stress R [1–3]:

R = R∞[1− exp(−bp)] (3)

where b is the speed of stabilization and R∞ is the stabilized stress. The stabilized stress can be positive
or negative, representing either cyclic hardening (R∞ > 0) or softening (R∞ < 0), respectively. Evolution
of R can also be interpreted as the relative change in the maximum stress σmax,i in the Nth cycle with
respect to the maximum stress in the first (σmax,1) and in the stabilized (σmax,s) cycle [1–4]:

σmax,i − σmax,1

σmax,s − σmax,1
≈

R
R∞

= 1− exp (−bp) (4)

The material stabilizes when R reaches R∞, which (according to [4]) occurs approximately when the
exponent bp = 5. Obviously, as is also pointed out in [4], a more precise way to determine the material
stabilization is to plot the normalized maxima (Equation (4)) as a function of the accumulated plastic
strain for several low-cycle fatigue tests; see [23]. For the CuAg alloy presented in [23], the material
stabilizes when the exponent is approximately in the range 4 ÷ 12. In case of strain-controlled loading,
the plastic strain range per cycle ∆εpl is approximately constant and the plastic strain accumulated
after N cycles becomes [1,4]:

p ≈ 2∆εplN (5)

When the stabilized condition is reached, it is:

2bNstab∆εpl ≈ 5 (6)

where Nstab is the number of cycles to stabilization. This relationship (6) shows that Nstab is inversely
proportional to both b and ∆εpl. Moreover, it shows that Nstab may become very large when b and ∆εpl

are both small.
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Figure 2 plots Equation (4) versus the accumulated plastic strain (on a log scale) for different
values of b. As can be noticed, by increasing the speed of stabilization b, the curve shifts to the left,
while its “S-shape” remains essentially unaffected. In other words, a material with a higher value of b
reaches its stabilized condition at a lower value of p (i.e., in a smaller number of cycles).
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Figure 2. Sensitivity analysis of Equation (4) for different values of b.

Following the recommendations of the literature (e.g., see [1,5]), the material parameters are
calibrated on experimental data obtained with specimens under cyclic strain-controlled loading.
However, a real component often exhibits a combination of both stress- and strain-controlled conditions
that could have some effect on the final stabilized stress–strain response. In this case, calibration should
possibly be tailored on the real stress–strain evolution.

3. First Case Study: Cyclic Softening Material Behavior and Thermal Loading

Steelmaking components are often subjected to thermo-mechanical loads applied cyclically.
Typical examples are rolls for hot strip rolling, anodes in electric arc furnaces and molds for continuous
casting [24–26].

3.1. Round Mold under Cyclic Thermal Flux

During the continuous casting process, the molten steel flows into a water-cooled mold. The mold
controls the initial solidification of steel and the shape of semi-finished products. Different cross sections
may be adopted (square, rectangular or rounded shapes) according to the geometry of the final product
(billets, blooms or slabs). Due to the direct contact with the molten steel, the inner part of the mold is
subjected to a high thermal flux with a characteristic profile decreasing from top to bottom; see Figure 3a.
Consequently, large temperature gradients occur across the mold thickness, especially in the region near
to the meniscus (free level of the liquid metal). Temperature gradients cause relevant elastic and plastic
strains. The overall thermal flux distribution also changes over time, from its full value (when the plant
is in service) to zero (when the plant is switched off); see Figure 3c. The component is simply supported,
and it is free to expand. Molds are made of copper alloys, as they have a favorable combination of high
thermal conductivity and good mechanical strength. This study considers a CuAg0.1 alloy (see Table 1),
whose mechanical properties were experimentally obtained in [8].

3.1.1. Numerical Model of the Round Mold

The mold here investigated has a round cross-section (inner diameter: 200 mm, thickness: 16 mm)
and is 1000 mm long, similar to the case presented by [27]. Due to axi-symmetry, a two-dimensional
(2D) finite element model was adopted (see Figure 3a,b), thus strongly decreasing the computational
time. The finite element model has 760 elements and 2487 nodes. The mesh was refined in the meniscus
area (point “A”; see Figure 3b), where the highest temperatures and stress gradients are expected to
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occur. Firstly, a thermal analysis was performed to obtain the temperature distribution, which was
used as an input in the subsequent mechanical analysis.

For the thermal analysis, plane elements with eight nodes were adopted. A thermal flux was
imposed at the inner surface, while convection was considered on the outer surface to simulate the
water cooling. The thermal flux q proposed in [27] was increased by around 50%, so that the mold
reached a maximum temperature close to 300 ◦C. As a consequence, an increase in the amount of plastic
strain was obtained. The temperature of the cooling water was 40 ◦C and the convection coefficient
was 48,000 W/m2K. As observed in [25], the variation in the thermal flux can be approximated by
simulating a sequence of steady-state analyses. A nonlinear solution was carried out to take into
account the temperature dependence of thermal properties.

The maximum temperatures and thermal gradients occur in the region close to the meniscus in
the location labeled with the letter “A” in Figure 3b.
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Figure 3. (a) Round mold with thermal flux distribution; (b) axisymmetric finite element (FE) model
with mesh; (c) loading condition.

The mechanical analysis was carried out after imposing, as thermal loading, the temperature
distribution calculated in the thermal analysis. No mechanical constraints were applied to the model,
as the actual mold is free to expand. Plane elements with eight nodes were used. The temperature
dependence of material parameters was taken into consideration. A nonlinear combined kinematic
(A-F) and isotropic (Voce) material model was used. Model parameters of the CuAg0.1 alloy are
reported in Table 1.

Table 1. Mechanical properties of CuAg0.1 alloy, data from [8].

Temp. (◦C) E (MPa) Es (MPa) σ0 (MPa) σ0* (MPa) C (MPa) γ R∞ (MPa) b

20 119,988 114,763 113 86 51,140 702.4 −68 2.352
250 106,600 94,759 110 57 40,060 915.8 −75 3.894
300 103,800 94,793 108 50 32,660 737.3 −77 5.293

3.1.2. Reference Case: Cyclic Behavior up to Stabilization

To establish a reference case, the nonlinear combined kinematic and isotropic model had to
be brought up to complete stabilization. For this purpose, it is necessary to choose a criterion that
establishes when material stabilization is reached. A possible solution is that of controlling the variation
of stresses or strains from cycle to cycle. In general, the choice of the parameter to be monitored
can be arbitrary. In this work, the two considered cases undergo low-cycle fatigue. Thus, after the
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numerical simulation, a durability analysis has to be performed by means of a Manson–Coffin curve
and, consequently, the stabilization criterion was defined in terms of equivalent strain range [7]:

∆εeq =

√
2

3

√
[∆(ε1 − ε2)]

2 + [∆(ε2 − ε3)]
2 + [∆(ε3 − ε1)]

2 (7)

where ∆(εi−εj) is the range of the relative difference between principal strains εi and εj. The relative
difference between the equivalent strain ranges in two subsequent cycles was calculated:

∆req =


∣∣∣∆εeq(i) − ∆εeq(i + 1)

∣∣∣
∆εeq(i)

× 100 (8)

and compared with a threshold value. According to the adopted criterion, the material stabilizes
within 489 cycles, as can be also seen in Figure 4. For the critical point “A”, Figure 4a displays the axial,
hoop and von Mises maximum stresses at each cycle, versus the number of cycles. In this location, “A”,
the state of stress is biaxial, as the radial stress is obviously zero (free surface). In Figure 4b, the three
components of strain range and the equivalent strain range are plotted as a function of the number
of cycles. It can be observed that the hoop strain range is almost constant, whereas the other two
components increase until stabilization. The equivalent strain range increases throughout the whole
loading cycle, with a maximum rise of about 20%.
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Figure 4. Combined material model for the round mold: (a) maximum stresses and (b) strain ranges,
versus the number of cycles (point “A”; see Figure 3b).

This behavior can be clearly detected in the evolution of hoop stress–strain cycles, as depicted in
Figure 5. For more clarity, the figure only plots the first five cycles, the 50th, 75th, 100th, 150th and 200th
cycle, and the last stabilized cycle. The softening phenomenon is more pronounced at the beginning of
the cyclic loading, i.e., for the first fifty cycles. It can be noticed that the thermal loading produces an
almost strain-controlled condition.
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Figure 5. Combined material model for the round mold: hoop stress–strain evolution (for more clarity,
only some cycles are plotted).

4. Second Case Study: Cyclic Hardening Material Behavior and Displacement-Controlled Loading

This second case study refers to a cruciform welded joint (i.e., see [21,28]). In this work, according
to [21], welded specimens with different degrees of incomplete penetration (from 25% to 100%) and
various strength mismatching between base and weld metal have been investigated. Specimens were
subjected to low-cycle fatigue tests at four strain ranges with the aim of estimating their strain–life
curves. In that study, tests results plotted in a strain range/cycles diagram exhibited, however, a certain
scatter, which was reduced by correlating the fatigue strength to a local strain parameter (equivalent
strain range). For this purpose, a nonlinear finite element model was used for evaluating the equivalent
strain range value up to stabilization under cyclic loading conditions. The recommendations given
in [29] for the effective notch concept were followed.

4.1. Cruciform Welded Joint under Displacement-Controlled Loading

Among the different cases debated in [21], the present work is focused on a particular weld
geometry (categorized as P100-U25), constituted by 16-mm plates in JIS SBHS500 structural steel.
The considered geometry is characterized by 100% incomplete penetration (i.e., the joint has fillet
welds) and 25% strength under-matching. The weld is subjected to a constant amplitude displacement
with a range of 0.11 mm; see Figure 6c.
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Figure 6. (a) Cruciform welded joint; (b) finite element model with detailed mesh view of the weld toe
and weld root; (c) loading condition; reproduced from [30] with permission from Elsevier, 2020.

4.1.1. Numerical Model of the Cruciform Joint

A finite element model was defined based on the previously defined geometry. As can be seen
in Figure 6a, the double symmetry allows using a one-quarter model; see Figure 6b. Following
the approach described in [21], the model was divided into three different parts to distinguish the
mechanical properties of the base metal, heat-affected zone (HAZ) and weld metal. In order to apply the
effective notch strain concept according to the recommendations given in [29,31], a fictitious U-shaped



Metals 2020, 10, 781 8 of 19

notch with radius r = 1 mm was introduced in the weld geometry. A fillet radius of r = 1 mm was also
adopted in the weld toe.

Quadrilateral eight-node and triangular six-node finite elements (for a total of 2820 elements and
8693 nodes) in the plane strain condition were used. Figure 6b shows a detail of the mesh in the welded
region. While a relatively coarse mesh is established far away from the weld bead, a locally refined
mesh was used close to the fictitious 1 mm notches; the mesh had 0.1 × 0.1 mm elements, i.e., far below
the recommended size of r/4 = 0.25 mm. A convergence analysis was also performed to confirm that a
finer mesh would only give a 0.4% difference in results.

The simulation replicated the experimental tests of [21], in which the displacement u was applied
at the far end of the plate. In the numerical analysis, the maximum value of the imposed displacement
u at the boundary nodes was determined so that the local displacement in the reference position (see
Figure 6b) exactly matched the value measured during the tests (i.e., measured by the transducer placed
in the same location). The minimum value of u at the end of the unloading phase was determined after
following the same procedure.

Three different combined nonlinear kinematic (A-F) and isotropic (Voce) material models were
used for simulating the cyclic behavior of base metal, weld metal and HAZ in the welded joint. Material
parameters are summarized in Table 2. It can be noticed that weld metal has a lower strength than
base metal. By contrast, HAZ has initial yield stress 20% higher than that of the base metal. HAZ and
base metal share the same kinematic and isotropic parameters.

Table 2. Cruciform welded joint: material parameters, data from [21].

Material E (MPa) σ0 (MPa) C (MPa) γ R∞ (MPa) b

Base metal SBHS500-2 200,000 452 190 36 143 4
HAZ 200,000 542 190 36 143 4

Weld metal 200,000 328 215 92 113 1

A full implicit integration scheme has been followed, although it leads to a linear convergence.
In fact, for complex plastic constitutive equations, the implicit integration scheme is more stable than
semi-implicit or explicit algorithms, as pointed out in [32].

4.1.2. Reference Case: Cyclic Behavior up to Stabilization

To establish a reference case, the nonlinear combined kinematic and isotropic model has to be
brought up to complete stabilization. For this purpose, the same criterion defined by Equation (8) was
adopted. The stabilization was reached after 757 cycles, and the maximum equivalent strain range
∆εeq,notch = 0.0199 was finally obtained. This value is in good agreement (1.44% relative difference)
with the experimental results reported in [21]; see Table 5. Simulation shows that the maximum stress
is always located at the weld toe and increases over cycles. At the first loading, plasticization occurs
only in a localized area between weld root and weld toe. As the number of applied cycles increases,
a significant stress redistribution takes place, while the plasticization area enlarges, similarly to the
study presented in [33].

As shown in Figure 7a, all the stress components (in x, y, z directions) and the von Mises equivalent
stress increase (i.e, material exhibits cyclic hardening) up to 100 cycles, when stabilization is reached,
whereas the strains progressively decrease over cycles (see Figure 7b). Figure 7b confirms that the
numerical model well describes the aforementioned experimental procedure. In fact, in that case,
the experimental set-up guaranteed a constant strain imposed in the reference position. This behavior
is confirmed by the simulation presented in this work (see the evolution of ∆εx,ref). On the other hand,
the previously mentioned stress redistribution makes the strain range not constant in the area close to
the fictitious notch (see the evolution of ∆εeq,notch).
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Figure 7. Combined material model for the cruciform welded joint: (a) maximum stresses and (b) strain
ranges, versus the number of cycles.

Finally, Figure 8 shows the evolution of stress–strain components in the x direction (occurring in
the weld root in proximity of the U-shaped notch). Similarly to the mold case, only the first five cycles,
the 20th, 50th and 100th cycles, and the last stabilized cycle are presented. A noticeable amount of
cyclic hardening occurs within the first fifty cycles.
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Figure 8. Stress–strain cycles in the x-direction with the combined material model; reproduced from [30]
with permission from Elsevier, 2020.

5. Accelerated Material Models

The results presented in the previous sections, Sections 3.1.2 and 4.1.2, show that the “reference”
model needed 489 and 757 cycles to reach stabilization, respectively, in the case of the mold and the
cruciform welded joint. Simulating this number of cycles required a rather high computation time,
i.e., 2.5 h for the mold and more than 6 h for the cruciform joint. On the other hand, it is necessary
for the material to reach a fully stabilized state before simulation results can reliably be used in a
subsequent structural durability analysis.

In some cases, geometry and/or loading conditions could require a 3D finite element model and,
therefore, the computational time would increase by far. An acceleration technique to speed up the
simulation is thus recommended. For this purpose, in the following section, the acceleration techniques
previously reviewed will be applied and compared by considering the two proposed case studies.
The focus will be, in particular, on techniques that can be implemented using the material models
already available in commercial FE codes.

5.1. Techniques Neglecting Material Strain Hardening/Softening over Cycles

A possible technique to speed up the simulation needed to reach the stabilized material condition
is that of adopting only a pure kinematic model (i.e., neglecting the isotropic part that accounts for
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the cyclic hardening/softening). As mentioned before, some authors, like [12,13,19], made use of the
kinematic model with stabilized material properties from the beginning of simulation; other authors,
instead, suggested simulating only a few cycles with initial properties of the material. In both cases,
this corresponds to neglecting the isotropic part that accounts for the cyclic hardening/softening.
Stabilization is thus obviously achieved after only a few cycles.

In light of these two approaches, in the present study, the nonlinear kinematic model is thus adopted
by considering both the initial and the stabilized static parameters, as they constitute the “limiting”
cases corresponding to the initial and stabilized material conditions, respectively. The properties of the
initial state and of the stabilized state were obtained, respectively, by calibrating the elastic modulus
and the yield stress on the first quarter of the first cycle (E, σ0) and on the stabilized cycle (Es, σ0*).
Note that the first quarter of the first cycle corresponds to the monotonic uniaxial stress–strain curve.
The C and γ parameters remain unaffected. In summary, simulations will be performed by using,
respectively, the nonlinear kinematic models describing the “static” stress–strain curve (nonlinear
kinematic initial) and the stabilized stress–strain curve (nonlinear kinematic stabilized).

In order to perform a quantitative comparison with the “reference” model, relative error was
defined in terms of equivalent strain range ∆εeq:

∆e =

(∆εeq,acc model,Ni − ∆εeq,ref model,Nstab

∆εeq,ref model,Nstab

)
× 100 (9)

where subscripts acc and ref refer to the accelerated and “reference” model, whereas the subscripts Ni

and Nstab refer to the i-th and stabilized cycles, respectively.
Figure 9 shows the variation in the relative error ∆e for the mold and the cruciform welded joint.

A value ∆e = 1 means that the accelerated model matches the results of the “reference” model. Table 3
lists the values of the equivalent strain range ∆εeq in the stabilized state, the number of cycles to
stabilization Nstab, and the relative error ∆e calculated for all material models and both case studies.

Metals 2019, 9, x FOR PEER REVIEW 10 of 20 

 

simulation is thus recommended. For this purpose, in the following section, the acceleration 

techniques previously reviewed will be applied and compared by considering the two proposed case 

studies. The focus will be, in particular, on techniques that can be implemented using the material 

models already available in commercial FE codes. 

5.1. Techniques Neglecting Material Strain Hardening/Softening over Cycles 

A possible technique to speed up the simulation needed to reach the stabilized material 

condition is that of adopting only a pure kinematic model (i.e., neglecting the isotropic part that 

accounts for the cyclic hardening/softening). As mentioned before, some authors, like [12,13,19], 

made use of the kinematic model with stabilized material properties from the beginning of 

simulation; other authors, instead, suggested simulating only a few cycles with initial properties of 

the material. In both cases, this corresponds to neglecting the isotropic part that accounts for the cyclic 

hardening/softening. Stabilization is thus obviously achieved after only a few cycles. 

In light of these two approaches, in the present study, the nonlinear kinematic model is thus 

adopted by considering both the initial and the stabilized static parameters, as they constitute the 

“limiting” cases corresponding to the initial and stabilized material conditions, respectively. The 

properties of the initial state and of the stabilized state were obtained, respectively, by calibrating the 

elastic modulus and the yield stress on the first quarter of the first cycle (E, σ0) and on the stabilized 

cycle (Es, σ0*). Note that the first quarter of the first cycle corresponds to the monotonic uniaxial stress–

strain curve. The C and γ parameters remain unaffected. In summary, simulations will be performed 

by using, respectively, the nonlinear kinematic models describing the “static” stress–strain curve 

(nonlinear kinematic initial) and the stabilized stress–strain curve (nonlinear kinematic stabilized).  

In order to perform a quantitative comparison with the “reference” model, relative error was 

defined in terms of equivalent strain range ∆εeq: 

100e

stab

stabi

model, refeq,

model, refeq,model, acceq,




















N

NN




 (9) 

where subscripts acc and ref refer to the accelerated and “reference” model, whereas the subscripts Ni 

and Nstab refer to the i-th and stabilized cycles, respectively.  

Figure 9 shows the variation in the relative error ∆e for the mold and the cruciform welded joint. 

A value ∆e = 1 means that the accelerated model matches the results of the “reference” model. Table 

3 lists the values of the equivalent strain range ∆εeq in the stabilized state, the number of cycles to 

stabilization Nstab, and the relative error ∆e calculated for all material models and both case studies. 

  

Figure 9. Relative errors ∆e calculated with Equation (9) for nonlinear kinematic model calibrated on 

initial (E, σ0) and stabilized (Es, σ0*) static parameters: (a) mold (∆e < 0) and (b) cruciform joint (∆e > 0). 

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

N/N
stab

 

- 


e 
(%

) 
  

 (
lo

g
)

 

 

Non. Kin. initial

Non. Kin. stabilized

(a)
0 0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

10
3

N/N
stab

 

- 


e 
(%

) 
  

 (
lo

g
)

 

 

Non. Kin. initial

Non. Kin. stabilized

Nonlinear kinematic initial

Nonlinear kinematic stabilized

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

N/N
stab

 


e 

(%
) 

  
 (

lo
g

)

 

 

Non. Kin. initial

Non. Kin. stabilized

(b)
0 0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

10
3

N/N
stab

 

- 


e 
(%

) 
  

 (
lo

g
)

 

 

Non. Kin. initial

Non. Kin. stabilized

Nonlinear kinematic initial

Nonlinear kinematic stabilized

Figure 9. Relative errors ∆e calculated with Equation (9) for nonlinear kinematic model calibrated on
initial (E, σ0) and stabilized (Es, σ0*) static parameters: (a) mold (∆e < 0) and (b) cruciform joint (∆e > 0).

Table 3. Number of cycles to stabilization and equivalent strain range estimated at the critical point.

Parameter

Mold Cruciform Joint

Reference
Model

Nonlinear Kinematic Reference
Model

Nonlinear Kinematic

Initial Stabilized Initial Stabilized

Nstab 489 13 13 757 10 10
∆εeq,stab 0.0040 0.0034 0.0037 0.0199 0.1023 0.0201
∆e (%) −15.20 −8.53 415.21 1.13
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In the case of the copper mold, whose material exhibits a cyclic softening behavior, the stabilization
of both initial and stabilized kinematic models is found to occur within 13 cycles. As can be noticed,
both types of kinematic models always underestimate ∆εeq with respect to the reference case (∆e < 0),
with an absolute error up to 15%. A lower ∆εeq,stab characterizes the kinematic model calibrated on
the initial material state. No substantial improvement, however, is obtained if the kinematic model is
calibrated on static parameters obtained from the stabilized cycle.

In the case of the cruciform joint, stabilization occurs within 10 cycles for both kinematic models.
In the first cycles, both models overestimate the ∆εeq of the reference case. Nevertheless, for a
higher number of cycles, the nonlinear kinematic model calibrated on the initial material state gives
completely unreliable results, with quite a relevant deviation (∆e up to 415%). On the contrary, the
nonlinear kinematic model with stabilized parameters returns results in good agreement with the
reference case; this agreement can be related to the fact that, in this case, the material exhibits a cyclic
hardening behavior.

In conclusion, it is apparent that neglecting the isotropic part in the combined kinematic–isotropic
model seems to be an unreliable procedure. In fact, due to the strong simplification adopted, kinematic
models with initial or stabilized parameters could provide moderate errors or, in other cases, misleading
results. The limit of such approaches was already noticed in [19].

5.2. Acceleration Techniques Based on an Increase in the Speed of Stabilization

The acceleration technique based on the variation in the speed of stabilization in a combined
kinematic and isotropic model was suggested in [19]. This technique relies on the isotropic part in
Equation (3). In fact, this equation is governed by the accumulated plastic strain p and by the speed of
stabilization b. As p depends on the loading condition and cannot be changed, the only way to speed
up the simulation is to increase fictitiously the parameter b.

5.2.1. First Case Study: Round Mold

In order to explore the effect of variation in the speed of stabilization, accelerated models with
seven different values of parameter ba (10b, 20b, 30b, 100b, 200b, 300b and 421b) were considered and
compared to the reference case. Please note that these values cover a wider range with respect to that
proposed by [19].

Figure 10a presents the evolution of the equivalent strain range from the first to the stabilized
cycle. Results obtained with the reference model confirm the well-known “S-shaped” curve, which is
characteristic of the Voce isotropic model. Quite similar “S-shaped” curves characterize the models
with a stabilization speed increased only moderately (ba = 10b ÷ 30b), while this shape is partially lost
for higher values of ba (ba = 100b ÷ 421b), for which, as already shown, the model reaches stabilization
almost immediately. In fact, a 421-fold increase in b constitutes an upper bound for which the cyclic
softening occurs so rapidly that unrealistic results in terms of stress–strain cycles are obtained (for even
higher ba, simulation does not converge at all).

In Figure 10b, the relative error ∆e calculated with Equation (9) is plotted for all the accelerated
models as a function of the normalized number of cycles. As ∆e puts in evidence the relative error
with respect to the stabilized condition obtained with the reference model, it follows that all the models
show a significant error for a number of cycles up to 0.4N/Nstab. In fact, at ba = 421b, the material
stabilizes almost immediately, reaching an equivalent strain range that is quite close to the value
corresponding to the stabilized condition obtained with the reference model. The relative error becomes
negligible (±0.5%) when the cycles are approaching Nstab. It is, therefore, confirmed that an increase in
the stabilization speed (below the upper bound ba = 421b) would leave the equivalent strain range
unaffected, thus permitting ∆εeq and, consequently, the fatigue life to be correctly evaluated.



Metals 2020, 10, 781 12 of 19

Metals 2019, 9, x FOR PEER REVIEW 12 of 20 

 

corresponding to the stabilized condition obtained with the reference model. The relative error 

becomes negligible (±0.5%) when the cycles are approaching Nstab. It is, therefore, confirmed that an 

increase in the stabilization speed (below the upper bound ba = 421b) would leave the equivalent 

strain range unaffected, thus permitting ∆εeq and, consequently, the fatigue life to be correctly 

evaluated.  

  

Figure 10. Equivalent strain range versus number of cycles (a) and relative errors ∆e calculated with 

Equation (9) by considering different accelerated models ba (b) for the round mold. 

The number of cycles to stabilization, Nstab, the corresponding equivalent strain range, Δεeq,stab, 

and the relative error, Δe, are listed in Table 4 for the reference and the accelerated models. As can be 

noticed, Δεeq,stab is not affected by the increase in the speed of stabilization and it maintains a constant 

value in the whole range.  

Table 4. Number of cycles to stabilization and equivalent strain range estimated at critical point “A”. 

Parameter 
Reference 

model 

Accelerated models 

10b 20b 30b 100b 200b 300b 421b 

Nstab 489 71 30 24 10 8 3 10 

Δεeq,stab  0.0040 0.0040* 0.0040* 0.0040* 0.0040* 0.0040* 0.0040* 0.0040* 

∆e (%)  0.49 0.47 0.41 0.12 0.15 −0.53 −0.83 

* Rounded values. 

It is possible to conclude that the accelerated models, by strongly reducing the number of cycles 

required to reach stabilization, make the computational effort quite feasible without, however, 

affecting the accuracy of the results.  

5.2.2. Second Case Study: Cruciform Welded Joint 

Similarly to the previous case study, the effect of a variation in the speed of stabilization with 

nine increased values ba (5b, 10b, 20b, 50b, 100b, 150b, 1500b, 2500b and 5000b) was compared to the 

reference case, as in [30]. Please note that, also, in this case, ba values cover a wider range with respect 

to that proposed by [19]. This difference is also related to the fact that, in that work, creep was also 

considered. As expected, for increasing values of ba, stabilization occurs faster (see Figure 11a). Even 

for a value of ba = 5b, the number of cycles to stabilization is more than halved. For ba = 20b, it is Nstab 

= 122, while, for even higher values of ba, no significant decrease in Nstab is obtained. Convergence is 

always achieved, even though a slight numerical instability occurs for ba = 100b or even higher values. 

In this case, too, the equivalent strain range shows a monotonic variation with the number of cycles, 

confirming once again that, to make durability analysis reliable, material stabilization has to be 

achieved.  

10
0

10
1

10
2

0.3

0.32

0.34

0.36

0.38

0.4

N  


 eq

 (
%

)

 

 

Reference

b
a
=10b

b
a
=20b

b
a
=30b

b
a
=100b

b
a
=200b

b
a
=300b

b
a
=421b

10
0

10
1

10
2

0.3

0.32

0.34

0.36

0.38

0.4

N  


 eq

 (
%

)

 

 

Reference

b
a
=10b

b
a
=20b

b
a
=30b

b
a
=100b

b
a
=200b

b
a
=300b

b
a
=421b

A

(a) 0 0.2 0.4 0.6 0.8 1
-20

-15

-10

-5

0

N/N
stab

 


e 

(%
)

 

 

b
a
=10b

b
a
=20b

b
a
=30b

b
a
=100b

b
a
=200b

b
a
=300b

b
a
=421b

(b)

Figure 10. Equivalent strain range versus number of cycles (a) and relative errors ∆e calculated with
Equation (9) by considering different accelerated models ba (b) for the round mold.

The number of cycles to stabilization, Nstab, the corresponding equivalent strain range, ∆εeq,stab,
and the relative error, ∆e, are listed in Table 4 for the reference and the accelerated models. As can be
noticed, ∆εeq,stab is not affected by the increase in the speed of stabilization and it maintains a constant
value in the whole range.

Table 4. Number of cycles to stabilization and equivalent strain range estimated at critical point “A”.

Parameter Reference
Model

Accelerated Models

10b 20b 30b 100b 200b 300b 421b

Nstab 489 71 30 24 10 8 3 10
∆εeq,stab 0.0040 0.0040 * 0.0040 * 0.0040 * 0.0040 * 0.0040 * 0.0040 * 0.0040 *
∆e (%) 0.49 0.47 0.41 0.12 0.15 −0.53 −0.83

* Rounded values.

It is possible to conclude that the accelerated models, by strongly reducing the number of cycles
required to reach stabilization, make the computational effort quite feasible without, however, affecting
the accuracy of the results.

5.2.2. Second Case Study: Cruciform Welded Joint

Similarly to the previous case study, the effect of a variation in the speed of stabilization with nine
increased values ba (5b, 10b, 20b, 50b, 100b, 150b, 1500b, 2500b and 5000b) was compared to the reference
case, as in [30]. Please note that, also, in this case, ba values cover a wider range with respect to that
proposed by [19]. This difference is also related to the fact that, in that work, creep was also considered.
As expected, for increasing values of ba, stabilization occurs faster (see Figure 11a). Even for a value of
ba = 5b, the number of cycles to stabilization is more than halved. For ba = 20b, it is Nstab = 122, while, for
even higher values of ba, no significant decrease in Nstab is obtained. Convergence is always achieved,
even though a slight numerical instability occurs for ba = 100b or even higher values. In this case, too,
the equivalent strain range shows a monotonic variation with the number of cycles, confirming once
again that, to make durability analysis reliable, material stabilization has to be achieved.

Figure 11b depicts the relative error calculated with Equation (9) for each accelerated model and
plotted versus the normalized number of cycles. Similarly to the first case study, ∆e puts in evidence
the relative error with respect to the stabilized condition obtained with the reference model. The
biggest error is observed for a low number of cycles, and it gradually decreases when approaching
stabilization, where a very small error (−0.8 ÷ −1.6%) is observed for all cases. Table 5 reports the
number of cycles to stabilization, Nstab, the corresponding equivalent strain range, ∆εeq,notch,stab, and
the relative error ∆e, obtained by comparing the reference case (b) with the accelerated model (ba). In
this case, ∆εeq,notch,stab is also almost constant for different values of b.
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Figure 11. Equivalent strain range versus number of cycles (a) and relative errors ∆e calculated with
Equation (9), considering different accelerated models ba (b) for the cruciform weld case study.

Table 5. Number of cycles to stabilization and equivalent strain range for the critical point.

Parameter P100-
U25 a

Reference
Model

Accelerated Models

5b 10b 20b 50b 100b 150b 1500b 2500b 5000b

Nstab 757 268 193 122 119 110 113 111 113 113
∆εeq,notch,stab 0.0196 0.0199 * 0.0197 * 0.0196 * 0.0196 * 0.0195 * 0.0195 * 0.0195 * 0.0195 * 0.0195 * 0.0195 *

∆e (%) 1.44 b −0.86 −1.28 c
−1.32 c

−1.59 c
−1.55 c

−1.56 c
−1.60 c

−1.59 c
−1.59 c

a [21]. b Relative difference calculated with respect to P100–U25. c Relative difference calculated with respect to the
reference model. * Rounded values.

5.2.3. Comparison Between the Two Case Studies

To compare the case of the round mold with that of the welded joint, the correlation between the
speed of stabilization b and the number of cycles to stabilization Nstab is shown in Figure 12. Due to the
wide range of values, a log–log scale is adopted. In the case of the mold, a linear relation between b and
Nstab is observed. This trend can be justified considering Equation (6). By contrast, as can be noticed,
in the cruciform welded joint case, such a linear relationship is only fulfilled up to ba = 20b; for higher
values, the number of cycles to stabilization remains almost constant; this behavior is probably due to
the fact that the material exhibits cyclic hardening.Metals 2019, 9, x FOR PEER REVIEW 14 of 20 
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Figure 12. Correlation between speed of stabilization and number of cycles to stabilization for the
mold and the welded joint.

It is important to emphasize that, in the first case study, where the material exhibits a cyclic
softening behavior, an upper bound value ba was identified, above which the numerical analysis
does not converge. In fact, for overly high values of ba (higher than 421b), the numerical model
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reaches the stabilized stress condition almost immediately (i.e, already in the first cycle) [34]; as the
monotonic hardening (governed by the kinematic model) is neglected, some convergence problems
could occur. The upper bound value cannot be determined beforehand and needs be established for
each considered case.

On the contrary, in the second case study, in which the material showed cyclic hardening,
the numerical convergence is always achieved, even for very high values of ba. However, in this
case, due to the cyclic hardening, the amount of plastic strain decreases over the cycles, causing a
considerably slower growth of the accumulated plastic strain that governs the isotropic part. As a
result (see Figure 12), the model requires a lower number of cycles (in this case, ≈110) to reach the
stress stabilization.

5.3. Fatigue Life Assessment

To estimate the service life of a component, the computed stress and strain cycles need to
be compared with fatigue curves. Figures 13 and 14 report the evolution of the equivalent strain
range in both case studies, along with the Manson–Coffin strain–life curve (drawn qualitatively).
This comparison makes even more clear the importance of performing a simulation up to complete
stabilization, as suggested in [7] for the case of a cyclic softening or hardening material, respectively.
In the case of a cyclic softening material (see Figure 13), if the numerical analysis is stopped after
the first few cycles and ∆εeq has not attained its asymptotic value, the fatigue life may be largely
overestimated. On the contrary, in the case of a cyclic hardening material (see Figure 14) an opposite
behavior is observed, which can lead to incorrect design due to component oversizing.
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Figure 13. Cyclic softening material behavior: evolution of the equivalent strain range and fatigue life
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Figure 14. Cyclic hardening material behavior: evolution of the equivalent strain range and fatigue life
assessment on a strain–life curve.

Finally, as strain–life fatigue curves were estimated in [21,35], the service life of both the cruciform
welded joint and the mold were evaluated for different material models to provide a relative comparison
between them; see Table 6. In the cyclic softening case (mold), similar fatigue lives were obtained
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for both the reference model and the accelerated model (ba = 20b). On the other hand, the nonlinear
kinematic initial and stabilized models overestimate the fatigue life by up to 39.3% and 19.6%,
respectively. In the cyclic hardening case (cruciform joint), quite similar results in terms of fatigue life
are obtained for the reference, the nonlinear kinematic stabilized and the accelerated (ba = 20b) models.
A quite significant underestimation of the fatigue life (−99%) is achieved with the nonlinear kinematic
initial model.

Table 6. Number of cycles to failure.

Parameter

Mold Cruciform Joint

Reference
Model

Nonlinear Kinematic Accelerated
Model 20b

Reference
Model

Nonlinear Kinematic Accelerated
Model 20bInitial Stabilized Initial Stabilized

∆εeq,stab 0.0040 0.0034 0.0037 0.0040 * 0.0199 0.1023 0.0201 0.0196
N 2717 3786 3251 2696 1235 7 1196 1296

Relative error (%) 39.3 19.6 −0.8 −99.4 −3.2 4.9.

* Rounded value.

6. Guidelines for Calibrating the Accelerated Model

Very often, the geometry of a component is so complex that it can only be represented by a
large-scale FE model with a huge number of nodes and degrees of freedom. Guidelines need to be
provided to help in the choice of a suitable value of the “accelerated” speed of stabilization to be
input to the material model. The results obtained previously indicate that, in the case of a cyclically
softening material, the accelerated model behaves quite differently than in the case of a material
cyclically hardening. It seems, therefore, necessary to distinguish a different guideline for each case.

6.1. Cyclic Softening Material Behavior

The relationship given by Equation (6) governs the set-up of the accelerated model. In other
words, for a decreasing value of plastic strain range ∆εpl, the number of cycles to reach stabilization
Nstab increases. To be calibrated, Equation (6) needs a value of plastic strain range ∆εpl. This value can
be approximated by ∆εpl–5, which is obtained after five cycles, whose simulation normally demands
on a relatively short simulation time, even with large-scale nonlinear FE models.

The actual value of the b parameter, known from experimental data, usually determines a rather
high number of stabilization cycles, Nstab. Therefore, after establishing a target value N* < Nstab for
which the simulation time is far shorter, it is possible to establish the “fictitious” speed ba ≈ 5/(2N*∆εpl–5)
for the accelerated model.

The correctness of this approach was verified by considering a round mold with the same geometry,
and, thus, the same FE model (see Figure 3) as the one studied previously, but loaded by a 40% lower
thermal flux. In this way, the maximum temperature was lower and close to 250 ◦C; the corresponding
material parameters are reported in Table 1.

The three components (axial, hoop and radial) of the plastic strain range computed after five
cycles were used to obtain, according to Equation (6), the design diagram reported in Figure 15.

By entering the design diagram with a number of cycles to stabilization N* that is considered
feasible to be performed by a numerical simulation, one gets the corresponding speed of stabilization
to be adopted in the accelerated model. For example, by assuming N* = 40 cycles, a value of ba = 200
was obtained (to be conservative, the uppermost curve of the axial strain component was used);
see Figure 15a.

After performing a simulation of only 40 cycles with ba = 200, a value of equivalent strain range
∆εeq = 0.00314 was obtained. To verify the correctness of this result, the reference case (i.e., the combined
model without acceleration) was considered for comparison; it required 1033 cycles to stabilization.
The accelerated model permits the computational time to be shortened significantly, while keeping the
error of the equivalent strain range within a value of only 2.3% with respect to the reference model.



Metals 2020, 10, 781 16 of 19

Metals 2019, 9, x FOR PEER REVIEW 16 of 20 

 

The correctness of this approach was verified by considering a round mold with the same 

geometry, and, thus, the same FE model (see Figure 3) as the one studied previously, but loaded by 

a 40% lower thermal flux. In this way, the maximum temperature was lower and close to 250 °C; the 

corresponding material parameters are reported in Table 1. 

The three components (axial, hoop and radial) of the plastic strain range computed after five 

cycles were used to obtain, according to Equation (6), the design diagram reported in Figure 15.  

By entering the design diagram with a number of cycles to stabilization N* that is considered 

feasible to be performed by a numerical simulation, one gets the corresponding speed of stabilization 

to be adopted in the accelerated model. For example, by assuming N* = 40 cycles, a value of ba = 200 

was obtained (to be conservative, the uppermost curve of the axial strain component was used); see 

Figure 15a.  

After performing a simulation of only 40 cycles with ba = 200, a value of equivalent strain range 

∆εeq = 0.00314 was obtained. To verify the correctness of this result, the reference case (i.e., the 

combined model without acceleration) was considered for comparison; it required 1033 cycles to 

stabilization. The accelerated model permits the computational time to be shortened significantly, 

while keeping the error of the equivalent strain range within a value of only 2.3% with respect to the 

reference model. 

(a)  (b)  

Figure 15. (a) Design diagram for mold T = 250 °C and cyclic softening material behavior; (b) 

schematic design diagram description  

6.2. Cyclic Hardening Material Behavior 

If the material exhibits cyclic hardening, a preliminary estimation of the number of cycles to 

reach stabilization seems more uncertain. In fact, as the plastic strain range decreases over cycles, 

Equation (6) will give an underestimated value of Nstab. Moreover, Figure 12 highlights that, in the 

considered case, the aforementioned equation seems to be satisfied only in a limited range. On the 

other hand, the obtained results show that convergence to the correct value of Δεeq,stab is always 

reached, even for large values of ba. It is then possible to foresee a simple guideline to perform an 

analysis when the FE model dimension makes the simulation unfeasible.  

A few simulations (at least two or three) must be planned, starting with a speed of stabilization 

ba/b = 10. If, after two or three cycles, the stabilization criterion is not satisfied, the speed of 

stabilization is increased 10 times (ba/b = 100). A new simulation of the first few cycles is performed. 

The procedure is repeated until the stabilization criterion is satisfied; see Figure 16.  

N=40

Δεpl,θ-5=0.044

Δεpl,a-5=0.033

Δεpl,r-5=0.077

1. Simulate FE analysis 

(only 5 cycles) 

2.    Get value of Δεpl

3.    Feasible Nstab is assumed

4.    Calculate  

5. Run FE accelerated model 

till stabilization and get Δεeq

stabpl
a

2

5

N
b




Fatigue life estimation

Figure 15. (a) Design diagram for mold T = 250 ◦C and cyclic softening material behavior; (b) schematic
design diagram description

6.2. Cyclic Hardening Material Behavior

If the material exhibits cyclic hardening, a preliminary estimation of the number of cycles to reach
stabilization seems more uncertain. In fact, as the plastic strain range decreases over cycles, Equation (6)
will give an underestimated value of Nstab. Moreover, Figure 12 highlights that, in the considered
case, the aforementioned equation seems to be satisfied only in a limited range. On the other hand,
the obtained results show that convergence to the correct value of ∆εeq,stab is always reached, even for
large values of ba. It is then possible to foresee a simple guideline to perform an analysis when the FE
model dimension makes the simulation unfeasible.

A few simulations (at least two or three) must be planned, starting with a speed of stabilization
ba/b = 10. If, after two or three cycles, the stabilization criterion is not satisfied, the speed of stabilization
is increased 10 times (ba/b = 100). A new simulation of the first few cycles is performed. The procedure
is repeated until the stabilization criterion is satisfied; see Figure 16.Metals 2019, 9, x FOR PEER REVIEW 17 of 20 
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Figure 16. Schematic design diagram for a material with cyclic hardening behavior.

If stabilization is not reached, even for a very high value (ba/b >> 1000) of the speed of stabilization,
the accelerated technique cannot be applied and the standard (not accelerated) simulation should
be attempted.

The correctness of this approach was verified by considering a cruciform welded joint loaded by
imposing a 10% higher displacement (with the same geometry and, thus, the same FE model). A first
simulation was performed adopting ba/b = 10. After three cycles, a value of ∆req = 10% was obtained.
As the convergence criterion was not satisfied, the speed of stabilization was further increased by
10 times (ba/b = 100). In this case, the value of ∆req fulfilled the required threshold after just a few cycles.
A value of the equivalent strain range ∆εeq,notch,stab = 0.027 was finally obtained. The reference case
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(i.e., the combined model without acceleration) was studied. Stabilization was reached after 575 cycles
with a value of ∆εeq,notch,stab, which shows good agreement with that obtained using the proposed
acceleration procedure.

7. Conclusions

The choice of the material model to be used in numerical simulations is often an important step of
a finite element (FE) analysis, especially when dealing with components subjected to cyclic loads that
require a sequence of load cycles to be followed until complete stabilization.

With the aim of investigating the applicability of simple acceleration techniques, two case studies
were selected from the literature: a round mold made of a cyclically softening copper alloy, and a
cruciform welded joint made of a cyclically hardening steel. The two cases were selected as being
characterized by a geometry that permits a plane FE model to be used; this allows a non-accelerated
solution to be achieved as a reference.

Several models (nonlinear kinematic with “initial” and “stabilized” parameters and combined
nonlinear kinematic and isotropic with the speed of stabilization fictitiously increased) were compared
in terms of equivalent strain range and also of fatigue life. The comparison showed quite different
outcomes for the kinematic models and the accelerated models.

Kinematic models, even if calibrated on either the initial or the stabilized material state, yield
results that may deviate from the reference case. In the case of the mold, the equivalent strain range
was always moderately underestimated; in the case of cruciform joint, an unacceptable overestimation
(more than 400%) was observed. Instead, accelerated models based on a fictitious increase in the speed
of stabilization gave results that were always close to the reference model. Although applied by some
authors only in the presence of creep, this acceleration technique seems a promising strategy to speed
up an elasto-plastic finite element simulation, also when a significant viscous effect is not present.
Depending on the cyclic material behavior (hardening or softening), specific guidelines were proposed
to properly set up the value of the fictitious speed of stabilization b that permits the computational
time to be kept within acceptable limits. Further studies are advisable to investigate the applicability
of the proposed guidelines to more complex loading conditions (stress-controlled or combined stress
and strain loading).
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Nomenclature

Symbol Parameter
b speed of stabilization
ba accelerated speed of stabilization
C hardening modulus
E elastic modulus
Es elastic modulus (at the stabilized cycle)
N number of cycles
Nstab number of cycles to stabilization
q thermal flux
R drag stress
R∞ stabilized stress of drag stress
p accumulated plastic strain
S deviatoric stress tensor
X backstress tensor
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γ recovery parameter
ε1, ε2, ε3 principal strains
εel, εpl strain (elastic, plastic)
εx, εθ strain (in x and hoop direction)
∆e relative error
∆req relative difference in equivalent strain range
∆εpl, ∆εeq strain range (plastic and equivalent)
∆εeq,acc model,Ni equivalent strain range (accelerated model and for i-it cycle)
∆εeq,ref model,Nstab equivalent strain range (reference model and for stabilized cycle)
∆εeq,notch, ∆εeq,stab equivalent strain range (in the notch and for the stabilized cycle)
∆εx,notch, ∆εx,ref strain range in x direction (calculated in the notch and in reference point)
σ0, σ0* initial and cyclic yield stress
σmax,1, σmax,s maximum stress (at the first and stabilized cycle)
σvM,max von Mises maximum stress
σx, σθ stress (in x and hoop direction)
σx,max, σy,max, σz,max maximum stress (in the x, y and z directions)
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