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Abstract

We study mean value properties of harmonic functions in metric measure spaces.
The metric measure spaces we consider have a doubling measure and support a (1, 1)-
Poincaré inequality. The notion of harmonicity is based on the Dirichlet form defined
in terms of a Cheeger differentiable structure. By studying fine properties of the
Green function on balls, we characterize harmonic functions in terms of a mean value
property. As a consequence, we obtain a detailed description of Poisson kernels. We
shall also obtain a Gauss—Green type formula for sets of finite perimeter which posses
a Minkowski content characterization of the perimeter. For the Gauss—Green formula
we introduce a suitable notion of the interior normal trace of a regular ball.
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1 Introduction

Solving the Dirichlet problem on a smooth domain in R" is equivalent to constructing har-
monic measure on the boundary of the domain. More precisely, it is known that the classical
harmonic measure can be expressed in terms of a Poisson kernel which is given by the Radon—
Nikodym derivative of harmonic measure with respect to the Hausdorff boundary measure;

that is p
VZE
P(z,y) = W(y)'

In general metric measure spaces with a doubling measure and a Poincaré inequality the
Dirichlet problem has been solved for Sobolev type boundary data in [Sh2], and also for all
continuous boundary values in [BBS]. In [BBS] the authors provide an integral representation
for the solution to the Dirichlet problem, and hence extend the solvability to L' boundary
data. In this general setting, however, due to lack of a natural choice of boundary Hausdorff

measure one has to replace a Poisson kernel with a Poisson kernel-like object for which

dv,

Pxo(zay) = dl/
zo

(y)-

It was shown in [BBS| that for a fixed zy € Q, where Q2 is a bounded open subset of X,
there exists a Radon measure v,, concentrated on 02, i.e. v, is a harmonic measure on 0f2
evaluated at xg, and a real-valued function P,, on Qx 92 such that whenever f € L'(0%, v,,)
the following expression for the harmonic extension Hy is valid:

Hf(x) = f(y)Pxo(x>y) dyxo(y)a
o0
and moreover, for each y € 02 the function P, (-,y) is harmonic in .

Our main objective is to find a relationship between the Poisson kernel that generates
solutions to the Dirichlet problem in terms of Cheeger differentiable structure, and the
perimeter measure of a ball of finite perimeter in metric measure spaces. Our framework is
a complete geodesic metric measure space with a doubling Borel measure, and we moreover
assume that the space supports a (1, 1)-Poincaré inequality. These conditions are discussed
in detail in Section 2l We shall describe the Poisson kernel in terms of an analog of a normal
derivative of the Green function at the boundary.

We also study divergence-measure fields along the lines of Ziemer [Z] in this general
context. We consider an L?-vector field, ﬁ, from a metric measure space X to R* for which
div F is a real-valued signed Borel measure with finite mass.

To investigate divergence-measure fields we shall provide a meaningful definition for the
divergence operator in metric measure spaces. We then generalize some results obtained in
[Z] to the metric setting. In particular, we obtain the Gauss—Green type integration by parts
formula for sets of finite perimeter which possess a Minkowski content characterization of
the perimeter. For the Gauss—Green formula we introduce a suitable notion of the interior
normal trace of a regular ball.

We mention a related paper by Thompson and Thompson [TT] in which the authors
define divergence and prove an analogue of the Gauss—Green theorem in Minkowski spaces,
i.e. in finite-dimensional real normed spaces with smooth and strictly convex unit ball.



We use the results for the divergence operator to characterize the Laplace operator of
the Green function on regular balls as the sum of the Dirac point mass and a measure
concentrated on the boundary of the ball. This characterization allows us to give a precise
description of the Poisson kernel defined in [BBS|. In the setting of Heisenberg groups, we
explain the relation between this measure and the perimeter measure or the codimension
one Hausdorff measure.

2 Preliminaries

Here we recall some basic definitions and the notation we shall use in this paper. Our
framework is given by a complete metric measure space (X, d, i), where p is doubling, that
is, there is a constant ¢ > 0 such that for every ball B = B,(z), z € X and r > 0,

0 < u(2B) < e p(B) < oo. (1)

We write B, (z) for the ball centered at x with radius r > 0, and AB = B,,(z) for any A > 0.
The smallest value of ¢ for which () is valid is called the doubling constant of X, and we
shall denote it as ¢g.

An upper gradient for an extended real-valued function v : X — [—o0, +00] is a Borel
function g : X — [0, 0o] such that

u((0)) — u(r(1,))] < / gds 2)

Y

for every nonconstant compact rectifiable curve « : [0,1,] — X. We say that ¢ is a p-weak
upper gradient of w if (2]) holds for p—almost every curve; the notion of p—almost every curve
is in the sense of the p—modulus of a curve family I' defined as

Mod,(I') = inf {/ o’ dp : o > 0 is a Borel function, /gds > 1 for all y € F} .
X

Y

If « has an upper gradient in LP(X, 1), then it is possible to prove the existence of a unique
minimal p—weak upper gradient g, € LP(X, u) of u, where g, < g p-a.e. for every p—weak
upper gradient g € LP(X, u) of u. We refer to [Sh2] for the case p > 1, and for the case
p =1 to [Haj03].

In what follows, the metric space is supposed to support a weak (1, 1)-Poincaré inequality:
there exist constants ¢ > 0 and A > 1 such that for all balls B, with B,, C X, for any
Lipschitz function f € Lip(X) and minimal p-weak upper gradient g; of f we have

][ ol du < ][ o7 di, 3)

where

1
o= pini= /deu

is the integral average of f on B, (z).



It is well known that the doubling condition and the Poincaré inequality imply the quasi-
convexity of the metric space X, see [K| and [HaKo]. Therefore, up to a bi-Lipschitz change
of the metric, the space X can be assumed to be geodesic, that is, given z,y € X there is
a curve vy with end points z, y and length d(x,y). Moreover, for a geodesic space the weak
(1,1)—Poincaré inequality implies the (1,1)-Poincaré inequality, i.e. (B holds with A = 1.
Therefore, as most of the properties of metric spaces we consider are bi—Lipschitz invariant,
it is not restrictive to assume that X is a geodesic space and supports a (1,1)-Poincaré
inequality.

We remark here that up to Proposition assuming only a (1,2)-Poincaré inequality
would suffice. However, in Proposition .2 and what follows thereafter, a (1,1)-Poincaré
inequality is needed, for instance, to conclude that the minimal 1-weak upper gradient is
equal p-a.e. to its pointwise Lipschitz-constant function.

As proved by Cheeger in [C], in our setting the following differentiable structure is given.
There exists a countable measurable covering U, of X, and Lipschitz coordinate charts
X = (Xp,..., X)) X — RFe such that u(U,) > 0 for each o, p(X \ U, Ua) = 0 and
for all a the following holds: the charts (X{,..., X} ) are linearly independent on U, and
1 <k, < N, where N is a constant depending on the doubling constant and the constants
from the (1,1)-Poincaré inequality satisfying the following condition: For any Lipschitz
function f : X — R there is an associated unique (up to a set of zero p-measure) measurable
function d, f : U, — R* for which the following Taylor-type approximation

f(@) = fxo) + daf(wo) - (Xa(2) = Xa(20)) + o(d(z, z0)) (4)

holds for p-a.e. xg € U,.

The previous construction implies, in particular, that for = € U, there exists a norm || - ||,
on RF« equivalent to the Euclidean norm | - |, such that g;(z) = ||do.f(z)]|. for almost every
x € U,. Moreover, it is possible to show that there exists a constant ¢ > 1 such that

%gf(x) < |df (z)| < cgy(z)

for all Lipschitz functions f and p-a.e. x € X. By df(x) we mean d, f(x) whenever x € U,.
Indeed, one can choose the cover such that U, N Uz is empty whenever o # 3.

Formula () implies in particular linearity of the operator f +— df and also the Leibniz
rule d(fg) = fdg + gdf holds for all Lipschitz functions f and g.

For the definition of the Sobolev spaces N'*(X, i) we will follow [Shi]. Since we assume
X to satisfy the (1,1)-Poincaré inequality, the Sobolev space N'P(X, 1), 1 < p < oo, can
also be defined as the closure of the collection of Lipschitz functions on X in the following
NYP-norm

el = Nulloy + gullzex)-

The space N'P(X, 1) equipped with the N'P-norm is a Banach space and a lattice [Shi].
Let E C X be a Borel set. The p—capacity of E is defined as usual to be the number

Cap,(E mf (/ |u|pdu+/ |du|pdu)



where the infimum is taken over all u € N'P(X, u) for which u = 1 on E. We say that a
property holds p—quasieverywhere, p—q.e. for short, if the set of points for which the property
does not hold has p-capacity zero. For instance, if u,v € N'?(X, ) and u = v p-a.e., then
u = v p-qe. and |Ju — v|1, = 0. If we, moreover, redefine a function u € N*P(X, ) on
a set of zero p—capacity, then it remains a representative of the same equivalence class in
NYP(X, ).

We shall also use Sobolev spaces defined on a domain €2 (i.e. a non-empty open path-
connected set) of X; the space NV2(€, i) is defined in the same way the space N12(X, ) is,
but considering €2 as the ambient space. The space of Sobolev functions with zero boundary
values is instead defined as

Ng’p(Q,,u) = {u € N'"?(X, pu) : u=0 p-q.e. on X\Q}

We have that Ny (Q, 1) = N"?(X, 1) as Banach spaces if and only if Cap,(X \ Q) = 0.

In what follows, let p = 2. By [FHK], the Cheeger differentiable structure extends to all
functions in N%2?(X, ) and NY2(Q, 1), and hence we define an inner product on N'2( X i)
by the Dirichlet form

€(u,v):/x(du,dv> ds,

for all u,v € NY2(X,pu). It can be proved that such a form is strongly regular with the
domain, or core, given by N12(X, u).

We recall that a Dirichlet form is said to be strongly reqular if there exists a subset K
of the domain of the Dirichlet form, dense in both this domain and in the class of Lipschitz
functions on X, such that the distance dg : X x X — [0, 0o defined, in our case, by

de(z,y) = sup {p(z) —(y) : |dp(z)| < 1}

is a metric on X that induces the same topology on X as the original metric topology on X.
In fact, under the doubling property and a Poincaré inequality dg¢ is bi-Lipschitz equivalent
to the original metric d on X, and so the Dirichlet form &(u,v) is strongly regular. The set
K is called a core of £. We refer to [Sturm] and [FOT] for more details.

For each a > 0 we define the bilinear form

Sa(u,v):a/ wo dp + E(u,v).
X

We thus have on N%2(X, i) the norm || - ||, induced by &, which is equivalent to the N12-
norm. In this way, N*2(X, ) with the norm || - ||, is a Hilbert space with inner product &,.
Note that £ by itself is not an inner product on N2?(X, u); £(u,u) = 0 if and only if u is a
constant (see [C]). If, for example, p(X) < oo, then £(u,u) = 0 does not imply that u = 0.

The fact that the bilinear form &, yields a Hilbert space can be seen as follows. Since
the N%2-norm is comparable to the £,-norm, we have that N'2(X, i) is complete also with
respect to the &,-norm. In this way the &,-norm is well defined for any u € N'2(X, u). By
approximation and the linearity of the map u — du, the Leibniz rule follows for functions u
and v in NV2(X, u) (we refer for these properties to the paper [FHK]).



Remark 2.1. We point out that the convergence of a sequence (uy); to a function u in
NY2(X, 1) is same as the convergence of the two sequences (uy — u)y, and (gy, ) to 0 in
L2(X, ).

In general, the convergence of uy to w in L?(X, ) together with the convergence of g,
to g, in L*(X, i) does not imply that uy converges to v in N?(X, ). As a counterexample,
consider the metric space X = R? with the distance induced by the norm ||(z, y)||1 = |z|+]y|
and with p the Lebesgue measure; in this case the upper gradient is determined by the dual
norm ||(x,y)||s = max{|z|,|y|}. It suffices to verify this for a Lipschitz function u. For such
function, by [C], denoting by B (2, yo) the ball in the norm || - ||; with radius r centered
at (zo,yo), we have that

[u(, y) — ulzo, yo)|

gu(%, yO) = },H% sup
(@,y)eB (x0,y0)

= ”ﬁai(l(VU(SCo,yo)aWR? = ||\Vu(zo, Y0)| -

The sequence ug(z,y) = = + fi(y), where fr(y) = dist(y,%Z) converges to the function
u(z,y) = x, but for a.e. point

9ur (7, 9) = |[Vug(z,y)[|o = 1 = |[Vu(z,9) |00 = gu(®,y)
and
Jup—u(,Y) = [[Vur(z,y) = Vu(z,y)|| = [V i(y) [ = 1.

Nevertheless, it is possible to use Mazur’s lemma to prove that for a convex combination
the aforementioned property holds true, both for the Cheeger differentiable structure and
for the upper gradient. For the Cheeger differentiable structure, however, it is not necessary
to take convex combinations. Indeed, in this case the sequence of gradients duy is bounded
in L2(X,R* 1), and so it is weakly convergent to some ¢ € L2(X,RF p). Mazur’s lemma is
then needed only to show that ¢ = du. We can consider convex combinations

N(k)

U = Z )\Ek)ui

i=1

with strong convergence v, — u in L2(X, ) and dvy — ¢ in L?(X,R* 1), that is v, — u in
N12(X, u), and we may then conclude that ¢ = du. We then obtain

lim/ |du—duk|2du:/ \dul|? dpy + lim (/ |duk|2d,u—2/(du,duk) d,u)
k—oo [ x X k—o0 X X

:2/ |du\2d,u—2/<du,<p)d,uzo
X X

by the weak convergence.



3 Metric Laplace operator

In this section we construct a metric Laplace operator Ay on the metric measure space
(X,d, it). Recall that a Dirichlet form £ is strongly local if whenever u, v are in the domain
of £ and u is constant on the support of v, then £(u,v) = 0. Having a strongly local Dirichlet
form at one’s disposal it is rather standard argument to construct an operator associated
to the form. Most of the statements (without detailed proofs) can be found in the book
of Fukushima, Oshima and Takeda [FOT], but we provide complete proofs for the reader’s
convenience. Since this operator plays the role of the Laplace operator on X, we shall denote
it by Ay. Setting

Dom(Ax) = {u € N"*(X, p) : there exists f € L*(X, p)

such that &(u,v) = —/ fodp forall v e NY*(X,p)},
b

the Laplace operator is defined by
Axu = f

We summarize the main properties of this operator in the following theorem. The main
point is to construct the resolvent operator R,, i.e. an operator that gives for any a > 0 the
formal solution of the problem

(@ —Ax)u=f, ()

and to deduce from this the main properties of Ax.

Theorem 3.1. For each o > 0, there is an injective bounded linear operator Ry, : L*(X, 1) —
NY2(X, u) such that for all v e N%2(X, p)

/X fvdpi = Ea(Raf.v) = E(Raf,v) + a(Raf,v)a.

This operator satisfies:

1. for any f € L*(X, ), [|Rafll2 < 511 fll2
2. for any o, B > 0, Ro(L*(X, ) = Rg(L*(X, ), and the resolvent equation holds true
Rof — Rsf = (B — a)RaRsf (6)
for all f € L*(X,p);
3. for any f € L*(X,u), we have the following limit in the L*(X, u)-norm;

lim aR.f = f (7)

Properties 2. and 3. imply that R,(L*(X, p)) is dense in L*(X, ). In addition,
Dom(Ax) = Ra(L*(X, 1))

for any a > 0, and for u = R.f, Axu := au — [ is independent of c.



Proof. Let us fix f € L*(X,p). Then we can define the linear operator Ty : N'?(X) — R
by Ty(v) = (f,v)2 := [y fvdu. We have that

Ty ()] < I1Fll2 lolls < “jgzea@,v)w.

Therefore T} is a bounded linear operator on the Hilbert space (N?(X,u),&,), so by the
Riesz representation theorem, there exists an element of N'2(X, 1), denoted by R,f, such
that Ty(v) = Eu(Raf,v). The map R, : L*(X,u) — N'?(X, ) defined above is linear by
the linearity of the defining operator f ~— T}.

Since

A(Rof,v)2 = Ea(Raf,v) — E(Rof,v) = (f,v)2 — E(Ruf,v),
choosing v = R, f and applying Holder’s inequality, we see that

0 < OéHRang = a(Raf> Roef)2 = (f> Roef)2 - g(Ra.fa Raf) < (f> Roef)2 < ||f||2||Ra.f||2

Thus we obtain Claim 1 of the theorem, namely;,

af[Rafll2 < I fll2-

Thus R, as an operator mapping L*(X, ) to L*(X, u) is bounded with image in NY2(X, u) C
L?(X, p) and its operator norm given by

1
1Rall =l Rallz2—r2 < — (8)

We now prove the resolvent equation (G)). Let us take f € L*(X,u) and v € NV2( X, p).
Then

goe(Raf - Rﬁf + (Oé - ﬁ)RaRB.fa U) = ga(Ra.fa U) - ga(RBfa 'U) + (Oé - ﬁ)ga(RaRﬁfa 'U)
=(f,v)2 = E(Raf,v) —a(Rgf,v)2 + (o = B)(Rsf,v)2
:(fv U)2 - gﬁ(Rﬁfv U) = 0.
This means that for f € NY2(X, 1), and then by density also for f € L?(X, ), we have the

identity
R.f — Rsf + (o — B)RoRsf = 0.

Moreover, if we consider f € N?(X, 1), we have (denoting E,(f, £)/? =:||f|la)

O‘HO‘Rocf - f”g S ga(aRaf - f> aRaf - f)
= a®Ea(Raf, Raf) + || fII2 — 20€a(Raf, f)
= a*(f,Raf)a + E(f, f) — all fII3-

By Holder’s inequality and by using (&), we also get

a(f, Raf)2 = If13 < all Rafll2 1f1l2 = 112 < 0. (9)



Therefore,

= 0.

£, 1)

lim ||aRsf — fll2 < lim
a— 00 a—

To extend this limit to be valid for any f € L*(X,u), we use the boundedness of R,, by
fixing f. € NY2(X, u) such that ||f — f.|l2 < e. In this way we get that

laRof — fll2 < laRafe — fella + al|Ra(f — fo)ll2 + || f — fell2 < |aRafe — fell2 + 26,

and hence
limsup |[aRaf — fl2 < 2e.
a—0

From this Claim 3 of the theorem follows since £ was arbitrary.

We have now proved that R, is a strongly continuous resolvant (see [FOT]) for any o > 0.
Let us next prove injectivity of R,. Suppose f € L?(X, u) is such that Rgf = 0 for some
B > 0. Then by the resolvant equation ({@l),

0= Raf — Rgf + (Oé - ﬁ)RaRﬁf = Rafu

that is, R,f = 0 for every @ > 0. Now by equation (7)), we see that f = 0, that is, R,
is injective. We can therefore define the inverse map R, : Ro(L*(X,pu)) — L*(X, u). We

claim that
Dom(Ax) = Ry (L*(X, 1)), Axu = au — R u.

For this definition to be consistent, we first show that the set R, (L*(X, u)) and the operator
Aqu = au — Rz u do not depend on «a. By the resolvent equation (@),

Ryf = Ro(f + (o= B) Ry f).
Therefore, for every f € L*(X, u), Rsf € Ro(L*(X, 1)), and hence
Rs(L*(X, 1)) C Ra(L*(X, ).

By the symmetry of the argument, we have the required result R,(L*(X, u)) = Ra(L*(X, u)).
Let us write D = Rg(L*(X, p)).
If ue D and o, 3 >0, then Ayu — Agu = (o — B)u — R'u + R;lu. Therefore,

R, (Asu — Agu) = aRyu — fRu — u + RaRglu.

On the other hand, since D = Rg(L*(X, p)), there exists f € L*(X, ) such that Rgf = w.
Hence we have, by the resolvent equation (@), that

Ro(Aau — Agt) = aRoRsf — BRaRsf — Ryf + Raf
= Rof — Rof + (o — B)RaRsf = 0.

By injectivity of R,, we see that A,u — Agu =0, i.e. Ayu = Apu.



Let us now show that R,(L*(X,u)) C Dom(Ax). Let u € R, (L*(X,p)). Then there
exists f € L?(X,p) such that u = R,f. The identity £,(Raf,v) = (f,v) for any v €
NY2(X, ;1) can be written out as follows

/}((du, dv) dp =E(u,v) = Eu(u,v) — a(u, v)s
=Eu(Rof,v) — a(u,v)s

= (f,v)2 — alu,v)y = —/(OzU—f)vd,u

X

for all v € N%2(X, u). This simply means that u € Dom(Ax) and that Axu = au — f =
au — Ru = Ayu.

For the reverse inclusion, Dom(Ax) C R, (L*(X,u)), let us consider v € Dom(Ax).
Thus there exists f € L*(X, u) such that for all v € NM?(X, u) we have

[ ttwavydn=— [ foan

Then consider w := R, (au — f); we obtain that

Eaw,v) = (au — f,v)y = a/

X

uvd,u—/fvdu:a/uvdu+5(u,v):€a(u,v),
X X

that is w = u, which means that u € R,(L*(X,p)). The identity f = Axu = au — R 'u
follows easily.

In addition to the density of Dom(Ax) in L*(X, i), we also have that Dom(Ay) is dense
in N%2(X, u). In fact, by [®) and (@), for any f € NY2(X, u), we have that

||aRaf - f“i :ga(aRaf - f> aRaf - f) = a2ga(Rafa Raf) - 2a€a(Raf> f) + goe(f> f)
:az(vaaf)2_a(fvf)2+5(f7f) Sg(f?f)v

that is the sequence (aRof — f)q is bounded in N'?(X, u). Therefore, for any sequence of
positive real numbers (a,,), so that lim, «,, = oo, the corresponding sequence of functions
an R, f — f is a bounded sequence, and hence by Mazur’s lemma we have a sequence of
convex combinations converging in N%2(X, p);

N(n)
Z )\i,naiRaif - f —w e N1’2(X7 :U’)

On the other hand, lim, o aRyf = f in L*(X, ). Thus w = 0 p-a.e. in X, and hence
by the fact that w € N%?(X, u) we know that w = 0 p-q.e. in X. Therefore, it must be
that w = 0. Observe that the sequence of convex combinations Zﬁi(:) AiniRq, f lies in
Dom(Ax) and converges to f € NY2(X, ), so the proof is completed. O

We can now give the definition of a Cheeger harmonic function in the obvious way.

10



Definition 3.2. A function u € N'?(Q, 1) is said to be Cheeger harmonic (referred to in
this paper as harmonic) if

/(du, dv) du =0
0

for all v € Ny?(€, ), i.e. u is harmonic if and only if u € Dom(Agq) and Aqu = 0. Here Aq
is the operator defined in Remark [3.4] below.

Remark 3.3. The notion of Cheeger harmonicity refers to the fact that we are using the
Cheeger differentiable structure. This notion has been previously considered in the paper
[KRS|, where Lipschitz regularity of Cheeger harmonic functions has been investigated. We
also underline that Cheeger harmonicity can be equivalently be given in terms of a minimizer
of the Dirichlet energy: u is Cheeger harmonic if and only if for any ball B,

dul*dp <[ |dv]* dps,
B By

for all v such that v — u € Ny *(B,, u).

Remark 3.4. Let Q C X be a bounded domain satisfying a (1, 2)-Poincaré inequality with
Capy(X \ ©2) > 0. The previous construction of Ay can also be used to construct a Laplace
operator on the subdomain €2. There are essentially two different Laplace operators; the first
is just the restriction of Ax to 2 and is defined by

Dom(Aq) = {u € N"*(, p) : there exists f € L*(Q, u) such that

/(du,dv) dp = —/ fvdu for all v € Nol’z(Q,,u)} )
Q Q

and the operator is given by

The second alternative, adapted to the inhomogeneous Dirichlet problem, is the operator
defined by

Dom(AG) = {u € N;2(Q, ) : there exists f € L*(2, u) such that

/(du,dv> dp = — / fodp for all v € N§’2(Q,u)} :
Q Q

and
ASu=f.

To define the latter operator, the previous procedure has to be modified by considering the
Hilbert space Né’z(Q, w) with the inner product &, for all a > 0, to obtain the resolvent
operator R® : Ny2(Q, 1) = Ny*(Q, i) with

Ea(Rof,v) = (f,0)2

whenever v € N;?(€, ). Since the vector subspace Lipy(€) of Ny?(€, 1) is also a dense
subspace of L*(Q, 1), we may extend R to be an injective map from L*(Q) to Ny*(Q).

11



These properties, like the one proved for R, in Theorem B.Il are the essential properties for
the definition of the operator A§.

It is easy to verify that the operator Aq is the restriction of Ax to € in the following
sense: If v € Dom(Ax), then

On the other hand, the operator AZ is the restriction of Ag to the space Ny*(Q, ), that is
Dom(AL) = Dom(Ag) N Ny2(Q, )

with ADu = Aqu for u € Dom(Ag) N Ny*(Q, p).

3.1 Measure-valued Laplace operator

Let 2 be a domain in X. We give the following definition of the measure-valued Laplace
operator Z on Q. By ,(2) we denote the space of all bounded signed Borel measures on
Q, ie. v e #,(Q) is a real-valued signed Borel measure on € with bounded total variation

|| (2) = sup {/ wdv: e € Lip.(Q), |lplle < 1} < 00.
Q

We remark that to compute the total variation of a measure we test in the space Lip.(€)
of Lipschitz functions on € with compact support instead of the space C.(£2) of continuous

functions with compact support; we may do this since Lip.(€2) is clearly dense in C.(2).
We define

Dom(%g) ={u € N"*(Q,p) : there exists v € .#,(X) such that

E(u,v) = — / vdv for all v € LipC(Q)} , (10)
Q
and then we set
.@Qu = V.
Example 3.5. As an example, we can consider the Euclidean space (R, ||-||) and modify its

metric structure in two ways, which essentially lead to the same metric measure structure.
We fix 2 C R™ an open set with regular boundary and we can modify either the measure
by considering dp = (1 4+ xq)dL", or the differential structure du = (1 + axq)Vu, where

a=+2-1.

In both cases we have for u,v € C%(R")

/ (du, dv) dp = Vu-Vvdx+/Vu-Vvdz
n R 9]

:—/ vAud:B—/vAuda:+/ oV - v dH L.
n Q a0

Then u € Dom(Ag») if and only if Vu - vg =0 on 9Q and Au € L*(R™). In addition, in the
case = (1 + xq)L™ with the standard differential structure we also have

Agrnu = Au.
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In the second case, where p = L™ and du = (1 + axq)Vu, we obtain
ARnU = (1 + XQ)AU

In a similar fashion, Dom(Zg=) is given by those functions u for which Au € L'(R™) and
the trace of Vu - vg € L (0Q, H"™ '), and

Dpnu = Aup — Vu - vgH" LIS

It can be verified that Dom(%g) is a vector space and that Zg is linear. We wish to
expand the class of test functions in the definition of the domain Dom(%g) from Lip,.(£2) to
allow for test-functions v in NO1 ’2(Q, i), see Proposition B.8 For that, we need the following
lemma.

Lemma 3.6. If E C Q is a Borel set such that Capy(E) = 0, then for every u € Dom(%q),
| Zqu|(E) = 0.

Proof. By the Jordan decomposition theorem, the measure Zqou can be decomposed into its
positive and negative parts, Z4u and Zgu; this means that we can decompose (2 into two
disjoint Borel sets Q = QT U Q™ in such a way that Zqu(B) > 0 for every B C Q" and
Dqu(B) < 0 for every B C 2. Hence we may, without loss of generality, consider £ C Q7;
in fact we can decompose £ = E U E~ and use the monotonicity of capacity. Further, we
may also assume that E is a compact set, since as Radon measures both % u and 5 u are
inner measures and F is a Borel set.

Since Cap,(E) = 0, we have also that the relative capacity Cap,(F, ) is zero. This can
be seen by multiplying those Lipschitz test-functions which were used for computing Cap,(F)
by another Lipschitz function 7 which is 1 on a neighborhood of the compact set E and has
compact support in €. We can then find a sequence of Lipschitz functions (¢;); so that
0<¢;<lonX,p =1lonFE, and |¢;||nr2x) <277, and ¢; are compactly supported in €.
We may assume that the sequence (i;); converges pointwise to zero outside of the compact
set £/ (we can do so by choosing ¢; to have support in the open set |J _. B(z,1/i)). We
have

zelR

1/2 1/2
/(du,d(pi)du‘é (/ \dulzdu) (/ Ideu)
X X X
1/2
< ( / \dulzdu) il 2,
X

which tends to 0 as ¢+ — oc.
On the other hand, since ¢; are all bounded by 1 and |Zg|(X) < oo, by the Lebesgue
dominated convergence theorem we have

X

lim [ ¢; dPqu = Dqu(E) = D5u(E).
X

1—>00

A similar argument shows that Z5u(E) = 0, and hence the proof follows. O
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Remark 3.7. The requirement that E is a Borel set in the above lemma is not a serious
restriction, because if £ C €2 is a set with Cap,(E) = 0, then there is a Borel set E, with
E C Ey C Q such that Cap,(FEy) = 0.

The following proposition tells us that we do not have to restrict ourselves to having
test-functions v only in Lip,(X) in (I0).

Proposition 3.8. Let u € Dom(Zy). Then for everyv € Ny*(Q, u)NL® (2, 1) the following
holds:

E(u,v) = —/Ud_@gu.
Q

Proof. We first assume that v has compact support in €. Note that by the (1,2)-Poincaré
inequality we can approximate compactly supported functions in N%2(Q, ) by Lipschitz
functions. So we can find a sequence of compactly supported Lipschitz functions (¢;); on €
that converge to v in the N%2(Q, y)-norm. By passing to a subsequence if necessary, we may
also assume that ; — v pointwise outside a set of zero 2-capacity; we refer to [Shi]. Since
v is bounded, we can also assume that the approximating compactly supported Lipschitz
functions ; are also uniformly bounded by M := ||v||«. Applying ¢; as in (), we see that

/apid@Qu = —/(dapi,du) dp — —/(dv,du) dp.
0 Q 0

By Lemma [B.6] we know that p; — v almost everywhere with respect to the total variation
measure |Zqu|. By the Lebesgue dominated convergence theorem applied to the uniformly
bounded functions ¢; with respect to the positive and negative parts Zou™, Zou~ of the
signed Borel measure Zou, we may conclude that

/@id_@gu—)/vd_@gu.
Q Q

Hence equation (I0) holds for all compactly supported functions v € N*2(Q, ) N L®°(, p).

To pass to any v € No?(Q, ) N L®(, i1), we note that functions in Ny(Q, y) with
compact support in Q form a dense subclass of NO1 2(Q, 1) (see [Sh2]). Hence, if v is in
N2 (Q, 1) N L®(Q, 1), we can find a sequence of compactly supported functions v; from
N,2(Q, 1) N L2(Q, i) such that v; — v in Ny?(Q, p). As before, we can also ensure that
v; — v 2-capacity almost everywhere in 2. Hence

/(du, dv) dp = lim [ (du,dv;)dp = — lim | v; d%qu,
0

1—>00 Q 1—00 Q

and then if v is bounded in 2 we have

lim [ v; d@gu:/vd@Qu,
Q Q

1—00

giving the desired result for all bounded functions in Ny?(€2, ). O
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We shall also need the following lemma, which is based on the Lebesgue decomposition

of the measure % given by
dDou = fudu+ dZ5u,
_ d9qu

where f, = e is the absolutely continuous part and % the singular part of Z.

Lemma 3.9. Let u € Dom(%g). If the singular part 2§ of Pau is zero and if the Radon—
Nikodym derivative f, € L*(Q, ), then u € Dom(Agq) with Aqu = f,.

Proof. From the discussion in Section [ if Z3u = 0 and the absolutely continuous part is
represented by f, € L*(€2, 1), then

E(u,v) = — / fuvdy (11)

for all v € Ny (€, u)NL>®(Q, p). When f, € L*(Q, 1), we can use a truncation argument and
the Lebesgue dominated convergence theorem to show that (IT) holds for any v € Ny (9, p).
So we conclude that v € Dom(Aq) and Aqu = f,,.

U

Remark 3.10. It can be seen that Dom(Agq) C Dom(%g); moreover, if u,v € Dom(%g)
and a € R, the following hold true:

1. spt(Zqu) C spt(u); also, if u is constant on an open set U, then spt(Zau) C Q\ U;
2. u+ v, au € Dom(Zqg) with Zq(u + v) = You + Pqv and Zg(au) = a Dou;
3. if in addition u and v are bounded, then uv € Dom(%q) with

dPo(uwv) = vdDou + udPou + 2 {du,dv) dpu.

Note here that since u, v are in NY2(Q), it follows that they are well-defined up to sets
of Cap,-zero; such null sets are not charged by Zqgu, Zgv, see Lemma 3.6.

3.2 Inhomogeneous Dirichlet problem

In this section we consider the inhomogeneous Dirichlet problem on bounded open domains
2 such that (X \ Q) > 0; we assume that a metric space X satisfies a (1,2)-Poincaré
inequality. More precisely, given two functions f € L?(X, u) and v € NM?(X, u), we wish to
find u € Dom(Agq) such that
Aqu = f on €,
(12)
u—ve N2, ).

By definition of Aq, we interpret (I2) in the weak sense, i.e. w is a solution of (2] if
u—v € Ny*(Q, p) and for all ¢ € Ny?(Q, ),
5(u,s0)=—/gfs0du-
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As in the classical linear theory, a solution u to (I2) can be written as the sum of two
functions, ug and u;, where wuy is harmonic in Q such that ug — v € N& 2(Q, 1) and uy €
N, (9, 1) is a particular solution to the problem ASu; = f with u; € Ny*(Q, p).

The function wug is constructed in [KRS] as the minimum of the energy functional

min /|du|2du.
u—vGN&'Q(Q,,u) O

For the second part, we use the functional F : Ny*(€, y1) — R given by

1
mm:§lﬁwmm+ﬁwmm

which is the sum of a linear functional and a strictly convex energy. Hence F' itself is strictly
convex. Then, if F' has a minimum, it is unique and the minimum is the desired solution
uy. To prove the existence, it is enough to use the Sobolev inequality, i.e. if u € NO1 ’2((2, 0
there exists a constant ¢, > 0 such that

[ullz < cqlldull2.

Given that Q is bounded and p(X \ ©2) > 0, the above Sobolev inequality holds; we refer
to [HaKo] and [KiSh] for the details. Then, for any u € Ny(€, ;1) we have that, using the
inequality ab < a?/2 + b*/2¢ with a,b,e > 0,

1 1 1
Fu) = ldull + [ fdu> 31dul = | lallull > 3lldul} = el flelduls

1 ec c
> (= = 25 dul? = S17112.
_(2 2)nw22Jm2

If we fix ¢ < 1/c¢,, the preceding inequality gives us that F' is bounded from below by
—27 7 e || f]|3. Therefore,
m= inf F(u)
ueN, 2 (Q,u)
is finite, and in particular, the infimum is a minimum as seen by taking a minimizing sequence
and applying Mazur’s lemma. The minimizing function u; is a weak solution to the desired
equation, that is

aw e au=— [ fodn (13)

for all o € Ny?(Q, p). From ([I3) it is immediate to see that uy is the desired solution; in
addition, if in ([I3]) we take ¢ = u;, we have the Caccioppoli type estimate

du e < el f1]2-
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4 Functions of bounded variation and the perimeter
measure

The aim of this section is to study some properties of the perimeter measure of a ball in
metric space. The properties we have in mind are needed in the characterization of a singular
function which will be constructed in Section

Following [Mx], the definition of the total variation of a function u € L'(X, p) is given by

|Du|(X) = inf {lim_inf/ Gu, At uj € Lip (X, 1), uj — win L (X, ,u)} : (14)
J X

A function u is said to have bounded variation, that is, u € BV (X, p), if |Dul(X) < oo.
Moreover, a Borel set F C X with finite measure is said to have finite perimeter if yp €
BV (X, ). We denote the perimeter measure of E by P(F, X) = |Dxg|(X).

To each function of bounded variation we associate a Borel regular measure, its total
variation measure. This measure is defined on every open set A C X using (I4)), that is,

|Du|(A) = inf {lim,inf/ Gu, At uj € Lip (A, p), uj — win Ly (A, ,u)} :
i Ja

We extend this measure to act on any Borel set B C X by the Carathéodory construction
|Du|(B) = inf {|Du|(A) : A open and B C A};

for more details on this construction in the metric measure setting see [Mr, Theorem 3.4].
An equivalent definition can be also given by way of the Cheeger differentiable structure
as follows:

|Dcu|(X) = inf {hmlnf/ |duj| d:u fuj € Liploc(Xa :u)> U = u in Llloc(X> :U“)} )
J X

and we shall say that u has bounded total Cheeger variation if |D.u|(X) < oco; a set with
Cheeger finite perimeter is a Borel set £ with finite measure such that |D.xg|(X) < oc.

By the results contained in [C], it follows that these two definitions are equivalent, in
the sense that v has bounded total variation if and only if it has bounded total Cheeger
variation. There exists a constant ¢ > 1 such that

2 Dul(X) < [Deul(X) < e Dl (X).

Also using the Cheeger differentiable stucture, we have that |D.u| defines a finite Radon
measure; the argument is similar to the case of |Du| and so we refer to [Mi] for the proof.

A sequence of Lipschitz functions (u;); is said to converge in variation to a function
u € BV (X, p) if u; conveges to u in L, (X, 1) and

loc

| gusdn = 1000
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The preceding definition of total variation does not specify the optimal sequence, i.e. the
sequence which converges to u in variation.

It is proved in [Mr, Theorem 3.8] that the discrete convolution gives an approximation
that is only comparable in variation with the optimal one. Note that for the optimal sequence,
the vector valued measures dji; = du; dyi, have uniformly bounded total variation. So, up to
subsequences, they converge to some vector valued finite measure ji...

Remark 4.1. A sequence (u;); converging to u in variation is optimal not only for the
variation in X, but also for the variation in all open subsets A with |Du|(0A) = 0. In fact,
by definition, we have that
|Dul(A) < liminf / Gu; dpt,
j—oo A

but also that

|Duf(X \ 4) < limsup/ u; dp < limsup (/ Gu; At — / Gu, du)
X\A X A

j—o00 j—o00
— |Dul(X) - limint [ g,, du < |Dul(X\ 4).
Jj—o0 A

The preceding inequalities are indeed equalities if |Du|(0A) = 0 and so |[Dul(X \ A) =
|Du|(X \ A). Hence the following two limits exist

lim Gu; dp = [Du|(X '\ A),
\A

Jj—o0 X

and
lim | g, du = [Dul(A). (15)
Jj—=oo J 4
An important tool in the theory of functions of bounded variation is the coarea formula.
The version we work with in the present paper is a direct consequence of [Mrl, Proposition 4.2].
For any u € BV (X, ) and any Borel measurable function f : X — R, the following identities
hold

/X fd|Du] = / /X £ () d| D ()t (16)

/dechu\ :/R/Xf(x) d|Dexp,| (z)dt,

where E; = {u > t}, t € R, is the super-level set of u. We point out that in these formulae,
due to the fact that the measures | Du| and | D u| are not absolutely continuous with respect to
the measure p, it is important to consider the function f and not an equivalent representative.
Since the perimeter measure does not charge sets with zero 1-capacity, we can modify the
function f on such negligible sets. If u is Lipschitz, (I6]) can be written as follows

/ngudM:/R/deWXEtl(x)dt.

This follows by an argument contained in |[Cal, Theorem 6.2.2] and summarized in the fol-
lowing proposition. We will provide a proof here for the reader’s convenience.

and
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Proposition 4.2. Let u € Lip(X). Then the total variation measure d|Du| is given by g,d.

Proof. Lipschitz continuity of u implies that |Du| is absolutely continuous with respect to
p with density given by some function G,. To see this, note that u; = u is a possible
competitor in the definition of |Dul, and so for every open set A C X (and hence for every
set A C X) we have

|Dul(A) < / g dp.

Therefore the density function G, < g, p-a.e.
To prove the equality it suffices to prove that the function G, is an upper gradient of w.
We take a sequence (u;); of Lipschitz functions converging to u in L*(X, 1) and with

lim [ g, dp = |Dul(X).
J—=© Jx

The sequence of measures g, dp is bounded, and so, up to a subsequence, it converges weakly
to a measure [, that is still absolutely continuous with respect to p, i.e. dpoo = goo dpt.
To see that us, is absolutely continuous with respect to p, it suffices to show that whenever
E C X is compact with u(£) = 0, we have . (E£) = 0. To this end, we note that because £
is compact, for every € > 0 we can cover E with a finite number of balls Bf with u(0B5) =0
so that the open set A. = U;Bf contains E and is such that u(A.) < e and p(0A.) = 0.
It follows that |Du|(0A.) = 0 because of the absolute continuity of |Du| established above.
Therefore, by Remark 4.1l we have

lim [ g, dp = |Du|(A;) < / gudp < Le,
j=oo J 4, A,

which implies that p(A:) < Le. It follows that pw(E) = 0. For more general sets F C X
with p(E) = 0, there is a Borel set Ejy, containing E, such that p(Ey) = 0. Because pio is a
Borel measure, i (Ep) is the supremum of all pi,(K), the supremum taken over all compact
sets K C Ey. Given that pu(K) = 0 and so . (K) = 0, it follows that p.(FEy) = 0 and so
fioo(E) = 0. Then g, converges to g weakly in L'(X, ).

To summarize, we have u; — u in L'(X) and g,, = goo weakly in L'(X). Now, an
invocation of the Mazur lemma, together with [KaS, Lemma 3.1] shows that g, is a weak
upper gradient of u; it follows that ¢, < g, a.e. in X.

Given that balls have finite p-measure, when z € X, for almost every » > 0 we have
w(0B,(x)) = 0. For such r > 0, by (I3]) with A = B,(z),

DB @) < [ gudp < timint [ o= IDuB @)= [ Gudn

By(z) J—e0 By(z)

and so we get goo(x) = Gy(z) for x € X that are Lebesuge points for both G, and g... It
follows that G, < g, < goo = G4 a.e. in X, from which the claim follows.
]

From now on, we assume that X is also a geodesic space. This is not an overly restrictive
assumption, since X, by the virtue of supporting a Poincaré inequality and being complete,
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is a quasiconvex space. It follows that in our setting, a bi-Lipschitz change in the metric
does result in a geodesic space.

Let us fix a point zyp € X. Since X is assumed to be a geodesic space, by the results
in [C], the function u,,(z) = d(z, o) is Lipschitz with Lip(us,) = gu,, = 1. Moreover, we
may write By(xo) = {uz, < t} and so by the coarea formula (I€) we obtain for any positive
r > 0 that

/OT P(By(x9), X) dt = (B, (xg)) < 00.

Thus the map t — P(B(x), X) is a measurable locally integrable function. This implies
that for almost every r > 0,

r r4e

1 1
P(B.(x0),X) =lim— [ P(By(x), X)dt = lim - P(By(x0), X) dt
e—0 & e e—0 & r

1 r4+e
= lim —/ P(By(xp), X) dt.

—&

In particular, for almost every » > 0 the perimeter measure coincides with the Minkowski

content P(B, (o), X) = lim p(Br(xo)) — M(Br—s(x(])).

e—0 g

(17)
For a ball B,(z) satisfying (), we can consider the sequence of functions (u.).~o, where

r —d(xg, )
5

u(z) = max {min{ ,1} ,o} — min {%d(:ﬂ, X\ B, (20)), 1} . (18)

For a such function u., we have that g, = %X By (20)\Br_< (o) and

1
/ udu=" / dji — P(B,(x0), X),
X € Br(x())\Brfs(xO)

that is, the sequence u. converges to X, (s,) in variation. This also means that the sequence
of vector valued measures (|du.|du). is equibounded

|Dou|(X) = / |duc| dp < ¢ < 00
b

for some positive constant c. Therefore there exists a subsequence €; — 0 such that, setting
u; = ue,, the sequence of vector-valued measures du; du is weakly convergent to some vector
valued measure /io. This measure is absolutely continuous with respect to both |D.x B, (z)|
and |Dxp,(z0)|- Indeed, if, for instance, |D.Xg, (z0)|(£) = 0, where £ C X is compact,
we can find for every ¢ > 0 an open set A. D FE such that |D.xp,(2)|(0A:) = 0 and
| DeX B, (z0)| (Ac) < €. Reasoning as in the proof of Proposition .2l we may conclude that

l(B) < Vel (42) < Timminf [ [dus| = Do o l(40) < =

We may hence write
:Joo = Vm07T|DCXBT(xO)‘ = O-:B07T|'DXBT'(IO)‘
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for some vector-valued |D.x B, (0)|-measurable function v, , and |Dx g, (2,)|-measurable func-
tion 0y, ,. In particular, the function o, , plays the role of the normal vector at the boundary
of B.(zg). In this context, it is not clear from the definition if it is a unit vector. For the
sake of simplicity, if no confusion may arise, we simply denote the functions v, and o, ,
by v and o, respectively.

We can summarize the previous construction in the following definition.

Definition 4.3. We shall call a ball B, (zq) regular if the equation (7)) is valid and if there
exists a sequence €; — 0 such that for the sequence of functions u; = u,,, referred to as an
optimal sequence and defined in (I§]), the following hold true:

(1) gu; dp converges weakly to d|Dxs, (x)l;

(2) dujdp converges weakly to o d|Dxp, (z,)| for some |Dx p, (4)|-measurable vector-valued
function o = o0y

Almost every ball is regular in the sense that for every xy € X and for almost every r > 0
the ball B, (x¢) is regular. Howeover, the vector ¢ is not a priori unique and it is not clear
whether it depends on the sequence €; we consider.

The given notion of regularity relates to interior regularity of a ball. One can also consider
the notions of outer and two-sided regularity and obtain that for almost every radius r» > 0
the ball B,.(zo) has inner, outer, and two-sided regularity.

5 Divergence measures and generalized Gauss—Green
formulas

Here we consider divergence-measure fields, i.e. a class of vector fields F:X >Rk belonging
to the space L2(Q, R¥, 1) and for which div F is a measure. In the metric space framework
of the present paper, we generalize some results obtained by Ziemer in [Z].

Previously, Thompson and Thompson in [TT] constructed a divergence form in the setting
of Minkowski spaces, and they proved a Minkowski space analogue of the Gauss—Green
theorem.

The aim of this section is to study the operator div on Lip,(£2) with values in the space
of measures, that is, we want to define for F € L2(€2, R¥, 1) the distribution

(u, div F) = — /Q (F du) dp, (19)

for u € Lip,(©2). In the following we adopt the notation from |[CTZ|] and [Z].

Definition 5.1. We say that F € L%(Q, R, ) is in the class DM?() if there is a signed
finite Radon measure, denoted by div F' € .#,(£2), on 2 such that

/uddivﬁ = —/<ﬁ,du> du (20)
Q Q

for all w € Lip,(€2).
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Remark 5.2. By an argument similar to the proof of Lemma B.6] we can prove that if
F € DM?*(Q), then the measure div F' does not charge sets with zero 2-capacity. Therefore,
condition (20) can be extended to any u € Ny*(€, ) N L>2(, ).

Note that when F' € L2(Q, R, ;1) the operator Ty : Ny?(2, 1) — R given by
Ta(u) = / (F, du) dp
Q
is a bounded linear operator on the Hilbert space (N;?(€2, 1), ;). Therefore, by the Riesz

representation theorem, there exists a function v € NO1 ’2((2, p) such that whenever u €
N2 (Q, ), Ta(u) = Ei(v,u). Hence, if F € DM?*(Q), then for all u € Ny*(Q, 1) we obtain

/(ﬁ,du)d,u:/uvdu+/(du,dv>du,
Q 0 0

/uddivﬁ+/uvdu = —/(du,dv)d,u.
0 0 0

It follows that v € Dom(Z%g) with

that is,

d9qv = —vdp — ddiv F.
This proves the following lemma.

Lemma 5.3. Given a domain Q C X, a map F € L2(Q, R, 1) is in the class DM?(Q) if
and only if there exists v € Dom(%q) such that

dDqv = —vdp — ddiv F
in the sense of distributions on Ny (Q, ).

We can also state the following simple properties of the divergence measure.

Lemma 5.4. Let F € DM?(Q). Then spt(div F) C spt(F). Moreover, if v € Dom(%y,),
then dv € DM?*(Q) with div dv = Zqv.

Proof. The first statement follows by considering 4 = Q \ spt(F), so we have that
jaiv FI() =sup { [ padiv F o € Lip (), Dol <1
A
= sup {/(ﬁ, dp) dp @ € Lip (A), [|¢]le < 1} = 0.
A
For the second part, let v € Dom(%g). Then there exists a signed finite Radon measure

Dau € My(X) such that
/(dv,du) dp = —/ud@m)
0 Q

for all u € Ny?(Q, 1) N L®(Q, 1). From this and by Remark .2, we may conclude that
dv € DM?(Q) with divdv = Zqv, and the claim follows. O
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We now state the following two propositions on the Gausst_r)een type integration by parts
formula for vector fields in DM (1), that is for vector fields F in L®(Q, R*, 1) N DM? ().

Proposition 5.5. Let F € DM™®(Q) N C(LRF) and B, (zo) C Q be a reqular ball. The
following Gauss—Green formula

/ L JddvE / (Fdf) du = — /Q F(F. 0001 dI Do
By (xo

By (zo)

holds for all f € Lip.(2). If the support ofl3 is disjoint from 0B, (xq), then the requirement
that F' 1s continuous can be removed.

Proof. We can consider an optimal sequence of locally Lipschitz functions (u;); converging
to XB,(z) in variation as in (I§)). Then we have by the Leibniz rule that

[ wsadivF = [ (Fdwr) dn= - [ atFodp)du~ [ . du) i

We notice that

/ujfddivﬁ—/ fdleF'<||f||Oo‘d1VF’ r(20) \ Bre,(20)) , (21)
Q By (zo)
and that the right-hand side of (2] tends to 0 as j — co. Thus we may conclude that

lim ujfddivﬁ:/ fddivF.
By (z0)

J—00 Q

Also, by the fact that both F and df are in L*°(Q)), by an application of the Lebesgue
dominated convergence theorem we obtain

i [ w(Fodfydn= [ (Fodr)d
By (zo)

J—00 QO

We also have, due to the continuity of F , that

lim | F(F,du;)de = / . 0y YA DX 5 a0

j—oo
and so the proof is completed. O

Remark 5.6. We point out that property (21]) is a consequence of the choice of an optimal
sequence (u;); to be an inner approximation of the characteristic function xg, (2. If we
chose, for instance, an outer approximation, then the preceding integration by parts formula
would be as follows

/ fddivﬁ+/ (F,df)d /f ) AIDXB, (o),
Bir(z0) By (zo)
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for all f € Lip,(f2), where &,,, is the density of the vector-valued measure obtained as a
weak limit by way of the gradients of this new sequence as in Definition 3]

We also point out that the previous proposition can be extend to more general sets
E C Q with finite perimeter whenever a Minkowski content characterization of the perimeter,
analogous to (I7), holds. In this case, the boundary of E has to be considered as the essential,
or the measure-theoretic, boundary of F, i.e. the set of all points at which the density of
is neither 0 nor 1.

We prove the following main theorem of this section, which is a generalization of Propo-
sition 5.5l without requiring continuity of the vector field. This theorem should be thought
of as the generalization of the Gauss—Green theorem of the Euclidean setting.

Theorem 5.7. Let F € DM™®(Q) and let B,(x0) C Q be a regular ball. Then the following
extended Gauss—Green formula

[ paawFe [ (Fapyde= [ FE 0D (22
By (z0) By (z0) Q

holds for all f € NV2(Q, 1) N L®(, ), where (F - V)oB, (z) 15 the interior normal trace of
F on 8B, (xo).

Proof. We use the optimal sequence (u;); defined in (). Then, as in the proof of Proposi-

tion [5.5], by the definition of divF (Definition [5.1]) and the Lebesgue dominated convergence
theorem

i [ Pt ([ (s [ Py an
j—o0 O Q
= —li fddiv F (F,df)d
jggo(/gu]f i +/Qu]<,f> u)

:—/ fddivﬁ—/ (F,df) dp.
By (z0) By (z0)

For the sequence (L;); of operators given by
- / f(ﬁadu]> d:ua
Q
we have that |L;(f)| < C||F||so|f|loe, where the positive constant C' is given by

= sup/ |du;| dp < 0.

JjeN

Indeed, C' is finite since the ball B, (z() has finite perimeter. In particular, C' is independent
of both f and F' and so, by the above argument, the operator

L(f) = lim L;(f)

]—)OO
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is bounded over Lip,.(€2) and admits an extension to C.(€2). This in turn implies that there
exists a measure v € .#(2) such that for any f € C.(2)

L(f) = /Q fv.

The measure v is concentrated on 0B,.(zp); in fact take any compact set K such that
K N 0B, (z9) = 0, an open set A D K such that dist(A, dB,(x¢)) > 0, and take ; <
dist(A, 0B, (x¢)). Then, since spt(du;) N A = 0, we obtain for any f € Lip,(A),

/fdu = lim [ f(F,du;)dp=0,
Q Iz Ja
that is |v|(K) = |v|(A) = 0. This property extends to any Borel set E such that E N
B, (x) = () since
WI(E) = sup |v|(K) = 0.
KCE

Also v can be seen to be absolutely continuous with respect to |Dcxp,(z)]; indeed, if E
is a Borel set such that |Dcxp,(z)|(E) = 0, then there exists an open set A. such that
|DeX B, (20)|(Ae) < e. Fix a compact set K C F and an open set A D K such that A C A..
Then, for any f € Lip.(A) with || f]l« < 1 we have that

J—00

/f(ﬁaduy) du‘ < lim sup HﬁHm/ [dus| dpt < | F ool Dex s, (ao) | (A) < 2] Floo,
A A

that is |v|(A) < e. Therefore, since ¢ is arbitrary, |v|(K) = 0. Finally, by taking the
supremum over K C E, we obtain that |v|(E) = 0, and hence v is absolutely continuous
with respect to |DeX B, (z0)]-

To conclude, there exists (F - V) o8, ) € LY(|DXB,(zy)|) such that

L(f) = / FE )5 0y DX, o).

This map defines, in the metric setting, the interior normal trace of F on 0B, (x0), and the
integration by parts formula (22) holds. O

Remark 5.8. The term interior normal trace can be justified by the following facts. If
F € DM™(Q) N C(Q,R¥), then by Proposition .5 we get that
(F . V)gBr(mo) = _<F>UI07T>'

In addition, also when F is not continuous, recalling that with u,,(z) = d(z, ),

1
duj(2) = = —dua (T)XB,w0)\B, -, (a0) (),
J
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and by using the coarea formula (I0]), we can write

1 -
/f qu] dp =— — f(F, duy,) du

€5 J Br(20)\Br—e; (w0)

- _/ /f(deumo> d‘DXBt(xo)‘dt'
E] T’—Ej Q

Therefore, we have obtained that

/f(ﬁ'y)gBr(xo) d|DXBr(mo)| = — lim _/ /f F duxo d|DXBt(wO |dt
Q

j—o0 €

which gives meaning to the following equality in terms of the trace

/Qf(F ' V)<;Br(mo) d|DXBr(900)| = - /S; f<F7 duw0> d‘DXBr(Io)L

and to the fact that the vector du,, defines in a weak sense the normal vector o, , to 0B, ().

Remark 5.9. Observe that in the proof of Proposition [5.7] we have used a particular optimal
sequence. It turns out, nevertheless, that the interior normal trace (ﬁ . V);Br(xo) does not
depend on this particular choice. This fact is a direct consequence of equation (22]), since
then formula

|32,y dDX8 ] = [ JddivF [
r(Zo

By (z0)

uniquely identifies the values of (F - V) 0B, (z0)-

Remark 5.10. By [Al Theorem 5.3] (see also [AMP]), formula (22]) can also be written by

[ pdawFo [ (Fapydi= [ F ) 0dst
Br(wo) Br(.’Eo) a*Br(.’Eo)

where 0" B, (z¢) is the essential boundary of B,(z¢), 8" is the spherical Hausdorff measure
defined using the Carathéodory construction based on the gauge function
—=\ _ H(B,)
h(B 9) = 0 : )

and ¥, , : X — [c, cq] is a Borel function depending, in general, on the ball B, (z), and c is
a positive constant and ¢4 the doubling constant of p.
6 Harmonicity and the mean value property

In this section, we shall follow the approach of [HS] and construct, for any regular ball
B,(z9) C X and any & € B,(x) the Green function on B, (x) with singularity at z, that is
an extended real-valued function G(z) = G () (z) such that

26



1. G is strictly positive and harmonic in B, (zo) \ {Z};
2. G e N'Y*(X \ B.(2)) for any £ > 0 and G|\ 5, () = 0;

3. for every y € 0B, ()

lim G(z) = 0;
T—Y

4. @ is singular at z; that is
lim G(z) = oo;
Tr—T

5. for all 0 < a < b,

1
b—a

Capy({x € B.(x9) : G(x) > b}, {x € B.(x9) : G(x) >a}) =

In [HS] the authors constructed the Green function of a relatively compact domain with
the aforementioned properties in metric measure spaces; we refer also to [H| and [DGM]. We
can state the existence and main properties of the Green function in the following theorem.
We assume that X supports a (1,2)-Poincaré inequality.

Theorem 6.1. Let Q C X be a relatively compact domain. Then there exists the Green
function G = G§, with singularity at T € Q. In addition, dG € L*(X \ B.(Z)) for any e > 0
and

Dx\5.)G = —§,

where v§ is a positive Radon measure in the dual Ny*(X \ B.(Z))* concentrated on 0.

Moreover, G admits the measure-valued Laplace operator
QXG = 5% — l/g,

in the sense that for any v € NY2(X) continuous at T, then
/(dG,dv) du :/ vdr§ —v(Z).
X B

Proof. We refer to [HS| for the details on the construction of G. We sketch the main steps
needed in the definition. We find a harmonic function on Q\ B, (7)

Uj

G; = — :
’ Cap2(B€j (f)> Q)

where B, () is a regular ball, ¢; \, 0, ¢; < dist(z,09), and v; is the potential of B, (Z)
with respect to ; that is v; € N*?(X) is harmonic in Q\ B.,(z), v; = 0 on X\ Q and v; = 1
on B.,(Z). It is then shown that, up to subsequences, the functions (G;); converge locally
uniformly in X \ {Z} to a function G. The limit function G has the desired properties of a
Green function.

Let us fix a positive sequence (M;);>o such that M; / co, and the truncations

T,G := min{G, M,}.
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There exists a sequence r; \, 0 of radii such that
E; C Bri (i’),

where we have written E; = {x € Q : G(z) > M;}; and we may consider the case in which
r; < €. Then T;G = G on X \ B.(Z) and T;G is subharmonic in X \ B.(z). By [BMS]
(we refer also to [M] for a detailed description in the Euclidean case) there exists a positive
Radon measure v§ in the dual No?(X \ B.(Z))* such that for all v € Lip,(X \ B.(Z)) we

have
/ (dG,dv) dp = / vdr§.
X\Be () X\Be ()

If v € Lip.(X \ Q), the fact that G =0 on X \ Q implies dG =0 on X \ €, and then

/ vdr§ = / vdv§ = / (dG,dv) dp = 0.
X\B.(z) X\0 X\Q

On the other hand, the harmonicity of G in Q \ B.(Z) implies that if v € Lip.(Q2 \ B.(¥)),

then
/ vdr§ = / vdv§ = / (dG,dv) dp = 0.
X\Be(z) O\B-(2) O\B: ()

Hence the measure v§ is concentrated on 0.

Analogously, since T;G is superharmonic in §2 there exists a positive Radon measure
v& € N;*(€Q)* such that for all v € Lip, (1)

/(dTiG,dv) dp = —/ vdvf.
0

O\Br, (7)

The measures v; are supported in B,.(7); indeed, since T;G = G on Q\ B,,(%) it is harmonic.
Hence, if v € Lip. (2 \ B, (7)),

/’UdI/Z-G :/ vdv’ :/ (dG, dv) dp = 0.
0 O\B,, (7) O\B,, (z)

Following the argument of Serrin [Se, Lemma 1 and Theorem 3], there exists A € R such
that if v € Lip.(Q) is equal to 1 in a neighborhood of Z, then

/(dG, dv) dp = .
Q

Indeed, if vy, vy € Lip,(2) are two functions that are equal to 1 in a neighborhood of Z, the
difference v = v; —v, belongs to Lip,(2\ {Z}); hence, the harmonicity of G in Q\ {Z} implies
that

/ (dG, dvy) dp — / (dG, dvs) dp = / (dG, dv) dp = 0.
Q Q Q

In particular, if v € Lip,(Q) is a function such that v = 1 on B,,(Z), then

ve (B, (7)) = /deyf =— /Q<dTZ-G,dv) dp = —/(dG,dv) dp = —\.

Q
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This argument implies that A € R is negative and the measures v“ are equibounded in

M,(Q). Thus, up to subsequences, v” converges weakly to \dz.

To summarize, we have proved that the sequence of the measure-valued Laplace operators

IT,G = vE —v§
admits a convergent subsequence Z7T;, (G, defining the measure-valued Laplace operator

IxG = lim 9T, G = \éz — l/g.
k—o0

The fact that the limit measure is uniquely determined implies that for any sequence M; *

00, the measures 27T;G converge and the limit measure is A\d; — v/§.

Let us show that A = —1. Let us consider the set £ = {x € Q: G(z) > 1} and a
function v € Lip.(€2) such that v =1 on E. Since ¥ is an interior point of E, we have

A= \(Z) = —/ (dv,dG) dp.
O\E
On the other hand, the map f = (G — v)xq\xz belongs to Ny*(Q\ E) and then
0= /(df, dG) d,u:/ |dG|2d,u—/ (dv,dG) dp.
Q O\E O\E

These properties of G imply that G is the potential of E with respect to (2, that is

/ G2 dp = Capy(E, Q) = 1.

O\E

We may hence conclude that A = —1.
Finally, we point out that the identity

/ (dv,dG) dp = / vdv§ — v(T)

X o0

is valid for functions v € NY2(X) that are constant in a neighborhood of Z, but it can be
generalized to functions v € NY2(X) that are continuous at . This is a simple consequence
of the limit

/ vdv§ —v(z) =lim [ vdv§ —/ v dv¢
a0 =0 Jan By (%)

=lim [ (dv,dT;G)du = / (dv, dG) dp.

1—00 X X
U

Remark 6.2. Let us consider the (first) Heisenberg group H with the geodesic distance. In
this case, the natural differential structure is given by the horizontal bundle and the Laplace
operator is just the horizontal Laplace operator. In this setting, we can use all the results
of the preceding section and obtain the representation of the measure v in terms of the
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perimeter measure. Notice that a ball B,(x¢) in H satisfies a ball condition as in [AKSZ],
Definition 2.1] at its boundary except at two points; a finite collection of points is negligible.
Hence, if G = G, (z0) 18 the Green function on B,.(z() with singularity at Z, then whenever
x is a boundary point of B,.(z) satisfying the ball condition,

U (G, x,0):= sup G — sup G < Oy, (23)
BZQ(I) BQ(I)

where 0 < p < d(x,Z)/2 and C' is a positive constant that does not depend on z, Z, or p.
It follows from a covering argument together with (23) and [BMS, Lemma 4.8] that I/gr(mo)
is absolutely continuous with respect to the perimeter measure |Dxp, (z)|- Moreover, there
exists a function J5 € L*(X,|Dxg|) such that dv§ = ¥qd|Dxp|. The function Jg comes
from the Radon—Nikodym theorem.

We give a characterization of harmonic functions via a mean value type property with
respect to boundary measures.

Theorem 6.3. Let u € NY2(Q, i), then the following hold:

(1) Let u be harmonic in Q. Then for every regular ball B,(xo) C 2 and T € B,(x)
u@ = [ wdvf] (24)
OBr(x0)

(2) If for every regular ball B.(xo) C 2 and any T € B,(xy), u satisfies the mean value
property 24)), then u is harmonic in Q.

An analogous characterization holds true for sub- and superharmonic functions. Let u €
NY2(Q, 1) then the following are equivalent:

(8) Let u be subharmonic (superharmonic) in ). Then for every regular ball B,(xy) C Q
and z € B

u(z) < / udugr(xo), (u(:z) > / udl/gr(xo)) :
OBr(z0) OBr(x0)

(4) If for any regular ball B,(xq) and any T € B,(x¢)

u(z) < / udugr(xo), (u(:v) > / udl/gr(xo)) ,
OBr(z0) OBr(x0)

then u is subharmonic (superharmonic).

Proof. Suppose that u is harmonic. Then u € Nb2(Q, u) N L () and we can apply Theo-

loc

rem We obtain for any regular ball B,.(zo) and Z € B,(x)

0= / (du, dG%) dp = —/ uwd2x Gy = —u(T) —I—/ udv§,
X X

OB (z0)
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which gives the condition (1).
On the other hand, if u is continuous, if we fix a regular ball B = B,.(z), we can consider
the harmonic function H, generated by u on B, that is the solution of the problem

min {/ |dv*dp: v —u € Né’z(B,,u)} :
B

Hence H, is harmonic in B and satisfies the mean value property, that is for any z € B

H,(7) = /8 e H,dv§. (25)

The conclusion follows from continuity of u since

li H,(z) =

B3asyeon (z) = uly),

and then by ([28), H, = u on B. For a general u € N'?(Q, 1), we can find a continuous
function u. such that u = u. outside a set of capacity less than € and such that ||u—u.||12 < ¢;
then by an approximation argument in [BBS, Section 6], we can conclude the assertion.

The same line of reasoning carries out in the case of sub- and superharmonic functions.
O

Remark 6.4. It was proved in [BBS] that the harmonic extension of a function u €
NY2(Q, 1) on a ball B C Q can be expressed in terms of harmonic measures vz with sin-
gularity at z € B; by this we mean that if ¢ € C(9B), then in [BBS, Theorem 5.1], its
harmonic extension is given by

H,(z) = /(wgpdyx.

If we move T € B,.(zg), it is possible to see that the measures v; are mutually equivalent;
in particular, if we take zo and = € B,(zo) \ {zo}, we have that v; is absolutely continuous
with respect to v,, and its density P(Z,-) is called the Poisson kernel. In other terms, the

Poisson kernel is defined as p
Vg

P(z,x) (x).

In [BBS], vz was not explicitly identified. Nevertheless, from the results contained in the

previous sections, we are able to identify this measure as the outward normal derivative v§

of the Green function.

dvy,

Example 6.5. In Example B3], if we take = B;(0), the unit ball, then all balls except
B;(0) are regular. This is due to the fact that the perimeter of B;(0) has weight 1, that is
|Dxp| = H" 'L OB. However, if we consider the optimal sequence (u;); defined in (I8) we
have that

[ 19uldn 20 (081(0) = 2Dy 0 (R7)
Nevertheless, the measure l/gl (0) can still be characterized as a perimeter measure, but with
dl/gl(o) = Q(VG . VBl(Q))dHn_lLaBl(O) = 2(VG . VBl(O))d‘DXB1(0)|-
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On the other hand, if we take any other ball B C B;(0), it is regular and in this case
H"1 (OB N dB;1(0)) = 0. Note also that if H"'(B N dB;(0)) > 0, then since the Green
function is harmonic in B except the singular point 7, we have that VG - vp, (o) = 0 and then

dvg = (14 X5,0) (VG - vp)dH" ' LIB = (VG - vp)d| Dx3|

On the other hand, if we take Q = R™\ B;(0), then every ball is regular. This is due to the
fact that in this paper regularity is a notion of inner regularity. If one changes the notion to
outer regularity or to two-sided regularity, then things change.
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