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Abstract: In this paper we de�ne jump set and approximate limits for BV functions on Wiener spaces and
show that the weak gradient admits a decomposition similar to the �nite dimensional case. We also de�ne
the SBV class of functions of special boundedvariationandgive a characterisationof SBV via a chain rule and
a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour
of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
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1 Introduction
In this paper we continue the investigation of the properties of functions with bounded variation in in�nite
dimensional spaces, that is the setting of abstract Wiener spaces. The theory started with the papers [14], [15]
where essentially a probabilistic approach was given and has been subsequently developed in [17], [5] with a
more analytic approach.

Motivations for considering functions with bounded variation come from stochastic analysis, see e.g.
[18], [28], [24], [25]; recently, in [23], properties of sets with �nite Gaussian perimeter have been linked to
some application in information technology. We point out also [26], for an application of BV functions to
Lagrangian �ows in Wiener spaces.

The aim of this paper is twofold; in Section 3 we give an equivalent characterisation of functions with
bounded variation following an approach suggested by Ledoux in [19] and subsequently generalised in Eu-
clidean spaces in [22]. In addition, in Section 4, following [6], [2], [3], we discuss the decomposition of the
gradient of a BV function into absolutely continuous, jump and Cantor part.

We close the paper by introducing the notion of special function of bounded variation: the de�nition
coincides with the original one given by De Giorgi and Ambrosio in [11]. We also give the characterisation
based on the chain rule proposed by Alberti and Mantegazza [1]; such characterisation turns out to be very
useful when giving closure and compactness results. We point out that for the compactness theorem, the
only di�erence with respect to the Euclidean case, is that we have to assume a priori some convergence of the
sequence, for instance the convergence inmeasure, fromwhich we deduce the separate weak convergence of
the two parts of the total variationmeasure. Given a set E ⊂ Xwith �nite perimeter, we deduce from this result
the compactnessw.r.t. theweak topology of Lp(E, γ) of bounded and closed subsets of the SobolevH1,p(E, γ),
1 < p < ∞. This Sobolev space, de�ned in (5.4) below, consists of all Lp(E, γ) functions whose null extension
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to X\E belongs to SBV(X, γ) and has absolutely continuous part of the derivative in Lp(E, γ;H). This is related
to the general problem of extension and traces of weakly di�erentiable functions de�ned on subsets of the
Wiener space, see also [8], [10].

2 Notation and preliminary results
Let us describe our framework. X is a separable Banach space endowed with a Gaussian probability measure
γ = N(0, Q) on B(X), the Borel σ-algebra of X. We assume that γ is nondegenerate (i.e., all closed proper
subspaces of X are γ-negligible) and centred (i.e.,

∫
X xdγ = 0). We denote by X* the topological dual of X and

by H the Cameron-Martin subspace of X, that is

H =
{∫
X

f (x)xdγ(x) : f ∈ H
}
,

whereH is the closure of X* in L2(X, γ) and, for h ∈ H, we denote by ĥ ∈ H the Fomin derivative of γ along
h, namely the function ĥ verifying∫

X

∂hφdγ = −
∫
X

ĥφdγ ∀ φ ∈ FC1
b(X).

Here and in the sequel FC1
b(X) denotes the space of continuously di�erentiable cylindrical functions in X,

bounded and with a bounded gradient, i.e., the functions φ : X → R such that there are m ∈ N and v ∈
C1
b(Rm) such that φ(x) = v(〈x, x*1〉, . . . , 〈x, x*m〉) for some x*1, . . . , x*m ∈ X*; the space FC1

b(X, H) is the space
of cylindrical C1

b functions with values in H and �nite dimensional image. The space H is endowed with the
inner product [·, ·]H and the norm | · |H such that the map ĥ 7→ h is an isometry with respect to the L2(X, γ)
Hilbert structure. Notice that the embedding H ↪→ X is compact. This framework has been introduced by L.
Gross, see [16] and P. Malliavin, see [20] and also [7]. A summary of what we need here can be found in [21].

With a slight abuse of notation, we consider X* as a subset of H, the subset of vectors of the form∫
X

〈x, x*〉xdγ(x), x* ∈ X*,

which is a dense (even w.r.t. to the Hilbertian norm) subspace of H. For h = x* ∈ X*, the corresponding ĥ is
precisely the map x 7→ 〈x, x*〉.

A relevant role in the sequel is played by the Ornstein-Uhlenbeck semigroup Tt, pointwise de�ned for
u ∈ L1(X, γ) by Mehler’s formula

Ttu(x) =
∫
X

u
(
e−tx +

√
1 − e−2ty

)
dγ(y), t > 0. (2.1)

Given an n-dimensional subspace F ⊂ X*, we frequently consider an orthonormal basis {h1, . . . , hn} of F
and the factorization X = F ⊕ ker(πF) , πF is the continuous linear map

X 3 x 7→ πF(x) =
n∑
i=1

ĥi(x)hi ∈ F.

The decomposition x = πF(x) + (x − πF(x)) is well de�ned because πF ◦ πF = πF and so x − πF(x) ∈ ker(πF); in
turn, this follows from ĥi(hj) = δij. Thanks to the fact that |hi|H = 1, this induces a factorization γ = γF ⊗ γ⊥F ,
with γF the standard Gaussian in F (endowed with the metric inherited from H) and γ⊥F Gaussian in ker(πF)
with Cameron–Martin space F⊥. Let us de�ne the space of functions of bounded variation in X. First, let us
recall the de�nition of the Orlicz space L log1/2L(X, γ):

L log1/2L(X, γ) :=
{
u : X → Rmeasurable : A1/2(λ|u|) ∈ L1(X, γ) for some λ > 0

}
,
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endowed with the Luxemburg norm

||u||L log1/2L(X,γ) := inf
{
λ > 0 :

∫
X

A1/2(|u|/λ) dγ ≤ 1
}
, A1/2(t) :=

t∫
0

log1/2(1 + s)ds.

Given h ∈ H and f ∈ C1
b(X), beside the directional derivative of f along h, denoted ∂h f , we de�ne the formal

adjoint di�erential operator ∂*h f = ∂h f − ĥf and, for φ ∈ FC1
b(X, H), we de�ne the divergence as follows:

divHφ =
∑

j ∂*hjφj, φj = [φ, hj]H .

De�nition 2.1. A function u is said to be of bounded variation, u ∈ BV(X, γ), if u ∈ L log1/2L(X, γ) and there
exists DHu ∈M(X, H) (the space of H-valued Borel measures in X with �nite total variation) for which∫

X

udivHφdγ = −
∫
X

[φ, dDHu]H , ∀φ ∈ FC1
b(X, H).

If we �x h ∈ H, we denote by µh the measure [DHu, h]H de�ned as

µh(B) = [DHu(B), h]H .

If in particular u = χE is the characteristic function of a measurable set E and u ∈ BV(X, γ) we say that E has
�nite perimeter and set PH(E, ·) = |DHu|(·).

The study of BV(X, γ) functions has been mainly developed so far for �nite perimeter sets, see [17], [6],
[2], [3], [9] and the �rst question that has been addressed is the identi�cation of the subset of the topological
boundary of E where the perimeter measure is concentrated. It is known that

|DHχE| = S∞−1
F ∂*FE = S∞−1 E1/2. (2.2)

Let us explain the meaning of the above symbols. For an n-dimensional subspace F ⊂ X* as before, and for
y ∈ Ker(πF), we denote by

By := {z ∈ F : y + z ∈ B} (2.3)

the section of B ⊂ X. Moreover, denoting by

Gn(z) := (2π)−n/2 exp(−|z|2/2)

the n-dimensional Gaussian kernel, we take advantage of the above described decomposition and de�ne the
pre-Hausdor� measures in X induced by F setting

S∞−1
F (B) :=

*∫
Ker(πF )

∫
By

Gn(z) dSn−1(z) dγ⊥F (y) ∀B ⊂ X. (2.4)

Fixing an increasing family F = {Fn}n≥1 of �nite-dimensional subspaces of X*, whose union is dense in H,
we de�ne the (∞ − 1)-dimensional spherical Hausdor� measures S∞−1

F , basically introduced in [13], see also
[17], [6], by setting:

S∞−1
F = sup

n
S∞−1
Fn .

In the same vein, if E is a set with �nite perimeter, we de�ne the cylindrical essential boundary ∂*FE in the
�rst equality in (2.2), by

∂*FE :=
⋃
n∈N

⋂
k≥n
∂*FkE, (2.5)

where, with the usual notation,

∂*FE :=
{
y + z : y ∈ Ker(πF), z ∈ ∂*Ey

}
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and ∂*Ey is the essential boundary of the section Ey in �nite dimensions. The measure S∞−1 is de�ned by
taking the supremumof S∞−1

F when F runs along all the �nite dimensional subspaces of X*. For a comparison
of the two approacheswe refer to [2, Remark 2.6]. The set E1/2 of points of density 1/2 is de�ned in [2] by using
the semigroup Tt introduced in (2.1). Let (ti) ↓ 0 be such that

∑
i
√
ti < ∞ and

∞∑
i=1

∫
X

∣∣∣Tti χE − 1
2

∣∣∣ d|DHχE| < ∞.

We denote by E1/2 the set
E1/2 =

{
x ∈ X : lim

i→∞
Tti χE(x) = 1

2

}
,

where we apply the semigroup Tt to the Borel representative of the set E, still denoted by E. Notice that the
representation in the last term in (2.2) has the advantage of being coordinate-free. Thanks to (2.2), in all the
statements that hold up to |DHχE| negligible sets we may use both representations indi�erently. Let us recall
the main result of [3]. For h ∈ H, we de�ne the halfspace having h as its “inner normal” by

Sh = {x ∈ X : ĥ(x) > 0}

and for E with �nite perimeter we write DHχE = νE|DHχE|. Then, see [3, Theorem 1.1], we can state the follow-
ing result.

Theorem 2.2. Let E be a set of �nite perimeter in X and let S(x) = SνE(x) be the halfspace determined by νE(x).
Then

lim
t↓0

∫
X

∫
X

∣∣∣ χE(e−tx +
√

1 − e−2ty) − χS(x)(y)
∣∣∣dγ(y) d|DHχE|(x) = 0.

Let us draw a consequence that is useful later.

Corollary 2.3. Given two �nite perimeter sets E, F, the equality νE = ±νF holds S∞−1-a.e. in ∂*FE ∩ ∂*FF.

Proof. If E ⊂ F then this is an easy consequence of Theorem 2.2. Indeed, for S∞−1-a.e. x the rescaled sets

Ex,t = E − e−tx√
1 − e−2t

, Fx,t = F − e−tx√
1 − e−2t

converge in L2(X, γ) to two halfspaces S1(x), S2(x) respectively; the inclusion Ex,t ⊂ Fx,t implies that

γ(S1(x) \ S2(x)) = lim
t→0

γ(Ex,t \ S2(x)) ≤ lim
t→0

γ(Fx,t \ S2(x)) = 0,

so that S1(x) ⊂ S2(x) and then S1(x) = S2(x) for S∞−1-a.e. x ∈ ∂*FE∩ ∂*FF. Since each halfspace is determined
by the normal unit vector we get the thesis.
For the general case, notice that

∂*FE ⊂ ∂*F(E ∪ F) ∪ ∂*F(F ∩ Ec),
whence, using the equality ∂*FG = ∂*F(Gc), we deduce

∂*FE ∩ ∂*FF ⊂
(
∂*F(E ∪ F) ∩ ∂*FF

)
∪
(
∂*F(F ∩ Ec) ∩ ∂*FF

)
=
(
∂*F(E ∪ F) ∩ ∂*FF

)
∪
(
∂*F(E ∪ Fc) ∩ ∂*FFc

)
.

Therefore, if x ∈ ∂*FE∩∂*FF then either x ∈ ∂*F(E∪F) or x ∈ ∂*F(E∪Fc). Since E, F ⊂ E∪F and E, Fc ⊂ E∪Fc

in both cases the equality νE(x) = νF(x) (up to the sign) follows from the case E ⊂ F.

Remark 2.4. Notice that, by de�nition, if E has �nite perimeter and x ∈ ∂*FE then there is n ∈ N such that
x ∈ ∂*FkE for all k ≥ n. Conversely, if there is n ∈ N such that x ∈ ∂*FkE for all k ≥ n, then, by monotonicity,
x ∈ ∂*FE as well. Therefore,

if u ∈ BV(X, γ) and x ∈ X, the set Jx = {t ∈ R : x ∈ ∂*F{u > t}} is a real interval.

Indeed, if s < t, s, t ∈ Jx then there is n ∈ N such that x ∈ ∂*Fk{u > s} ∩ ∂*Fk{u > t} for every k ≥ n. But then
x ∈ ∂*Fk{u > τ} for every τ ∈ [s, t] and k ≥ n and x ∈ ∂*F{u > τ}, which proves that Jx is an interval. We denote
by u∧(x) ≤ u∨(x) the endpoints of Jx.
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3 Functions of bounded variation and short time behaviour of the
semigroup

The following characterisation of BV(X, γ) functions in terms of the short-time behaviour of Tt is by now
well-known:

u ∈ BV(X, γ) ⇐⇒ u ∈ L log1/2L(X, γ) and lim sup
t→0

∫
X

|∇HTtu|H dγ < ∞.

In this Section we present a second way to characterise sets and functions of bounded variation in terms of
the semigroup; this approach was suggested, using the heat semigroup, by Ledoux [19] and subsequently
investigated in [22]. Even though the results in this section are not necessary in the sequel of this paper, they
seem to be worth presenting here, also in view of di�erent applications, see e.g. [23]. If E ⊂ X has �nite
perimeter, then

lim
t→0

√
π
t

∫
Ec

TtχE(x)dγ(x) = PH(E, X). (3.1)

In addition, if
lim inf
t→0

1√
t

∫
Ec

TtχE(x)dγ(x) < +∞,

then E has �nite perimeter and the limiting formula (3.1) holds. We notice that we can equivalently write∫
Ec

TtχE(x)dγ(x) = 1
2 ||TtχE − χE||L1(X,γ) = 1

2

∫
X×X

|χE(e−tx +
√

1 − e−2ty) − χE(x)|dγ ⊗ γ(x, y); (3.2)

let us also de�ne the function

ct =
√

2
π

t∫
0

e−τ√
1 − e−2τ

dτ =
√

2
π

(π
2 − arcsin(e−t)

)
=
√

2
π arccos(e−t). (3.3)

Since
lim
t→0

ct√
t

= 2√
π
,

the characterisation (3.1) of sets with �nite perimeter following the Ledoux approach is a consequence of
Theorem 3.2 below. In the proof we need some properties of the conditional expectation and of the semigroup
that are likely known. We prove them for the convenience of the reader, as we did not �nd a reference.

We denote by πn : X → Rn and Πn = πn × πn : X × X → R2n the �nite dimensional projections and by Fn
and Fn × Fn the induced σ-algebras. By p1 : X × X → X and pn1 : Rn × Rn → Rn we denote the projections on
the �rst components and by Rt : X × X → X × X and Rnt : Rn ×Rn → Rn ×Rn the rotations

(x, y) 7→ (e−tx +
√

1 − e−2ty, −
√

1 − e−2tx + e−ty). (3.4)

Lemma 3.1. Let πn, Πn, Fn and Fn × Fn be as before; then
1) for any F ∈ L1(X × X, γ ⊗ γ),

E
(
F ◦ Rt

∣∣Fn × Fn) = E
(
F
∣∣Fn × Fn) ◦ Rt;

2) for any f ∈ L1(X, γ),
E
(
f ◦ p1

∣∣Fn × Fn) = E
(
f
∣∣Fn) ◦ p1.

In addition, if T2n
s and Tns denote the Ornstein–Uhlenbeck semigroups on R2n and Rn respectively, then

3) for any F ∈ L1(R2n , γ2n),
T2n
s (F ◦ Rnt ) = T2n

s (F) ◦ Rnt ;
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4) for any f ∈ L1(Rn , γn) and any (x, y) ∈ R2n there holds

T2n
s (f ◦ pn1)(x, y) = Tns (f )(x),

where indeed the function T2n
s (f ◦ pn1) depends only on the �rst n variables in R2n.

Proof. 1) We �x A ∈ Fn × Fn, that is A = Π−1
n (An) with An ⊂ R2n; since Rt(A) = Π−1

n (Rnt (An)) ∈ Fn × Fn, we
obtain ∫

A

E
(
F ◦ Rt

∣∣Fn × Fn)dγ ⊗ γ =
∫
A

F ◦ Rtdγ ⊗ γ

=
∫

Rt(A)

Fdγ ⊗ γ =
∫

Rt(A)

E
(
F
∣∣Fn × Fn)dγ ⊗ γ

=
∫
A

E
(
F
∣∣Fn × Fn) ◦ Rtdγ ⊗ γ.

2) We take A × B ∈ Fn × Fn with A = πn(An), B = π−1
n (Bn), An , Bn ⊂ Rn. Then∫

A×B

E
(
f ◦ p1

∣∣Fn × Fn)dγ ⊗ γ =
∫
A×B

f ◦ p1dγ ⊗ γ = γ(B)
∫
A

fdγ

=γ(B)
∫
A

E
(
f
∣∣Fn)dγ =

∫
A×B

E
(
f
∣∣Fn) ◦ p1dγ ⊗ γ.

The general statement follows since the sets of the form A × B form a basis for the σ–algebra Fn × Fn.
3) Fix F ∈ L1(R2n , γ2n), then

T2n
s F ◦ Rnt (x, y) =

∫
R2n

F ◦ Rnt (e−s(x, y) +
√

1 − e−2s(x̄, ȳ))dγ2n(x̄, ȳ)

=
∫
R2n

F
(
e−t(e−sx +

√
1 − e−2s x̄) +

√
1 − e−2t(e−sy +

√
1 − e−2s ȳ),

−
√

1 − e−2t(e−sx +
√

1 − e−2s x̄) + e−t(e−sy +
√

1 − e−2s ȳ)
)
dγ(x̄, ȳ)

=
∫
R2n

F
(
e−s(e−tx +

√
1 − e−2ty) +

√
1 − e−2s(e−t x̄ +

√
1 − e−2t ȳ),

e−s(−
√

1 − e−2tx + e−ty) +
√

1 − e−2s(−
√

1 − e1−2t x̄ + e−t ȳ)
)
dγ(x̄, ȳ)

=
∫
R2n

F
(
e−s(e−tx +

√
1 − e−2ty, −

√
1 − e−2tx + e−ty) +

√
1 − e−2s(x̄, ȳ)

)
dγ(x̄, ȳ)

=T2n
s (F) ◦ Rt(x, y).

4) Let f ∈ L1(Rn , γn); then

T2n
s (f ◦ pn1)(x, y) =

∫
R2n

f ◦ pn1(e−s(x, y) +
√

1 − e−2s(x̄, ȳ))dγ2n(x̄, ȳ)

=
∫
R2n

f (e−sx +
√

1 − e−2s x̄)dγ2n(x̄, ȳ) =
∫
Rn

f (e−sx +
√

1 − e−2s x̄)dγn(x̄) = Tns (f )(x).

Theorem 3.2. Let u ∈ BV(X, γ) and ct de�ned in (3.3); then for any t > 0∫
X×X

|u(e−tx +
√

1 − e−2ty) − u(x)|dγ ⊗ γ(x, y) ≤ ct|DHu|(X). (3.5)
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Conversely, given u ∈ L log1/2L(X, γ), if there exists C > 0 such that∫
X×X

|u(e−tx +
√

1 − e−2ty) − u(x)|dγ ⊗ γ(x, y) ≤ Cct , ∀t > 0, (3.6)

then u ∈ BV(X, γ). In addition, the following limit holds

lim
t→0

1
ct

∫
X×X

|u(e−tx +
√

1 − e−2ty) − u(x)|dγ ⊗ γ(x, y) = |DHu|(X). (3.7)

Proof. The �rst part of the proof is based on [2, Lemma 2.3]. We start by considering a function v ∈ C1
b(Rn);

then denoting by γn and γ2n the standard Gaussian measures on Rn and R2n respectively, and using the
rotation invariance of the Gaussian measure, that is the fact that Rτ]γ2n = γ2n, where Rτ : R2n → R2n is the
map de�ned in (3.4) and Rτ] is the push-forward operator, we obtain the following estimate:

∫
R2n

|v(e−tx +
√

1 − e−2ty) − v(x)|dγ2n(x, y) =
∫
R2n

∣∣∣∣∣∣
t∫

0

d
dτ v(e−τx +

√
1 − e−2τy)dτ

∣∣∣∣∣∣ dγ2n(x, y)

=
∫
R2n

∣∣∣∣∣∣
t∫

0

e−τ√
1 − e−2τ

∇v(e−τx +
√

1 − e−2τy) · (−
√

1 − e−2τx + e−τy)dτ

∣∣∣∣∣∣ dγ2n(x, y)

≤
t∫

0

e−τ√
1 − e−2τ

∫
R2n

∣∣∣∇v(e−τx +
√

1 − e−2τy) · (−
√

1 − e−2τx + e−τy)
∣∣∣ dγ2n(x, y)dτ (3.8)

=
∫
R2n

t∫
0

e−τ√
1 − e−2τ

dτ
∣∣∇v(x) · y

∣∣ dγ2n(x, y) = ct
∫
Rn

|∇v(x)|dγn(x).

Here we have used the equality
∫
Rn |∇v(x) · y|dγn(y) = |∇v(x)|

√
2/π. Notice that taking a sequence of FC1

b
functions that converges in variation, i.e., vk → v in L1(X, γ) such that |DHvk|(X) → |DHv|(X), the above
estimate holds for every v ∈ BV(X, γ). We now show that

lim
t→0

1
ct

∫
R2n

|v(e−tx +
√

1 − e−2ty) − v(x)|dγ2n(x, y) =
∫
Rn

|∇v(x)|dγn(x). (3.9)

Indeed, the linear functionals on Cb(R2n)

Ltφ := 1
ct

∫
R2n

φ(x, y)(v(e−tx +
√

1 − e−2ty) − v(x))dγ2n(x, y)

have, thanks to (3.8), norm uniformly bounded by

||Lt|| ≤
∫
Rn

|∇v(x)|dγn(x).

In addition

lim
t→0

Ltφ = lim
t→0

∫
R2n

1
ct

t∫
0

e−τ√
1 − e−2τ

φ(e−τx −
√

1 − e−2τy,
√

1 − e−2τx + e−τy)dτ∇v(x) · ydγ2n(x, y)

=
∫
R2n

φ(x, y)∇v(x) · ydγ2n(x, y) := L0φ.

Then the functionals Lt weakly* converge to the functional L0 and

||L0|| =
∫
Rn

|∇v(x)|dγn(x) ≤ lim inf
t→0

||Lt|| ≤
∫
Rn

|∇v(x)|dγn(x).
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If now u ∈ BV(X, γ), we can consider a cylindrical approximation uj = vj ◦ πj, with vj ∈ C1
b(Rnj ) and πj :

X → Rnj a projection induced by orthonormal elements h1, . . . , hnj ∈ H; the cylindrical approximation can
be chosen in such a way that

lim
j→+∞

||uj − u||L1(X,γ) = 0, lim
j→+∞

∫
X

|∇Huj|Hdγ = |DHu|(X).

The convergence in L1(X, γ) implies that∫
X×X

|u(e−tx +
√

1 − e−2ty) − u(x)|dγ ⊗ γ(x, y) = lim
j→+∞

∫
X×X

|uj(e−tx +
√

1 − e−2ty) − uj(x)|dγ ⊗ γ(x, y)

= lim
j→+∞

∫
R2nj

|vj(e−tx +
√

1 − e−2ty) − vj(x)|dγ2nj (x, y)

≤ct lim
j→+∞

∫
Rnj

|∇vj(x)|dγnj (x)

=ct lim
j→+∞

∫
X

|∇Huj(x)|Hdγ(x) = ct|DHu|(X),

which proves the inequality in (3.5).
Let now �x u ∈ L log1/2L(X, γ) and assume (3.6), that we can rewrite as∫

X×X

|u ◦ p1 ◦ Rt(x, y) − u ◦ p1(x, y)|dγ ⊗ γ(x, y) ≤ Cct ,

where p1 : X × X → X is the projection p1(x, y) = x and Rt is the rotation de�ned in (3.4). Then, if Fn is the
σ–algebra induced by the projection πn : X → Rn and Fn × Fn the σ–algebra induced by Πn : X × X → R2n,
Πn(x, y) = (πn(x), πn(y)), we have that∫

X×X

|u ◦ p1 ◦ Rt − u ◦ p1|dγ ⊗ γ =
∫
X×X

E
(
|u ◦ p1 ◦ Rt − u ◦ p1|

∣∣Fn × Fn)dγ ⊗ γ
≥
∫
X×X

∣∣∣E(u ◦ p1 ◦ Rt − u ◦ p1
∣∣Fn × Fn)∣∣∣ dγ ⊗ γ

=
∫
X×X

∣∣∣E(u∣∣Fn) ◦ p1 ◦ Rt − E
(
u
∣∣Fn) ◦ p1

∣∣∣ dγ ⊗ γ,
where we have used the properties (1), (2) of the conditional expectation stated in Lemma 3.1. So we may
assume that v ∈ L log1/2L(Rn , γn) is a function such that∫

R2n

|v ◦ p1 ◦ Rt − v ◦ p1|dγ2n ≤ Cct

and we prove that v ∈ BV(Rn , γn). If we denote by (Tns )s and (T2n
s )s the Ornstein–Uhlenbeck semigroups on

Rn and R2n respectively, then since they are mass preserving, we have that∫
R2n

|v ◦ p1 ◦ Rt − v ◦ p1|dγ2n =
∫
R2n

T2n
s |v ◦ p1 ◦ Rt − v ◦ p1|dγ2n

≥
∫
R2n

|T2n
s (v ◦ p1 ◦ Rt) − T2n

s (v ◦ p1)|dγ2n

=
∫
R2n

|Tns (v) ◦ p1 ◦ Rt − Tns (v) ◦ p1|dγ2n .
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Thanks to the previous arguments, we obtain that∫
Rn

|∇Tns v|dγn ≤ C,

which implies v ∈ BV(Rn , γn) with

|DRn v|(Rn) ≤ lim inf
s→0

∫
Rn

|∇Tns v|dγn ≤ C.

The same conclusion holds for u ∈ L log1/2L(X, γ), by taking conditional expectations. The limiting formula

|DHu|(X) = lim
t→0

1
ct

∫
X×X

|u ◦ p1 ◦ Rt − u ◦ p1|dγ ⊗ γ, ∀u ∈ BV(X, γ),

follows from the inequalities∫
X×X

|u ◦ p1 ◦ Rt − u ◦ p1|dγ ⊗ γ ≥
∫
X×X

|un ◦ p1 ◦ Rt − un ◦ p1|dγ ⊗ γ ≥
∫
R2n

|Tns vn ◦ p1 ◦ Rt − Tns vn ◦ p1|dγ2n ,

where un = E
(
u
∣∣Fn) = vn ◦ πn. Indeed

lim inf
t→0

1
ct

∫
R2n

|Tns vn ◦ p1 ◦ Rt − Tns vn ◦ p1|dγ2n =
∫
Rn

|∇Tns vn|dγn =
∫
X

|∇HTsun|dγ

which is true for any n ∈ N and s > 0; the result then follows by letting n → +∞ and s → 0.

Proposition 3.3. For every E ⊂ X such that 0 < γ(E) < 1 the following isoperimetric type inequality holds:

PH(E, X)
γ(E)γ(Ec) ≥

2
√

2√
π
. (3.10)

Moreover, equality holds if and only if E is a halfspace with 0 ∈ ∂E.

Proof. Starting from (3.2) and (3.5) we get ∫
Ec

TtχEdγ ≤
ct
2 PH(E, X), (3.11)

whence, taking into account that

lim
t→+∞

ct =
√
π
2 , lim

t→+∞
TtχE(x) = γ(E),

we deduce (3.10) by taking the limit as t → ∞ in (3.11). Let us prove that the only set attaining equality in
(3.10) is a halfspace

Ehα = {ĥ ≤ α}, h ∈ H,

with α = 0. Indeed, by Ehrhard symmetrisation, if E is a set with �nite perimeter, then

PH(E, X) ≥ PH(Es , X),

where Es is a halfspace with γ(E) = γ(Es); in addition, equality holds in the last estimate if and only if E is
equivalent to a halfspace. Then

PH(E, X)
γ(E)γ(Ec) ≥

PH(Es , X)
γ(Es)γ((Es)c) ≥

2
√

2√
π
.
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The �rst inequality is an equality if and only E is a halfspace; for the second inequality, if we take Es = Ehα
with |h|H = 1, then an explicit computation yields

PH(Ehα , X)
γ(Ehα)γ((Ehα)c)

=
√

2πe− α
2

2∫ α
−∞ e

− t22 dt
∫ +∞
α e− t

2
2 dt

=: F(α).

We have then shown that F(α) ≥ 2
√

2√
π ; a direct computation shows that the only solution of the equation

F(α) = 2
√

2√
π

is α = 0.

Remark 3.4. For the halfspace E0 = Eh0, |h|H = 1, the following equality holds:∫
Ec0

TtχE0 (x)dγ(x) = ct
2 PH(E0, X), ∀t ≥ 0.

Moreover, it is the only set with �nite perimeter with this property.
First, let us explicitly compute the quantity ∫

Ec0

TtχE0 (x)dγ(x).

Using the fact that the γ-measurable linear functional x 7→ ĥ(x) has Gaussian law, by writing χE0 (x) =
χ(−∞,0)(ĥ(x)), we may write∫

Ec0

TtχE0 (x)dγ(x) = 1√
2π

∫
Ec0

∫
R

χ(−∞,0)(e
−t ĥ(x) +

√
1 − e−2tb)e−

b2
2 db

= 1
2π

∫
R2

χ(0,+∞)(a)χ(−∞,0)(e
−ta +

√
1 − e−2tb)e−

a2+b2
2 dadb = ct

2 PH(E0, X),

as claimed. For the uniqueness, if E is such that∫
Ec

TtχEdγ = ct
2 PH(E, X), ∀t > 0,

passing to the limit as t → +∞, we �nd that E is such that

PH(E, X)
γ(E)γ(Ec) = 2

√
2√
π

and then E = Eh0 for some h ∈ H. Analogously, if a function u satis�es∫
X×X

|u(e−tx +
√

1 − e−2ty) − u(x)|dγ ⊗ γ(x, y) = ct|DHu|(X), ∀t > 0,

then by coarea formula, for almost every τ ∈ R, the sets Eτ = {u > τ} are sets with �nite perimeter such that∫
Ecτ

TtχEτdγ = ct
2 PH(Eτ , X), ∀t > 0,

and then u = a + bχEh0 for some a, b ∈ R and h ∈ H.
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4 Decomposition of the gradient and chain rule
In this section we discuss a few �ner properties of a function u with bounded variation. If we �x h ∈ H, recall
that we are denoting by µh the measure [DHu, h]H de�ned as

µh(B) = [DHu(B), h]H .

The measure DHu can be decomposed into an absolutely continuous part DaHu with respect to γ, whose den-
sity is denoted by∇Hu, and a singular part DσHu, as follows

DHu = DaHu + DσHu = ∇Huγ + DσHu. (4.1)

In this way the measure µh admits the Radon-Nikodym decomposition

µh = ∂huγ + µσh ,

where µσh = [DσHu, h]H ⊥ γ and we have used the equality ∂hu = [∇Hu, h]H .
We recall also that if we write X = F ⊕ F⊥ with F = span{h} and F⊥ = kerπF, then by de�ning uy(t) =

u(y + th) we have that for γ⊥F -a.e. y ∈ F⊥, uy ∈ BV(F, γF); we de�ne

BF = {y ∈ F⊥ : uy ∈ BV(F, γF)},

with γ⊥F (BF) = 1. For all y ∈ BF we write

DFuy = u′yγF + DσFuy .

We recall the formula
[DHu, h]H = (γ⊥F BF)⊗ DFuy (4.2)

(a simple consequence of Fubini’s theorem) andwe analyse in the next lemma the e�ect of the decomposition
in absolutely continuous and singular part.

Lemma 4.1. Let u ∈ BV(X, γ) and h ∈ H; then, for γ⊥F -a.e. y ∈ F⊥,

µah = (γ⊥F BF)⊗ (u′yγF) (4.3)

and
µσh = (γ⊥F BF)⊗ (DσFuy). (4.4)

As a consequence, for γ⊥F -a.e. y ∈ F⊥ there holds u′y(z) = (∂hu)y(z) for γF-a.e. z ∈ F.

Proof. Obviously, (γ⊥F BF) ⊗ (u′yγF) � γ. Let us prove that (γ⊥F BF) ⊗ (DσFuy) ⊥ γ. Notice that for γ⊥F -a.e.
y ∈ F⊥ the measure DσFuy is singular with respect to γF, so that we may de�ne the γF-negligible Borel set

Ay =
{
t ∈ R : lim

r→0

|Duy|(t − r, t + r)
r = +∞

}
,

and we have DσFuy(B) = DσFuy(Ay ∩ B), see [4, section 3.2]. Setting Ay = R if y ∈ F⊥ \ BF, de�ne

A = {x = y + z, y ∈ F⊥, z ∈ Ay}

and observe that
γ(A) =

∫
F⊥

γF(Ay)dγ⊥F (y) = 0.

Since µσh(B) = µσh(B ∩ A), we deduce that µσh ⊥ γ. By (4.2) and the uniqueness of the Radon-Nikodym decom-
position we get that µah and µσh are given by (4.3), (4.4). The fact that u′y = (∂hu)y γ⊥F -a.e. for γ⊥F a.e. y ∈ F⊥ is
then an easy consequence.
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Lemma 4.2. Let {λh : h ∈ H} be a family of signed measures on X linear in h, i.e., such that λah1+bh2 =
aλh1 + bλh2 , and continuous, i.e., for every ε > 0 there is δ > 0 such that |h|H < δ implies |λh|(X) < ε. Assuming∨

{|h|H=1}

λh(X) := sup
{ ∞∑
j=1
|λkj (Aj)| : X =

∞⋃
j=1
Aj , (Aj) pairwise disjoint, |kj| = 1

}
< ∞, (4.5)

for every orthonormal basis (hj) of H the set function

λ(B) =
∞∑
j=1

λhj (B)hj

belongs toM(X, H). In particular, the families of measures

h 7→ λJh(B) =
∫
h⊥

DJFuy(By) dγ⊥F (y), B ∈ B(X) (4.6)

h 7→ λCh (B) =
∫
h⊥

DCFuy(By) dγ⊥F (y), B ∈ B(X) (4.7)

de�ne two H-valued measures denoted by DJHu and DCHu.

Proof. Notice that

|λ|(X) = sup
{ ∞∑
j=1
|λ(Bj)|H : X =

∞⋃
j=1
Bj , (Bj) pairwise disjoint

}

= sup
{

lim
N→∞

N∑
j=1
|λ(Bj)|H : X =

∞⋃
j=1
Bj , (Bj) pairwise disjoint

}
;

but by the linearity if (Bj) is a countable partition of X such that λ(Bj) ≠ 0 for all j ∈ N, setting kj = λ(Bj)
|λ(Bj)|H

,
for every N ∈ N we have

N∑
j=1
|λ(Bj)|H =

N∑
j=1
|[λ(Bj), kj]Hkj|H =

N∑
j=1
|λkj (Bj)| ≤

∨
{|h|H=1}

λh(X) < ∞.

It follows that λ(B) ∈ H for any B ∈ B(X), that λ belongs toM(X, H) and the de�nition is independent of the
basis.
Let us show that the set functions de�ned in (4.6), (4.7) verify the hypotheses of linearity and continuity with
respect to h and also the boundedness assumption (4.5). The linearity of λJh , λ

C
h follows basically arguing as

in [5, Proposition 4.8], see also [4, Theorem 3.108]. Indeed, take h ∈ F = span{h1, h2}. Then,

λJh(B) =
∫
h⊥

DJhuy(By) dγ⊥h (y) =
∫
F⊥

[DJFuy(By), h]Hdγ⊥F (y)

by the �nite dimensional result. Moreover, the boundedness follows from∨
{|h|H=1}

λJh(X),
∨

{|h|H=1}

λCh (X) ≤ |DHu|(X) < ∞.

According to Lemma 4.2, we de�ne the jump and the Cantor parts of DHu as

DJHu =
∞∑
j=1

λJhjhj , (4.8)

DCHu =
∞∑
j=1

λChjhj , (4.9)
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so that DσHu = DJHu + DCHu and

DHu = DaHu + DσHu = DaHu + DJHu + DCHu. (4.10)

In the sequel, we use the notation DdHu = ∇Hudγ + DCHu for the part of the measure DHu out of the jump
set. The next goal is to identify the sets where such measures are concentrated. Indeed, the jump part is
concentrated on a set which is σ-�nite with respect to the S∞−1 measure (the discontinuity set), whereas the
Cantor part is concentrated on a bigger set.

Lemma 4.3. If B ⊂ X is a Borel set with S∞−1(B) < ∞ then |DCHu|(B) = 0.

Proof. Fix h ∈ H and write
DCHu(B) =

∫
h⊥

DChuy(By) dγ⊥h (y) = 0

because By is a locally �nite set for γ⊥-a.e. y ∈ h⊥ and DChuy(By) = 0 by the analogous one-dimensional
property.

Let us consider the jump part. In the following de�nitionwe think ofF as a �xed increasing sequence of �nite
dimensional subspaces of X*, as explained in Section 2.

De�nition 4.4. Let u ∈ BV(X, γ) and letD ⊂ R be a countable dense set such that {u > t} has �nite perimeter
for all t ∈ D. De�ne the discontinuity set of u as

S(u) =
⋃

s, t∈D, s≠t

(
∂*F{u > s} ∩ ∂*F{u > t}

)
.

By de�nition, S(u) is σ-�nite with respect to S∞−1. Let us show that DJHu is concentrated on S(u).

Theorem 4.5. Let u ∈ BV(X, γ). Then, the measure DJHu is absolutely continuous with respect to S∞−1 S(u)
and there is a DHu-measurable unit vector �eld νu on S(u) such that

DJHu(B) =
∫

B∩S(u)

(u∨(x) − u∧(x))νu(x) dS∞−1(x) (4.11)

for all B ∈ B(X), where u∨(x) and u∧(x) are de�ned in Remark 2.4. Moreover, if v ∈ BV(X, γ) then νu = νv
S∞−1-a.e. on S(u) ∩ S(v) (up to the sign).

Proof. Notice that there is a |DHu|-measurable unit vector �eld νu on S(u) such that the equality νu(x) =
ν{u>t}(x) holds S∞−1-a.e. on S(u) ∩ ∂*F{u > t}, for all t such that {u > t} has �nite perimeter. Indeed, this is
an obvious consequence of the inclusion {u > t} ⊂ {u > s} for t ≥ s ∈ D and Corollary 2.3.
Fixed h ∈ H \ {0}, for every y ∈ h⊥ the equality⋃

s, t∈D,s≠t

(
∂*{uy > s} ∩ ∂*{uy > t}

)
=
( ⋃
s,t∈D

(
∂*F{u > s} ∩ ∂*F{u > t}

))
y
,

holds, hence S(uy) = (S(u))y and for every B ⊂ X\S(u) we have By∩(S(u))y = By∩S(uy) = ∅. As a consequence,
for any h ∈ H

|[DJHu, h]H |(B) ≤
∫
h⊥

|DJhuy|(By) dγ⊥h (y) = 0

and therefore |DJHu|(B) = 0. Finally, by the coarea formula and Corollary 2.3, for every Borel set B we have

DJHu(B) = DHu(B ∩ S(u)) =
∫
R

DHχ{u>t}(B ∩ S(u)) dt =
∫
R

dt
∫

B∩S(u)

χ∂*
F
{u>t}(x)ν{u>t}(x) dS∞−1(x)

=
∫

B∩S(u)

dS∞−1(x)
∫
R

χ∂*
F
{u>t}(x)ν{u>t}(x) dt =

∫
B∩S(u)

(u∨(x) − u∧(x))νu(x) dS∞−1(x).
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Let now u, v ∈ BV(X, γ). For x ∈ S(u) ∩ S(v) there are s, t ∈ D such that x ∈ ∂*F{u > t} ∩ ∂*F{v > s}, the unit
vector �elds νu and νv coincide S∞−1-a.e. on S(u) ∩ S(v) (up to the sign) again by Corollary 2.3.

Lemma 4.6. Let u ∈ BV(X, γ). Then, for |DHu|-a.e. x ∈ X \ S(u) there is a unique t = ũ(x) ∈ R such that
x ∈ ∂*F{u > t}.

Proof. The coarea formula and [6, Theorem 5.2] yield

|DHu|(B) =
∫
R

PH({u > t}, B) dt =
∫
R

S∞−1(∂*F{u > t} ∩ B) dt

for every Borel set B. Therefore, for

Bu =
{
x ∈ X \ S(u) : ∄ t ∈ R such that x ∈ ∂*F{u > t}

}
(4.12)

we get |DHu|(Bu) = 0 and the existence of ũ(x) for |DHu|-a.e. x ∈ X \S(u). Let us prove the uniqueness: if there
were s ≠ t ∈ R such that x ∈ ∂*F{u > t} ∩ ∂*F{u > s} then the set Jx of such numbers, according to Remark
2.4, would be an interval containing a pair s′ ≠ t′ ∈ D, whence we would get the contradiction x ∈ S(u).

According to Lemma 4.6, for |DHu|-a.e. x ∈ X \ S(u) we may de�ne

ũ(x) = t, (4.13)

where t ∈ R is the unique value such that x ∈ ∂*F{u > t} and we call ũ(x) the approximate limit of u at x.

Proposition 4.7. Let u ∈ BV(X, γ). For every ψ ∈ C1(R) ∩ Lip(R), the function ψ ◦ u belongs to BV(X, γ) and
the equality

DH(ψ ◦ u) = ψ′(ũ)∇Hudγ + ψ′(ũ)DCHu + (ψ(u∨) − ψ(u∧))νuS∞−1 S(u) (4.14)

holds.

Proof. Let us �rst show that v = ψ ◦ u belongs to BV(X, γ). To this end, notice �rst that v has at most a linear
growth, hence it belongs to L log1/2L(X, γ). Moreover, if um are the canonical cylindrical approximations of
u we have that ψ ◦ um ∈ BV(X, γ), ψ ◦ um → v in L2(X, γ) and

|DHv|(X) ≤ lim inf
m→∞

|DH(ψ ◦ um)|(X) ≤ ||ψ′||∞ lim inf
m→∞

|DHum|(X)

by lower semicontinuity.
Next, we prove that S(v) ⊂ S(u). Indeed, if x ∈ S(v) then there are s, t ∈ D, s < t, such that x ∈ ∂*F{v >
s} ∩ ∂*F{v > t}. By de�nition of cylindrical essential boundary, there are two �nite dimensional subspaces
F1, F2 ∈ F such that for any G ∈ F containing both F1 and F2 we have x ∈ ∂*G{v > s} ∩ ∂*G{v > t}. For every
such G we may write x = y + z, with y ∈ ker πG and z ∈ ∂*{v > s}y ∩ ∂*{v > t}y. By the �nite dimensional
case, see [4, Theorem 3.96], z ∈ S(v)y implies z ∈ S(u)y, and therefore x = y + z ∈ S(u).
Let B ⊂ S(u) and assume that ψ is increasing. In this case, [v∧(x), v∨(x)] = [ψ(u∧(x)), ψ(u∨(x))] for any
x ∈ S(u) and by the coarea formula we get

|DH(ψ ◦ u)|(B) =
∫
R

PH({ψ(u) > t}, B) dt,

but then, if we set t = ψ(s), we get {ψ(u) > t} = {u > s}, and thus

|DH(ψ ◦ u)|(B) =
∫
R

ψ′(s) PH({u > s}, B) ds =
∫
B

u∨(x)∫
u∧(x)

ψ′(s) ds dS∞−1(x)

=
∫
B

(ψ(u∨(x)) − ψ(u∧(x))) dS∞−1(x).
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In particular, |DHv|(S(u) \ S(v)) = 0 and DHv = DJHv in S(v). If B ⊂ X \ S(u) and x ∈ B, then x ∈ ∂*F{u > t}
only if t = ũ(x), see Lemma 4.6 and (4.13), and then arguing as before we �nd

|DdH(ψ ◦ u)|(B) = |DH(ψ ◦ u)|(B) =
∫
R

PH({ψ ◦ u > t}, B) dt =
∫
R

ψ′(s)PH({u > s}, B) ds

=
∫
R

∫
B

ψ′(ũ(x))d|DHχ{u>s}|(x) ds =
∫
B

ψ′(ũ) d|DdHu|.

Finally, for ψ ∈ C1(R)∩Lip(R), if we �x L > ||ψ′||∞, wemay apply the previous result to the strictly increasing
function ψ(t) + Lt.

A useful consequence of Lemma 4.6, Lemma 4.5 and Proposition 4.7 is the following Leibniz rule for the
derivative of the product of two bounded BV functions.

Proposition 4.8. Let u, v ∈ BV(X, γ)∩L∞(X, γ); then, uv ∈ BV(X, γ)∩L∞(X, γ)and there is a pair of functions
ũ, ṽ such that ũ (resp. ṽ) coincides with the approximate limit of u (resp. of v) |DdHu|-a.e. (resp. |DdHv|-a.e.) in
its domain such that the following formula holds:

DH(uv) = ũDdHv + ṽDdHu +
(

(uv)∨ − (uv)∧
)
νS∞−1 (

S(u) ∪ S(v)
)
. (4.15)

Here ν = νu on S(u) and ν = νv on S(v), which is well de�ned in view of Lemma 4.5. In particular, if E ⊂ X has
�nite perimeter then uχE ∈ BV(X, γ).

Proof. Possibly adding a constant which is irrelevant for our purposes, wemay assume that u, v are positive.
Set w = uv and de�ne the positive measure λ = |DdHu|+ |DdHv|. Since DdHu, DdHv � λ there are Borel functions
f , g such that DdHu = fλ, DdHv = gλ and |f | + |g| = 1 λ-a.e. in X. Notice also that by de�nition the approximate
limit w̃(x) exists and coincides with ũ(x)ṽ(x) wherever the approximate limits of u and v exist. Moreover,
setting

E = {x ∈ X : min{|f (x)|, |g(x)|} > 0},

the measures λ, DdHu, DdHv are all equivalent in E, hence w̃ exists and coincides with ũṽ λ-a.e. in E. In the
following computation we �x a pointwise de�ned Borel function w̃ that coincides with the approximate limit
of w wherever it exists. By the chain rule (notice that the function log is Lipschitz continuous on the range of
u and v, which are supposed to be positive and bounded) we get

DdHw
w̃ = DdH(log w) = DdH(log u) + DdH(log v) = DdHu

ũ + DdHv
ṽ =

( f
ũ + g

ṽ

)
λ,

on Borel subsets of E, whence

DdHw = (ṽf + ũg)λ = ṽDdHu + ũDdHv on Borel subsets of E.

If we consider the sets E1 = {f = 0} ∩ {g > 0} and E2 = {g = 0} ∩ {f > 0}, the same computation gives
DdHw/w̃ = gλ/ṽ on Borel subsets of E1 and DdHw/w̃ = fλ/ũ on Borel subsets of E2. Therefore, we may de�ne
ũ = w̃/ṽ on E1 and ṽ = w̃/ũ on E2. Then, (4.15) follows from the decomposition of the gradient of general BV
functions.

5 Special functions of bounded variation
In this section we introduce the space of special functions with bounded variation and investigate some of
their properties; in particular, we give a characterisation of them in terms of the chain rule and study the
closedness under the weak convergence in BV.
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De�nition 5.1. A function u ∈ BV(X, γ) is called a special function of bounded variation, u ∈ SBV(X, γ), if
|DCHu| = 0, i.e., the equality DHu = ∇Hudγ + (u∨ − u∧)νuS∞−1 S(u) holds.

Remark 5.2. A BV(X, γ) function u is SBV(X, γ) if and only if∫
X

|∇Hu| dγ = inf
{
|DHu|(X \ K) : K compact, S∞−1(K) < ∞

}
.

Indeed, the equality

|DdHu|(X) = |DHu|(X \ S(u)) = inf
{
|DHu|(X \ K) : K compact, S∞−1(K) < ∞

}
.

follows from Theorem 4.5 and the σ-�niteness of S(u) with respect to S∞−1. Therefore, if u ∈ SBV(X, γ) the
statement is obvious. The opposite implication follows from Lemma 4.3.

SBV functions can be characterised by using the chain rule (4.14) as well. To this end, let us �x an in-
creasing concave function θ : [0, +∞)→ [0, +∞) such that

lim
t→0+

θ(t)
t = +∞ (5.1)

and the class of related test functions

C(θ) =
{
Φ ∈ C1

b(R) : ||Φ||θ := sup
s,t∈R,s≠t

|Φ(t) − Φ(s)|
θ(|t − s|) < ∞

}
.

Proposition 5.3. Consider u ∈ BV(X, γ) and θ as in (5.1); then, if there is a measure λ ∈ M(X, H) with
|λ|(S(u)) = 0 and a positive functional Λ ∈ (Cb(X))′ s.t.

|DHΦ(u) − Φ′(ũ)λ| ≤ ||Φ||θΛ, ∀Φ ∈ C(θ),

then λ = DdHu and
Λ ≥ θ(u∨(x) − u∧(x))S∞−1 S(u). (5.2)

In particular, u ∈ SBV(X, γ) if and only if there is g ∈ L1(X, γ;H) such that

|DHΦ(u) − Φ′(ũ)gγ| ≤ ||Φ||θΛ, ∀Φ ∈ C(θ).

Proof. Wewant to show that themeasure µ = DdHu−λ vanishes, i.e., |µ|(X) = 0. First, notice that |µ|(S(u)) = 0,
as |DdHu|(X) = |λ|(S(u)) = 0. Therefore, setting B = X \ S(u), we have |µ|(X) = |µ|(B) and the measures µ and
S∞−1 S(u) are mutually singular. In particular, the relationship

|Φ′(ũ)µ| = |Φ′(ũ)DdHu − Φ′(ũ)λ| = χ(X\S(u))|DHΦ(u) − Φ′(ũ)λ|

holds. It follows that ∫
X

|Φ′(ũ(x))|d|µ|(x) ≤ |DHΦ(u) − Φ′(ũ)λ|(X) ≤ ||Φ||θΛ(1)

for any Φ ∈ C(θ). Taking now Φ1,ε(t) = sin(t/ε) and Φ2,ε(t) = cos(t/ε) in the previous inequality and sum-
ming up, as | sin t| + | cos t| ≥ 1 we get

|µ|(X) ≤ ε(||Φ1,ε||θ + ||Φ2,ε||θ)Λ(1).

Letting ε → 0 and applying [4, Lemma 4.10], we deduce that |µ|(X) = 0. It then follows from Proposition 4.7
that

|(Φ(u∨) − Φ(u∧))νuS∞−1 S(u)| = |DH(Φ ◦ u) − Φ′(ũ)λ| ≤ ||Φ||θΛ

for all Φ ∈ C(θ). Therefore, taking into account that by [4, Lemma 4.11] we have

θ(|s − t|) = sup
Θ

{ |Φ(s) − Φ(t)|
||Φ||θ

}
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where Θ is a countable dense set in {Φ ∈ C(θ) : Φ′ ∈ Cc(R), Φ non constant}, and using also [4, Remark
1.69] we deduce (5.2):

Λ ≥
∨
Φ∈Θ

|Φ(u∨) − Φ(u∧)|
||Φ||θ

S∞−1 S(u)

=
[

sup
Φ∈Θ

|Φ(u∨) − Φ(u∧)|
||Φ||θ

]
S∞−1 S(u) = (θ(u∨ − u∧))S∞−1 S(u).

The following closure-compactness theorem follows.

Theorem 5.4. Let ψ : [0, +∞) → [0, +∞] and θ : (0, +∞) → (0, +∞] be two continuous and increasing
functions such that

lim
t→+∞

ψ(t)
t = +∞, lim

t→0
θ(t)
t = +∞,

and let (uk)k ⊂ SBV(X, γ) be a sequence such that supk ||uk||∞ < ∞ and

sup
k∈N

{∫
X

ψ(|∇Huk|H)dγ +
∫

S(uk)

θ(u∨k − u
∧
k )dS∞−1

}
< +∞.

If uk → u in measure, then u ∈ SBV(X, γ), ∇Huk converges to ∇Hu weakly in L1(X, γ;H) and DJHuk weakly*

converges to DJHu inM(X, H). Moreover, if ψ is convex and θ is concave, then∫
X

ψ(|∇Hu|H)dγ ≤ lim inf
k→+∞

∫
X

ψ(|∇Huk|H)dγ, (5.3)

and ∫
S(u)

θ(u∨ − u∧)dS∞−1 ≤ lim inf
k→+∞

∫
S(uk)

θ(u∨k − u
∧
k )dS∞−1.

Proof. Possibly considering θ ∧ M = min{θ,M} in place of θ, we may suppose that θ is bounded. First,
notice that the functions∇Huk are equi–integrable, so that, up to subsequences which we don’t relabel, they
weakly converge in L1(X, γ;H) to some g ∈ L1(X, γ;H). ForΦ ∈ C(θ), let us show thatΦ′(uk)∇Huk converges
to Φ′(u)g weakly in L1(X, γ;H). To this aim, consider f ∈ L∞(X, γ;H) and notice that

lim
k→+∞

∫
X

Φ′(uk) [f ,∇Huk]Hdγ = lim
k→+∞

∫
X

(Φ′(uk) − Φ′(u))[f ,∇Huk]Hdγ +
∫
X

Φ′(u)[f ,∇Huk]Hdγ


= lim
k→+∞

∫
X

Φ′(u)[f ,∇Huk]Hdγ =
∫
X

Φ′(u)[f , g]Hdγ

because |Φ′(uk(x)) − Φ′(u(x))||∇Huk(x)|H ≤ 2||Φ′||∞|∇Huk(x)|H and the functions ∇uh are equi–integrable,
so that we may apply Vitali theorem (see e.g. [12, Theorem III.6.15]) and deduce∣∣∣ ∫

X

(Φ′(uk) − Φ′(u))[f ,∇Huk]Hdγ
∣∣∣ ≤ ||f ||∞ ∫

X

|Φ′(uk) − Φ′(u)||∇Huk|H dγ → 0.

From (4.14) we infer that DHΦ(uk) weakly* converges to DHΦ(u) in the duality with respect to FCb(X), and
then

lim
k→+∞

(
DHΦ(uk) − Φ′(uk)∇Hukγ

)
= DHΦ(u) − Φ′(u)gγ.

Moreover, the measures
µk = θ(u∨k − u

∧
k )S∞−1 S(uk)
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have bounded total variation, hence, up to subsequences again, they are weakly* converging in the duality
with Cb(X) to a positive functional Λ on Cb(X). Since Φ ∈ C(θ), we get

|DHΦ(uk) − Φ′(uk)∇Hukγ| ≤ ||Φ||θµk

and letting k →∞, by the lower semicontinuity of the total variation,

|DHΦ(u) − Φ′(u)gγ| ≤ ||Φ||θΛ,

hence by Proposition 5.3, u ∈ SBV(X, γ) and∇Hu = g. By the previous argument,∇Huk weakly converges to
∇Hu and as a consequence DJHuk → DJHu.

If E ⊂ X is a set with �nite perimeter, for every u : E → Rwe de�ne u* : X → R the zero extension of u out of
E, and for 1 < p < ∞ the space

H1,p(E, γ) =
{
u ∈ Lp(E, γ) : u* ∈ SBV(X, γ), ∇Hu* ∈ Lp(X, γ), |DσHu*|(X \ ∂*FE) = 0

}
, (5.4)

endowed with the norm
||u||H1,p(Eγ) := ||u*||p + ||∇Hu*||p .

As an application of the previous result, we deduce a compactness theorem for the space H1,p(E, γ), in the
spirit of [27, Chapter 5, Section 3].

Theorem 5.5. The bounded closed subsets of H1,p(E, γ), 1 < p < ∞, are weakly compact in Lp(E, γ).

Proof. Let (uk) be a bounded sequence in H1,p(E, γ). Since a function u belongs to SBV(X, γ) if and only if
all its truncations uK = (u ∧ K) ∨ (−K) are SBV, we may suppose that the uk are equibounded. Eventually,
a diagonal argument allows us to remove this hypothesis. By the boundedness in Lp(E, γ) we infer that a
subsequence (which we don’t relabel) is weakly converging to a function u in Lp(E, γ). Let us show that u ∈
H1,p(E, γ). To this aim, notice �rst that byMazur’s lemma a suitable sequence (vk) of convex combinations of
the (uk) converges strongly to u in Lp(E, γ) and that the null extensions v*k still belong to H1,p(E, γ) because,
as for the (u*k), DσHv*k(X \ ∂*FE) = 0. Therefore, we may apply Theorem 5.4 to the sequence (v*k) ⊂ SBV(X, γ)
with ψ(t) = |t|p and θ(t) = 1 and conclude that u* ∈ SBV(X, γ). Finally, since DσHu*(X \ ∂*FE) = 0 by the weak
convergence of DJv*k and∇Hu* ∈ L

p(E, γ) by (5.3), the proof is complete.

Acknowledgement: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabil-
ità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors have
been partially supported by PRIN 2010 M.I.U.R. “Calcolo delle Variazioni” (L.A. andM.M.) and “Problemi dif-
ferenziali di evoluzione: approcci deterministici e stocastici e loro interazioni” (D.P.). L.A. also acknowedges
the support of the ERC ADG GeMeThnES.

References
[1] Alberti, C. Mantegazza, A note on the theory of SBV functions, Boll. Un. Mat. Ital. B (7) 11 (1997), n.2, 375–382.
[2] L. Ambrosio, A. Figalli, Surfacemeasure and convergence of the Ornstein-Uhlenbeck semigroup inWiener spaces, Ann. Fac.

Sci. Toulouse Math., 20(2011) 407-438.
[3] L. Ambrosio, A. Figalli, E. Runa, On sets of �nite perimeter in Wiener spaces: reduced boundary and convergence to halfs-

paces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24(2013), 111-122.
[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical

Monographs, 2000.
[5] L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara, BV functions in abstract Wiener spaces, J. Funct. Anal., 258(2010), 785–

813.
[6] L. Ambrosio, M. Miranda Jr, D. Pallara, Sets with �nite perimeter in Wiener spaces, perimeter measure and boundary recti-

�ability, Discrete Contin. Dyn. Syst., 28(2010), 591–606.



230 | Luigi Ambrosio, Michele Miranda Jr., and Diego Pallara

[7] V. I. Bogachev, Gaussian Measures, American Mathematical Society, Providence R.I., 1998.
[8] V. I. Bogachev, A.Yu. Pilipenko, A.V. Shaposhnikov, Sobolev functions on in�nite-dimensional domains, J. Math. Anal. Appl.,

419(2014), 1023–1044.
[9] V. Caselles, A. Lunardi, M. Miranda Jr, M. Novaga, Perimeter of sublevel sets in in�nite dimensional spaces, Adv. Calc. Var.,

5(2012), 59–76.
[10] P. Celada, A. Lunardi, Traces of Sobolev functions on regular surfaces in in�nite dimensions, J. Funct. Anal., 266(2014),

1948–1987.
[11] E. De Giorgi, L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.

Mat. Natur., (8) 82(1988), n.2, 199–210, English translation in: Ennio De Giorgi: Selected Papers, (L. Ambrosio, G. Dal Maso,
M. Forti, M. Miranda, S. Spagnolo eds.) Springer, 2006, 686–696.

[12] N. Dunford, J.T. Schwartz, Linear operators Part I: General theory, Wiley, 1958.
[13] D. Feyel, A. de la Pradelle, Hausdor� measures on the Wiener space, Potential Anal. 1(1992), 177-189.
[14] M. Fukushima, BV functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal.,

174(2000), 227-249.
[15] M. Fukushima, M. Hino, On the space of BV functions and a Related Stochastic Calculus in In�nite Dimensions, J. Funct.

Anal., 183(2001), 245-268.
[16] L. Gross, Abstract Wiener spaces, in: Proc. Fifth Berkeley Symp. Math. Stat. Probab. (Berkeley, Calif., 1965/66), Vol. II:

Contributions to Probability Theory, Part 1, p. 31-42, Univ. California Press, Berkeley.
[17] M. Hino, Sets of �nite perimeter and the Hausdor�–Gauss measure on the Wiener space, J. Funct. Anal., 258(2010), 1656–

1681.
[18] M. Hino, H. Uchida, Reflecting Ornstein-Uhlenbeck processes on pinned path spaces, Proceedings of RIMS Workshop on

Stochastic Analysis and Applications, 111–128, RIMS Kokyuroku Bessatsu, B6, Kyoto, 2008.
[19] M. Ledoux, Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math., 118(1994),

485–510.
[20] P. Malliavin, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften 313, Springer, 1997.
[21] M.Miranda Jr, M. Novaga, D. Pallara, An introduction to BV functions in Wiener spaces, Advanced Studies in Pure Mathe-

matics, 67, 245–293, Tokyo 2015.
[22] M. Miranda Jr, D. Pallara, F. Paronetto, M. Preunkert, Short–time heat flow and functions of bounded variation in RN , Ann.

Fac. Sci. Toulouse, XVI(2007), 125–145.
[23] R. O’Donnell, Analysis of Boolean functions, Cambridge University Press, 2014.
[24] M. Röckner, R.C. Zhu, X.C. Zhu, The stochastic reflection problem on an in�nite dimensional convex set and BV functions

in a Gelfand triple, Ann. Probab., 40(2012), 1759-1794.
[25] D. Trevisan:, BV-regularity for the Malliavin derivative of the maximum of the Wiener process, Electron. Commun. Probab.,

18(2013), no.29.
[26] D. Trevisan, Lagrangian flows driven by BV �elds in Wiener spaces, Probab. Theory Related Fields, DOI 10.1007/s00440-

014-0589-1.
[27] A.I. Vol’pert, S.I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Martinus

Nijho� Publishers, Dordrecht, NL, 1985.
[28] L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEswith reflection, Probab. Theory

Related Fields, 123(2002) 579-600.


	1 Introduction
	2 Notation and preliminary results
	3 Functions of bounded variation and short time behaviour of the semigroup
	4 Decomposition of the gradient and chain rule
	5 Special functions of bounded variation

