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Abstract

We consider a constrained hierarchical opinion dynamics in the case
of leaders’ competition and with complete information among leaders.
Each leaders’ group tries to drive the followers’ opinion towards a de-
sired state accordingly to a specific strategy. By using the Boltzmann–
type control approach we analyze the best–reply strategy for each lead-
ers’ population. Derivation of the corresponding Fokker-Planck model
permits to investigate the asymptotic behaviour of the solution. Het-
erogeneous followers populations are then considered where the effect
of knowledge impacts the leaders’ credibility and modifies the outcome
of the leaders’ competition.
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1 Introduction

Control methodologies for multi–agent systems gained in recent years an
increasing interest due to their effectiveness in modelling efficient techniques
to force systems toward a given benchmark configuration [1, 3, 23, 27, 26].
The control of emergent behaviour has been studied at the level of the
agents’ dynamics as at the level of the kinetic and hydrodynamic equations
[4, 7, 27, 19]. The general setting consists in a microscopic model described
by a system of ODEs where the evolution of the constrained state of each

∗Department of Computer Sciences, University of Verona, Str. Le Grazie 15, 37134,
Verona, Italy (giacomo.albi@univr.it)
†Department of Mathematics and Computer Science, University of Ferrara, Via Machi-

avelli 35, 44121 Ferrara, Italy (lorenzo.pareschi@unife.it).
‡Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli

Abruzzi 24, Torino, Italy (mattia.zanella@polito.it).

1

ar
X

iv
:1

71
2.

03
22

4v
1 

 [
m

at
h.

O
C

] 
 7

 D
ec

 2
01

7



agent minimizes a given cost functional and is influenced by the collective
behaviour of all the other agents.

When the number of agents is very large a direct solution of the micro-
scopic problem becomes prohibitive and the behaviour of the system can
be approximated by kinetic (or hydrodynamic) partial differential equations
[13, 14, 17, 18].

The present work focus on hierarchical opinion controls based on several
populations of leaders which compete in order to drive the opinion of the
followers towards a desired state. Each leader acts via the minimization of
a suitable cost function characterizing its strategy.

Unlike the approach proposed in [4, 21], in the present setting both the
opinion variable and the control strategies of followers and leaders are al-
ways known to each player, which makes the best possible decision taking
into account what the opponents are doing, whereas the dynamics of the
followers are influenced by the leaders and by the other followers. Hence,
the introduced opinion model can be seen as a game in which the opponents
are the opinion leaders which try to maximize their impact over the follow-
ers’ population, i.e. in other words the overall dynamics can be seen as a
differential game [12, 28]. On the basis of a microscopic model we propose
a Boltzmann–type model predictive control (MPC) approach following the
ideas in [2, 3, 4]. By means of this technique we explicit the best reply
dynamics at the binary level and we study the related kinetic description
for a large number of agents.

Next, in order to have a more realistic description of the opinion for-
mation process, we introduce the followers’ heterogeneity. In particular,
we consider the impact of knowledge in the opinion dynamics by inducing
resistance to social influence [6, 29]. The followers’ behaviour is then de-
scribed by different processes: the opinion dynamics depend on a knowledge
based compromise process and on the interaction with each leaders’ pop-
ulation, further, the evolution of the knowledge depends on a social back-
ground in which individuals may gain knowledge from more skilled agents
[10, 9, 32, 33, 34]. Numerical tests permit to show the effect of heterogeneity
over the leaders’ competition outcome.

The rest of the paper has the following structure: in Section 2 we first
introduce the constrained microscopic problem for an arbitrary number of
leaders’ populations, and next we exploit the model predictive approach to
derive explicit binary interaction rules which embed the best–reply strategy
for each leader. The Boltzmann–type formulation of the binary game is given
in Section 3, the evolution of macroscopic quantities like the mean opinion
and its variance are here investigated. Explicit asymptotic distributions
are also reported in Section 4 in the so–called quasi–invariant limit. In
Section 5 a multivariate model for heterogeneous followers based on the
level of knowledge is proposed. Numerical results are shown in Section 6
and, beside confirming the theoretical analysis, show how different levels of
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knowledge in the followers’ population may lead to different behaviours in
the competition between leaders.

2 A microscopic differential game with multiple
leaders

We are interested in the opinion formation process of a population of follow-
ers influenced by the action of various leaders. The strategy of the leaders is
driven by a control term characterised by the leaders’ radical and populist
attitudes [2, 4]. The first attitude aims at forcing the agents toward a given
desired opinion, whereas the second attitude at keeping a position close to
the mean opinion of the overall population. In contrast to [4], here the lead-
ers compete with each others in agreement with their strategies thus giving
rise to a differential game.

2.1 Microscopic mean–field modelling

Let us consider a population of NF followers with opinion wi ∈ I, where
I = [−1, 1] and M groups of leaders vkh with opinion h = 1, . . . , Nk for the
population in the group k = 1, . . . ,M .

We consider the dynamics described by the following equations

ẇi =
1

NF

NF∑
j=1

P (wi, wj)(wj − wi) +
M∑
`=1

(
1

N`

N∑̀
h=1

R`(wi, v
`
h)(v`h − wi)

)

v̇kh =
1

Nk

Nk∑
p=1

Sk(vkh, v
k
p)(vkp − vkh) +

M∑
`=1

u`

(1)

with given initial conditions, i = 1, . . . , NF , k = 1, . . . ,M and h = 1, . . . , Nk.
In (1) we introduced the compromise functions P (·, ·) ∈ [0, 1] and Rk(·, ·) ∈
[0, 1] measuring respectively the strength of interaction between followers
and the strength of interaction between followers and leaders of the kth-
population. Further, Sk(·, ·) ∈ [0, 1] measures the strength of interaction
between leaders of population k, which we will assume to be symmetric, i.e.
Sk(v, w) = Sk(w, v) for every k = 1, . . . ,M .

The controls uk characterize the strategies of the leaders of the system
and are solution of the control problems

uk = arg min
uk∈U

Jk(uk,uk−; w,v), k = 1, . . . ,M (2)

where U is the set of admissible controls and the cost functional Jk(uk,uk−; w,v)
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is defined as follows

Jk(uk,uk−; w,v) =

1

2

∫ T

0

[
ψk

Nk

Nk∑
h=1

|vkh − v̄k|2 +
µk

Nk

Nk∑
h=1

|vkh −mF |2 + νk|uk|2
]
ds,

(3)

being uk− the vector of the other leaders, k excluded. In (3) the terms w,v
are the vectors of the opinions of the followers and all the leaders respec-
tively, T is the final time horizon of the optimization procedure, v̄k ∈ [−1, 1]
are desired opinions of the kth group of leaders. We also indicated with
mF = mF (t) ∈ [−1, 1] the mean opinion of the followers at time t ≥ 0, and
equivalently we will indicate with mk

L = mk
L(t) ∈ [−1, 1] the mean opinion

expressed by the kth population of leaders, both quantities are computed as
follows

mF (t) =
1

NF

NF∑
j=1

wj(t), mk
L(t) =

1

Nk

Nk∑
h=1

vkh(t). (4)

The parameter νk > 0 is a regularization term representing the importance
of the control term in the overall dynamics. The coefficients ψk, µk, weight
two possible behaviours: ψk is related to the radical attitude of maintaining
a certain desired position v̄k, whereas µk weights the tendency of getting
closer to the average opinion of the followers’ population, mF , we refer to
this behaviour as populist. We further assume that the leaders’ strategies
are a convex combination of these two behaviours, i.e. ψk + µk = 1.

Remark 2.1. A further generalization of the model consists in considering
an additional parameter θk` ∈ [0, 1] weighting the influence of each strategy
u`, ` = 1, . . . ,M on the kth leaders’ population, namely we have

v̇kh =
1

Nk

Nk∑
j=1

Sk(vkh, v
k
j )(vkj − vkh) +

M∑
`=1

θk`u
`. (5)

Parameters θk` can describe situations where the knowledge of other leaders’
strategies is incomplete or biased by uncertainties. Note that for Θ = [θk`] =
IdM×M model (1) decouples in a system of leaders where every leaders’
population has its own strategy, as originally presented in [4].

2.2 Binary game approximation

To reduce the model’s complexity we consider first a discrete version of (1)
taking into account binary interactions. Hence, we introduce the time dis-
cretization 0 = t0 < t1 < . . . < tNt = T with tn = n∆t, the parameter
α = ∆t/2, and we approximate the differential system (1) via pairwise in-
teractions. We obtain the following binary dynamics among each population
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of leaders k = 1, . . . ,M

vk,n+1
h = vk,nh + αSk(vk,nh , vk,np )(vk,np − vk,nh ) + 2α

M∑
`=1

u`,n,

vk,n+1
p = vk,np + αSk(vk,np , vk,nh )(vk,nh − vk,np ) + 2α

M∑
`=1

u`,n,

(6)

where the controls uk,n are now determined by solving the optimization
problem on the binary dynamics. The cost functional over the binary inter-
actions is given by

Jk,n(uk,uk−) :=∫ tn+1

tn

1

2Nk

Nk∑
h=1

(
ψk|vkh − v̄k|2 + µk|vkh −mF |2 + νk|uk|2

)
dt,

(7)

thus the control variables uk,n for k = 1, . . . ,M are solution to the following
coupled system

u1,n = arg min J1,n(u1,n,u1,n
− )

u2,n = arg min J2,n(u2,n,u2,n
− )

...

uM,n = arg min JM,n(uM,n,uM,n
− ).

(8)

Note that this type of problem has the structure of a differential game,
and therefore the controls should be determined as an equilibrium of the
competition process, [28, 12]. In what follows we show how to determine an
approximation of the solution of this problem through the derivation of a
best-reply approach [2, 4, 20].

2.2.1 Binary best-reply strategies

A direct method to embed the explicit formulation of best-reply strategies
in the dynamics given by (8) is to introduce a system of Euler-Lagrange
equations, and to compute the minimizers of the resulting equations, see
also [20, 1] for further details. Similarly to instantaneous strategies [2, 4],
we approximate the solution of (8) by introducing a semi-implicit time-
discretization of (7) as follows

J̃k,n(uk,n,uk,n− ) =

1

2Nk

Nk∑
h=1

(
ψk|vk,n+1

h − v̄k|2 + µk|vk,n+1
h −mn

F |2 + νk|uk,n|2
)
,

(9)
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where we assume to evaluate mF (t) in (4) at time tn. Hence, by computing
the minimizers of (9) w.r.t. uk,n for all k = 1, . . . ,M , we obtain

Duk,n J̃
k,n(uk,n) =

1

Nk

Nk∑
h=1

(
2αψk(vk,n+1

h − v̄k) + 2αµk(vk,n+1
h −mn

F ) + νkuk,n
)

=

2α

Nk

Nk∑
h=1

(
ψk(vk,nh − v̄k) + µk(vk,nh −mn

F )
)

+
2α2

Nk

Nk∑
h=1

Sk(vk,nh , vk,np )(vk,np − vk,nh )

+ 4α2
M∑
`=1

u`,n + νkuk,n,

where we substitute vk,n+1 with its explicit formulation (6). Note also that,
under symmetricity assumption of Sk(·, ·), the contribution of the sum of
the interactions Sk(vh, vp)(vp − vh) vanishes, since it is composed by binary
terms such that for every pair (h, p) we have

Sk(vkh, v
k
p)(vkp − vkh) + Sk(vkp , v

k
h)(vkh − vkp) =(

Sk(vkh, v
k
p)− Sk(vkh, vkp)

)
(vkp − vkh) = 0.

Thus, the previous expression reduces to

Duk,n J̃
k,n(uk,n) =

2α
(
ψk(mk,n

L − v̄k) + µk(mk,n
L −mn

F )
)

+ 4α2
M∑
`=1

u`,n + νkuk,n,

where mk
L(t) are the average opinion of the kth-population of leaders at time

t.
We find the critical points of the functional imposing the last relation to

be zero, (
νk + 4α2

)
uk,n + 4α2

∑
`6=k

u`,n =

2α
(
ψk
(
v̄k −mk,n

L

)
+ µk

(
mn
F −m

k,n
L

))
,

(10)

where the second member of the expression contains the convex combina-
tion of the relaxation towards the desired state v̄k and the average of the
followers’ opinions, mF . Denoting by F k,nα the right-hand side of (10) , and
introducing the parameter βk as follows

F k,n := ψkv̄k + µkmn
F −m

k,n
L , βk :=

4α2

νk + 4α2
, (11)
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we can write system (10), for k = 1, . . . ,M , as

uk,n + βk
M∑
` 6=k

u`,n =
βk

2α
F k,n, (12)

or equivalently in vector notation as
1 β1 β1 . . . β1

β2 1 β2 . . . β2

...
...

...
...

βM βM βM . . . 1



u1,n

u2,n

...
uM,n

 =
1

2α


β1F 1,n

β2F 2,n

...
βMFM,n

 . (13)

The existence and uniqueness of the solution can be assured under the fol-
lowing sufficient condition

Proposition 2.1. System (12) admits an unique solution if the following
condition

νk > 4(M − 2)α2, (14)

holds true for every k = 1, . . .M .

This condition is obtained by imposing the strictly diagonal dominance
of the matrix of system (13). Moreover, recalling the equivalence between
α and ∆t/2, condition (14) may be seen as a bound on the time-stepping of
the binary interaction, i.e.

∆t <
√
νk/(M − 1), k = 1, . . . ,M. (15)

Under this condition we can invert system (12) and the control uk is obtained
as follows

uk,n =
1

2α

M∑
`=1

β`Bα
k,`F

`,n, (16)

where the coefficients Bα = [Bα
k,`] define the inverse matrix of system (13).

Since the control applied to each leaders is the sum over k of the strategies
uk, in order to compute the control term is sufficient to sum over k relation
(16) as follows

M∑
k=1

uk,n =
1

2α

M∑
`=1

β`B̄α
`

(
ψ`v̄` + µ`mn

F −m
`,n
L

)
, (17)

where we substituted the explicit version of F `,n (11), and with B̄α
` defined

as

B̄α
` :=

M∑
k=1

Bα
k`. (18)
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Hence, to obtain the strategy
∑M

k=1 u
k,n it is sufficient to compute once Bα,

and to update at each time step the binary interaction (6) embedding the
control (17).

In the following sections we will show how these binary constrained dy-
namics can be embedded in Boltzmann-type equations, and how to derive a
consistent system of Fokker-Planck-type equations for the mean-field system
(1).

Remark 2.2. In the simplified setting in which the penalization parameters
are uniformly equal, ν1 = ν2 = . . . = νM = ν, since the dynamics of the
leaders are controlled by the sum over all the strategies, the previous system
is easily solved. Then in this case βk = β for every k = 1, . . . ,M and
summing over k equation (12) we have

(1− β)ūn + βMūn =
β

2α

M∑
`=1

(
ψ`v̄` + µ`mn

F −m
`,n
L

)
, (19)

where we defined ū =
∑M

k=1 u
k, which restitutes the following control

ūn =
β

2α(1 + (M − 1)β)

M∑
`=1

(
ψ`v̄` + µ`mn

F −m
`,n
L

)
. (20)

Remark 2.3. A different approach of deriving binary strategies is to con-
sider a different functional with respect to (9), which rules only locally the
binary discrete interactions of the leaders [2, 4], as follows

J̃k,n(uk,n,uk,n− ) =

1

2

∑
r∈{h,p}

(
ψk|vk,n+1

r − v̄k|2 + µk|vk,n+1
r −mn

F |2 + νk|uk,n|2
)
.

(21)

Thus computing the minimizers of (21) w.r.t. uk,n for all k = 1, . . . ,M ,
leads to the following system

uk,n + βk
M∑
6̀=k
u`,n =

βk

2α

(
ψkv̄k + µkmn

F −
vk,nh + vk,np

2

)
, (22)

which shares the same structure of system (12), with the difference that the
right-hand side includes the relaxation towards the desired state ψkv̄k+µkmn

F

of the local average of two leaders’ opinions defined as follows

m̂k,n
L :=

vk,np + vk,nh
2

. (23)

8



Thus under the same condition (14) we can compute the sum of the strategies
as follows

M∑
k=1

uk,n =
1

2α

M∑
`=1

β`B̄α
`

(
ψ`v̄` + µ`mn

F −
v`,np + v`,nh

2

)
. (24)

3 The Boltzmann game

In this section we consider a Boltzmann-type dynamics to describe the evo-
lution of the binary game approximation (6)–(7). Let f = f(w, t) be the
density at time t ≥ 0 for the agents with opinion w ∈ I = [−1, 1], which
we assume to be normalized such that

∫
I f(w, t)dv = 1. Furthermore, let

gk(v, t) be the density of the leaders’ population k = 1, . . . ,M,∫
I
gk(v, t)dv = ρk ≤ 1, (25)

thus, using the same notations as in Section 2, we define the average opinion
of followers’ and leaders’ population respectively

mF (t) :=

∫
I
wf(w, t)dw, mk

L(t) :=
1

ρk

∫
I
vgk(v, t)dv. (26)

In the following we will derive the kinetic description for the evolution of the
densities f and gk through classical methods of kinetic theory [33, 35, 2, 4].

3.1 Binary interactions dynamics

We consider binary interaction of opinions, both for the dynamics of the
followers and the leaders, in presence of additional random processes. This
modelling choice aims to include exogenous factors which can not be de-
scribed by the constrained deterministic process.

More precisely, the post-interaction opinions of two leaders within the
group k, are obtained as follows

v′ = v + αSk(v, v∗)(v∗ − v) + 2α
M∑
`=1

u` + ηkDk
L(v),

v∗
′ = v∗ + αSk(v∗, v)(v − v∗) + 2α

M∑
`=1

u` + ηk∗D
k
L(v∗),

(27)

where the best reply strategy
∑M

`=1 u
` is the same for every population of

leaders, and under assumption (14), is defined for every ` = 1, . . . ,M by
(17). The random variables ηk, ηk∗ , with law Θηk(·), have zero mean and

standard deviation σηk , whereas the function 0 ≤ Dk
L(·) ≤ 1 represents the

local relevance of diffusion of the leaders’ population.
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In order to describe the interaction among followers as a binary exchange
of informations we split the interaction among follower-follower, induced by
the kernel P (·, ·), and follower-leader interaction induced by Rk(·, ·), for each
leaders’ population k = 1, . . . ,M .

Thus, the interactions between followers are given by

w′ = w + αP (w,w∗)(w∗ − w) + ξDF (w),

w′∗ = w∗ + αP (w∗, w)(w − w∗) + ξ∗DF (w∗),
(28)

where (w,w∗) ∈ I are the pre-interaction opinions and w′, w′∗ the opinions
after the exchange of informations between the two agents. Moreover, 0 ≤
DF (·) ≤ 1 is a local diffusion function which scales the strength of the
random variables ξ, ξ∗ in the binary dynamics, whereas ξ, ξ∗ have law Θξ(·)
with zero mean and standard deviation σξ.

Finally, each interaction between leaders and followers is given by the
binary dynamics

w′′ = w + αRk(w, v)(v − w) + ξkDk
FL(w),

v′′ = v,
(29)

where the local diffusion functions 0 ≤ Dk
FL(·) ≤ 1 modulate the impact of

the random variables ξk on the binary dynamics. The random variables ξk

have law Θξk(·) and standard deviations σξk .
In the following we give sufficient conditions to preserve the opinion

bounds in the aforementioned dynamics.

Proposition 3.1. Let us consider the binary dynamics described by (27)-
(29).

1. For each k = 1, . . . ,M let us define the quantities ck±, dk± as follows

ck± = min
v∈[−1,1]

{
±3
∑M

`=1 β
`B̄α

`

Dk
L(v)

, Dk
L(v) 6= 0

}
, dk± = min

v∈[−1,1]

{
1∓ v
Dk
L(v)

}
.

Therefore, if v, v∗ ∈ I then v′, v′∗ ∈ I provided

dk− − ck− ≤ ηk ≤ dk+ − ck+.

2. Let F± be defined as follows

F± = min
w∈[−1,1]

{
1∓ w
DF (w)

, DF (w) 6= 0

}
.

Therefore, if w,w∗ ∈ I then w′, w′∗ ∈ I provided

(1− α)F− ≤ ξ ≤ (1− α)F+.
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3. Let Lk± be defined for all k = 1, . . . ,M as follows

Lk± = min
w∈[−1,1]

{
1∓ w
Dk
FL(w)

, Dk
FL(w) 6= 0

}
.

Therefore, if w ∈ I then w′′ provided

(1− α)Lk− ≤ ξk ≤ (1− α)Lk+.

Proof. Since all compromise functions lie in the interval [0, 1], the proof is a
straightforward consequence of the results in [2, 3, 4, 33, 35] and of the fact
that Bα is strictly diagonally dominant. We omit the details.

3.2 The Boltzmann–type description

The evolution in time of followers’ and leaders’ density functions, f(w, t), gk(v, t),
is given by the following system of integro–differential equations of the
Boltzmann-type

∂

∂t
f(w, t) = QF (f, f)(w, t) +

M∑
`=1

Q`FL(f, g`)(w, t),

∂

∂t
gk(v, t) = QkL(gk, gk)(v, t), k = 1, . . . ,M

(30)

with f(w, 0) = f0(w) and gk(v, 0) = gk0 (v). In (30) the collision operators
QF (·, ·), QkFL(·, ·), QkL(·, ·), and Qk`LL(·, ·) are defined as follows

QF (f, f)(w, t) =∫
B2

∫
I

(
′BF

1

JF
f(′w, t)f(′w∗, t)−BF f(w, t)f(w∗, t)

)
dw∗dξdξ∗,

(31)

where we indicated with (′w,′w∗) the pre-interaction opinions given by
(w,w∗) after the interaction. The term JF = JF (w;w∗) denotes as usual the
Jacobian of the transformations (w,w∗) → (w′, w′∗). The kernels ′BF , BF
characterize the binary interaction and in following will be considered of the
form

BF = cF Θξ(ξ)Θξ(ξ∗)χ(|w′| ≤ 1)χ(|w′∗| ≤ 1), (32)

where cF > 0 is a scaling constant indicating the interaction frequency and
χ(·) is the indicator function. Similarly, we define for k = 1, . . . ,M

QkFL(f, gk)(w, t) =∫
B2

∫
I

(
′Bk

FL

1

JkFL
f(′w, t)gk(′v∗, t)−Bk

FLf(w, t)gk(v∗, t)
)
dv∗dξdξ∗,

(33)
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where we indicate again with JkFL the Jacobian term of the transformation
(w, v∗)→ (w′, v′∗) and the kernel Bk

FL has the form

Bk
FL = ckFL Θξk(ξk)Θξk(ξk∗ )χ(|w′| ≤ 1)χ(|v′∗| ≤ 1), (34)

with ckFL > 0 a scaling parameter. Finally, for each the leaders’ population
we define the operator QkL(·, ·) as

QkL(gk, gk)(v, t) =∫
B2

∫
I

′Bk
L

1

JkL
gk(′v, t)gk(′v∗, t)−Bk

Lg
k(v, t)gk(v∗, t)dv∗dηdη∗,

(35)

with
Bk
L = ckLΘηk(η)Θηk(η∗)χ(|v| ≤ 1)χ(|v∗| ≤ 1), (36)

and ckL > 0 is the interaction frequency of the leaders of the kth population.

3.3 Evolution of the mean opinion and variance

In order to have an insight on the global behaviour of model (30) we study
here, under simplified assumptions, the evolution of the momentum of the
the followers’ density f(w, t) and leaders’ densities gk(v, t). Hence, we in-
troduce the weak formulation of the system (30) for a given test function
φ(·, t) ∈ C2(I) at t ≥ 0 as follows

d

dt

∫
I
φ(w)f(w, t)dw =

cF
2

〈∫
I2

(φ(w′) + φ(w′∗)− φ(w)− φ(w∗))f(w, t)f(w∗, t)dwdw∗

〉
+

M∑
k=1

ckFL

〈∫
I2

(φ(w′′)− φ(w))f(w, t)gk(v, t)dwdv
〉 (37)

and for all k = 1, . . . ,M

d

dt

∫
I
φ(v)gk(v, t)dv =

ckL
2

〈∫
I2

(φ(v′) + φ(v∗
′)− φ(v)− φ(v∗))g

k(v, t)gk(v∗, t)dvdv∗

〉
,

(38)

for the initial densities f0(w), gk0 (v), and where 〈·〉 denotes the expecta-
tion with respect to the random variable. From the weak formulation of
the Boltzmann model (37)-(38) we can derive the evolution of macroscopic
quantities for the opinion by choosing as a test function φ(w) = 1, w, w2.

Taking φ(w) = 1 we obtain immediately the conservation of the total
number of leaders and followers in the system [33, 35]. Whereas for φ(w) = w

12



we recover the evolution of mF (·) and mk
L(·), defined in (26), as solutions of

the following system of M + 1 differential equations

d

dt
mF (t) =

cFα

2

∫
I2

[P (w,w∗)− P (w∗, w)](w∗ − w)f(w, t)f(w∗, t)dw dw∗

+

M∑
`=1

c`FLα

∫
I2
R`(w, v)(v − w)f(w, t)g`(v, t)dvdw,

d

dt
mk
L(t) =

ckLα

2ρk

∫
I2

{
[Sk(v, v∗)− Sk(v∗, v)](v∗ − v)

+ 4

M∑
`=1

u`
}
gk(v, t)gk(v∗, t)dv dv∗.

Under the simplifying assumptions P (·, ·) and Sk(·, ·), for all k = 1, . . . ,M ,
symmetric, in the case R` ≡ 1 for all ` = 1, . . . ,M and for a control term as
in (20), we reduce to the following differential system

d

dt
mF (t) =

M∑
`=1

c`FLρ
`α
(
m`
L(t)−mF (t)

)
,

d

dt
mk
L(t) =

β

1 + (M − 1)β

(
ckLρ

k
M∑
`=1

(ψ`v̄` + µ`mF −m`
L)

)
.

(39)

If we further assume ρk = ρ, ckL = ckFL = 1/M for all k = 1, . . . ,M the
evolution of the average leaders’ opinion

m̄L(t) =
1

M

M∑
k=1

mk
L(t),

is explicitly computable from

d

dt
mF (t) = ρα (m̄L(t)−mF (t))

d

dt
m̄L(t) =

βρ

1 + (M − 1)β

[
1

M

M∑
`=1

(
ψ`v̄` + µ`mF (t)

)
− m̄L(t)

]
.

(40)

Therefore, since µ` = 1−ψ` bothmF and m̄L converge exponentially towards
the asymptotic state

v̄ =

∑M
`=1 ψ

`v̄`∑M
`=1 ψ

`
. (41)

As a result the average opinion of the followers is a weighted average of the
different desired states of the leaders’ groups.

13



The evolution of the second order moments EF (t), EL(t) can be obtained
from (37)–(38) with φ(w) = w2, φ(v) = v2

d

dt
EF (t) =

cF
2

〈∫
I2

(
(w + αP (w,w∗)(w∗ − w) + ξDF (w))2 + (w∗ + αP (w∗, w)(w − w∗)

+ ξDF (w∗))
2 − w2 − w2

∗

)
f(w, t)f(w∗, t)dwdw∗

〉
+

M∑
`=1

c`FL

〈∫
I2

((w + αR`(w, v)(v − w) + ξkD`
FL(w))2 − w2)

f(w, t)g`(v, t)dwdv
〉
,

d

dt
EkL(t) =

ckL
2ρk

〈∫
I2

((v + αSk(v, v∗)(v∗ − v) + 2α
M∑
`=1

u` + ηkDk
L(v))2

+ (v∗ + αSk(v∗, v)(v − v∗) + 2α
M∑
`=1

u` + ηkDk
L(v∗))

2 − v2 − v2
∗)
〉

gk(v, t)gk(v∗, t)dvdv∗.

(42)

Equation (42) together with (3.3) form a closed system for the evaluation of
the second order moment of the asymptotic opinion of leaders and followers.

4 An asymptotic Fokker–Planck game

In order to study the long-time behaviour of the system (30) we introduce
here the so-called quasi-invariant scaling, which allows to pass from a sys-
tem of Boltzmann equations to a system of Fokker-Planck-type equations.
This approach for socio-economic problems was firstly introduced in [16],
and subsequently developed for control problems in [2, 4], and shares some
similarities with the so called grazing collision limit of plasma physics, we
refer to [3, 33] for further discussions.

4.1 Fokker-Planck scaling

Following [4] we introduce the scaling parameter ε > 0, and rescale as follows
the interaction frequencies

cF →
1

ε
, ckFL →

ckFL
ερk

, ckL →
1

ερk
, (43a)

the binary parameters

α = ε, βk =
4ε2

νk + 4ε2
, νk → ενk, (43b)
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and the standard deviations for the noise

σξ →
√
εσξ, σξk →

√
εσξk , σηk →

√
εσηk . (43c)

Introducing the above scaling in the Boltzmann system (37)-(38), and taking
the quasi-invariant limit ε→ 0 we have the following result for the evolution
of the density functions f(w, t) and gk(v, t).

Theorem 4.1. Let us consider the Boltzmann system (37)-(38) under the
quasi–invariant opinion scaling (43). Let the initial densities f0 = f0(w),
gk0 = gk0 (w), k = 1, . . . ,M be probability measures. In the limit ε → 0,
the weak solutions of the Boltzmann system fε(w, t), g

k
ε (v, t), converge, up

to extraction of a subsequence, to the probability densities f(w, t), gk(v, t).
These densities are weak solution of the Fokker–Planck system

∂tf(w, t) + ∂w

((
P[f ](w, t) +

M∑
`=1

c`FLR`[g`](w, t)

)
f(w, t)

)
=

σ2
ξ

2
∂2
w(D2

F (w)f(w, t)) +

M∑
`=1

σ2
ξ`

2
∂2
w((D`

FL)2(w)f(w, t))

(44)

with

P[f ](x,w, t) =

∫
I
P (w,w∗)(w∗ − w)f(w∗, t)dw∗,

Rk[gk](w, t) =
1

ρk

∫
I
Rk(w, v)(v − w)gk(v, t)dv, k = 1, . . . ,M,

(45)

and for each k = 1, . . . ,M

∂tg
k(v, t) + ∂v

((
Sk[gk](v, t) +

M∑
`=1

U [f, g`](t)

)
gk(v, t)

)
=

σ2
ηk

2
∂2
v

(
(Dk

L(v))2gk(v, t)
)
,

(46)

with

U [f, g`](t) =
2

ν`

(
ψ`v̄` +

∫
I

∫
I
(µ`wf(w, t)− 1

ρ`
vg`(v, t))dvdw

)
(47)

Proof. Note that in the Fokker-Planck model for the leaders the terms
U [f, g`](t) are obtained from (17) in the quasi-invariant limit. In fact, from
(43), and for ε→ 0 we have

βk =
4ε

νk + 4ε
→ 0,

βk

2α
=

2

νk + 4ε
→ 2

νk
. (48)

Thus thanks to the last relation we can show that the matrix of system
(13), where the various strategies Fα` are computed, reduce to the identity
matrix, since βk → 0 for every k = 1, . . . ,M and therefore B̄α

` = 1 for every
` = 1, . . . ,M . The rest of the proof is based on standard arguments, and we
refer to [35, 33] for more details.
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4.2 Asymptotic states

Thanks to its simpler structure, under some simplification assumptions, it
is possible to compute explicitely stationary states of the Fokker-Planck
system (44)–(46). We look for steady states f∞(w), gk∞(w) solutions to the
following system of equations

∂w

((
σ2
ξD

2
F (w) +

M∑
`=1

σ2
ξ`(D

`
FL)2(w)

)
f∞(w)

)
=

2

(
P[f∞](w) +

M∑
`=1

c`FLR`[g`∞](w)

)
f∞(w),

∂v

(
σ2
ηk(Dk

L(v))2gk∞(v)
)

=

2

(
Sk[gk∞](v) +

M∑
`=1

2

ν`

(
ψ`v̄` + µ`mF,∞ −m`

L,∞

))
gk∞(v).

(49)

In order to solve the above set of equations we assume all interaction func-
tions to be unitary constants, i.e P = Sk = Rk = 1, for k = 1, . . . ,M and
that the local diffusion functions have the form [35]

DF (w) = Dk
FL(w) = D(w) = (1− w2), DL(v) = (1− v2). (50)

Thus, the previous system reads(
(mF,∞ − w) +

M∑
`=1

c`FL(m`
L,∞ − w)

)
f∞(w) =(

σ2
ξ +

∑M
`=1 σ

2
ξ`

)
2

∂w
(
D(w)2f∞(w)

)
(

(mk
L,∞ − v) +

M∑
`=1

2

ν`

(
ψ`v̄` + µ`mF,∞ −m`

L,∞

))
gk∞(v) =

σ2
ηk

2
∂v

(
Dk
L(v)2gk∞(v)

)
,

(51)

for all k = 1, . . . ,M . Finally, under the further assumptions νk = ν = 2M ,
ckL = ckFL = 1/M from (40) we have that m̄L,∞ = mF,∞ = v̄, with v̄ given
by (41). Therefore, the system reduces to

(v̄ − w) f∞(w) =

(
σ2
ξ +

∑M
`=1 σ

2
ξ`

)
4

∂w
(
D(w)2f∞(w)

)
[

(mk
L,∞ − v) +

1

M

M∑
`=1

ψ`(v̄` − v̄)

]
gk∞(v) =

σ2
ηk

2
∂v

(
Dk
L(v)2gk∞(v)

)
,

(52)
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which can be solved to give for k = 1, . . . ,M

f∞(w) = γF (1 + w)−2+v̄/(2σ2
F )(1 + w)−2−v̄/(2σ2

F ) exp

{
− 1− v̄w
σ2
F (1− w2)

}
,

gk∞(v) = γkL(1 + w)
−2+bkL/(2σ

2
ηk

)
(1 + w)

−2−bkL/(2σ
2
ηk

)
exp

{
−

1− w bkL
σ2
ηk

(1− w2)

}
,

(53)

with σ2
F =

σ2
ξ +

∑M
`=1 σ

2
ξ`

2
, bL = mk

L,∞ +
1

M

∑M
`=1 ψ

`(v̄` − v̄) and γF , γ
k
L

normalization constants.

Remark 4.1.

• The stationary solutions for the leaders in (53) are defined implicitly
from the average asymptotic opinion mk

L,∞ which depends on the initial

average opinions mk
L(0) and can be computed from (40).

• Other choices of the local diffusion functions DF (w), Dk
FL(w) and

D(w) originate different stationary solutions, we refer to [35, 33] for
further details.

5 Boltzmann games with heterogeneous followers

Clearly, a more realistic model should take into account the presence of
additional effects characterized by the heterogeneous nature of the follow-
ers’ population. In particular, experimental literature in decision science
focussed on the impact of knowledge in communication effectiveness and in
group decision–making tasks being the attitude of the audience towards the
communicators dependent on their perceived high/low credibility level, see
[6, 29].

5.1 Modelling heterogeneous knowledge

To describe the heterogeneity of the followers’ knowledge we proceed simi-
larly to [9, 32, 34] by introducing an additional scalar variable x ∈ R+ which
measures the level of knowledge. At each interaction an agent achieves a
certain level of knowledge from a background, representing the social envi-
ronment, given in terms of the random variable z ∈ R+ with distribution
C(z) with bounded mean∫

R+

C(z)dz = 1,

∫
R+

zC(z)dz = mB.
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Moreover, when the agents interact they also exchange part of their knowl-
edge with other agents. The resulting dynamics, at a binary level, is the
following

x′ = (1− αλ(x))x+ αλC(x)x∗ + αλB(x)z + κx

x′∗ = (1− αλ(x∗))x∗ + αλC(x∗)x+ αλB(x∗)z + κ∗x∗,
(54)

where κ, κ∗ are random variables with zero mean and finite second order
moment σ2

κ taking into account the unpredictable changes of the process.
We can easily prove the following result [32, 34]

Proposition 5.1. Let λ ∈ [λ−, λ+] with λ− > 0, λ+ < 1 and λC(x), λB(x) ∈
[0, 1] for all x ∈ R+ then the post–interaction knowledge x′ is still positive if
κ ≥ −1 + λ+.

In order to introduce the action of the knowledge’s heterogeneity in
the opinion dynamics we consider a compromise function between follow-
ers which depends on both the agents’ opinion and knowledge. A possible
structure for this function is given by

P (w,w∗;x, x∗) = H(w,w∗)K(x, x∗), (55)

where 0 ≤ H(·, ·) ≤ 1 is a positive compromise propensity depending only
by the opinion variable and 0 ≤ K(·, ·) ≤ 1 is a function taking into account
the knowledge of the two interacting agents [3, 5]. A natural choice for this
function is the following (see [34])

K(x, x∗) =
1

1 + ea(x−x∗)
, a > 1, (56)

modelling the interaction propensity in terms of the knowledge gap x − x∗
between the two interacting individuals.

Furthermore, to model the leaders’ credibility, we introduce an interac-
tion function in the leader–follower dynamics 0 ≤ R ≤ 1 with the following
form

Rk(w, v;x) = H(w, v)K(x,Ψ(|v −mk
L(0)|)),

Ψ(|v −mk
L(0)|) =

1

(ς + |v −mk
L(0)|)γ

, ς, γ > 0,
(57)

where mk
L(0) is the initial mean opinion of the kth population of leaders,

see (26), the function Ψ : [0, 2] → R+ is a credibility index measuring the
distance at a given time of the leader’s opinion with respect to its initial
position and the function K(·, ·) acts as described in (56).
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5.2 Kinetic games with heterogeneous effects

In order to introduce the Boltzmann–type system of equations defining the
leaders’ game with heterogeneous followers’ dynamics we consider the dis-
tribution f(x,w, t) of individuals with knowledge x ∈ X ⊆ R+ and opinion
w ∈ [−1, 1] at time t ≥ 0. The evolution is then given by the following
system of Boltzmann equations

∂

∂t
f(x,w, t) = QF (f, f)(x,w, t) +

M∑
`=1

Q`FL(f, g`)(x,w, t),

∂

∂t
gk(v, t) = QkL(gk, gk)(v, t), k = 1, . . . ,M

(58)

where the operators QF (·, ·), Q`FL(·, ·) are defined as follows

QF (f, f)(x,w, t) =

∫
R+

∫
B2

∫
X

∫
I
C(z)

(
′BF

1

JF
f(′x, ′w, t)f(′x∗,

′w∗, t)

−BF f(x,w, t)f(x∗, w∗, t)

)
dx∗ dw∗ dξ dξ∗ dz

Q`FL(f, f)(x,w, t) =

∫
R+

∫
B2

∫
X

∫
I
C(z)

(
′B`

FL

1

J `FL
f(′x, ′w, t)g`(′v∗, t)

−B`
FLf(x,w, t)g`(v∗, t)

)
dv∗ dξ dξ∗ dz,

being now

BF = cFΘξ(ξ)Θξ∗(ξ∗)χ(|w′| ≤ 1)χ(|w′∗| ≤ 1)χ(x′ ≥ 0)χ(x′∗ ≥ 0)

and
B`
LF = c`FLΘξ`(ξ

`)Θξ`∗
(ξ`∗)χ(|w′| ≤ 1)χ(x′ ≥ 0)χ(|v′∗| ≤ 1).

Similarly, under the quasi invariant scaling (43)-(43c), if we further
rescale σκ → εσκ we obtain the following system of Fokker–Planck equa-
tions

∂tf(x,w, t) +
[
∂xC[f ](x,w, t) + ∂w

(
P[f ](x,w, t)

+

M∑
`=1

c`FLR`[g`](x,w, t)
)
f(x,w, t)

]
=
σ2
κ

2
∂2
x(x2f(x,w, t))

+
σ2
ξ

2
∂2
w(D2

F (w)f(x,w, t)) +
M∑
`=1

σ2
ξ`

2
∂2
w((D`

FL)2(w)f(x,w, t))

(59)

where P[·] and Rk[·] have been defined in (45) and C[·] is given by

C[f ](x,w, t) =

∫
R+

∫
R+×I

(−λx+ λCx∗ + λBz)f(x∗, w∗, t)C(z)dx∗dw∗dz.
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Table 1: Computational parameters for the different test cases.

Test Lk Sk(·) v̄k ψk νk σηk F P (·) ση Rk(·) ckFL σηk

I 1 1 0.5 0.5 0.1 0.01 (60) 0.01 (60) 0.1 0.01
2 1 -0.5 0.5 0.1 0.01 (60) 0.1 0.01

II 1 1 -0.5 0.05 (a)0.5/(b) 0.05 0.01 (62) 0.01 (62) 0.1 0.01
2 1 0 0.5 (a)0.5/(b) 0.15 0.01 (62) 0.1 0.01
3 1 0.5 0.95 (a)0.5/(b) 0.15 0.01 (62) 0.1 0.01

6 Numerical examples and applications

We propose in the present section several numerical examples for the Boltzmann–
type model (30) and (58) in the quasi-invariant scaling (43a)-(43c) with
ε = 0.01. All the results have been obtained though a direct Monte Carlo
simulation of the dynamics, see [31, 33] for a description of the methods.
In all the numerical tests we assumed that 10% of the population is com-
posed by leaders, equally divided for each family. For clarity in all figures
the leaders’ profiles have been magnified by a factor 10. The regularization
terms of the controls have been fixed to νp = 0.1.

We considered as local diffusion function D(x,w) = 1 − w2, hence the
diffusion does not act on the agents with extreme opinions. The random
variables η, ηA, ηB are uniformly distributed with scaled variances σ2

η, σ
2
ηA

,

σ2
ηB

. The knowledge dynamics is characterized by λ(x) = λ > 0, λC(x) =

λC > 0 and λB(x) = λB. The random variable κ and z are uniformly
distributed. In all test cases we assume P (·, ·; ·, ·) of the form (55) and
R(·, ·; ·, ·) of the form (57).

6.1 Test I: Boltzmann game and Boltzmann control

In order to validate the present differential game setting and emphasize the
differences with respect to a pure control setting, as the one studied in [4],
we compare the evolution of two opposite populations of leaders for system
(30). Therefore, we consider a symmetric configuration where leaders have
the same type of strategies, ψk = µk = 0.5, with k = {1, 2} but with
opposite desired opinions v̄1 = −v̄2 = 0.5. We compare the dynamics of
the Boltzmann game with the case of single control strategies applied to
each leaders’ population uk as in [4]. We consider a uniform interaction
kernel for the leaders, i.e. Sk ≡ 1, whereas for the followers a bounded
confidence-type of interaction (for both follower-follower and follower-leader
interactions), with the following choices

P (w,w∗) = χ(|w − w∗| < 0.75), Rk(w, v) = χ(|w − v| < 0.75). (60)
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(a) Boltzmann game:
∑M
`=1 u

` (b) Boltzmann control: uk

Figure 1: Test I. Left column (a) shows the present Boltzmann game set-
ting; right column (b) represents the evolution under a Boltzmann control
dynamics. Top row represents the evolution of the two leaders’ population
densities, bottom row shows the evolution of the followers’ density under
the influence of the leaders’ strategies.

We summarize all computational parameters in Table 1. At time zero the
followers’ population is uniformly distributed in the opinion space I, whereas
the leaders are concentrated close to their opposite desired opinion, −v̄k. In
Figure 1 we depict in the I × [0, T ] frame the evolution of the densities,
respectively, in the top row the leaders’ density and in the bottom row the
followers’ density. Left and right columns corresponds respectively to the
dynamics in the Boltzmann game, and in the Boltzmann control setting. The
evolutions show that in both cases followers are steered to an equilibrium
position between the two desired states v̄k, but with different intensities. In
absence of leaders’ competition, on the right, the two leaders’ populations
switch position, since they start from a unpleasant configuration with respect
to the desired one, on the other hand, on the left, the initial configuration
is preserved due to the balancing effect of the control.
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6.2 Test II: Different strategies and resources

We consider now the case of three leaders’ populations with different strate-
gies, and we compare two cases for system (30): uniform and not-uniform
availability of resources. Leaders’ populations have three different strate-
gies, the first one has target opinion v̄1 = −0.5, and a populistic approach,
namely ψ1 = 0.05, the second population has target opinion v̄2 = 0 and
a balanced strategy with ψ2 = 0.5, finally the last population has target
opinion v̄3 = 0.5, with ψ3 = 0.95 which represents a radical behaviour.
Similar to the previous test we assume a uniform interaction kernel for the
leaders, i.e. Sk ≡ 1, whereas followers account a bounded confidence-type
of interactions, with more restrictive interaction conditions with respect to
(60)

P (w,w∗) = χ(|w − w∗| < 0.25), Rk(w, v) = χ(|w − v| < 0.25). (61)

The initial density of followers, f0(w) is uniformly distributed on the opin-
ion interval [0, 0.75], and the initial leaders’ densities are centered on their
target opinion with normal distribution and standard deviation σk = 0.1,
as depicted in the first row of Figure 2. In the second row we report the
final time of two different situations, on the left hand-side we observe equal
penalization of the control ν1 = ν2 = ν3 = 0.5, on the right hand-side the
control is differently penalized, for populistic leaders, L1, ν1 = 0.05, whereas
moderate and radical leaders have penalization parameter ν2 = ν3 = 0.15.
These situations represent respectively the application of the control with
uniform availability of resources, and the case where populistic strategies
exhibit more strength in the application of their strategy. In the first case
we observe in Figure 2 that followers’ density concentrates around the mod-
erate leaders L2, in the second case their density split in two parts where a
large part is centered between moderate and populistic leaders, and a tiny
percentage collocates between moderate and radical. It is interesting to ob-
serve that populist, in the second situation, are able to move a consistent
part of the followers density towards their position, having at disposal larger
resources. Finally, in Figure 4 we report the evolution of the leaders’ den-
sities in the first row, in the space-time frame, [−1, 1] × [0, T ], and of the
followers’ density in the second row.
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Figure 2: Test II. First row shows the initial densities of followers and leaders
at time t = 0. Second row shows the final state of the evolution, on the left
(a) the case with uniform resources, on the right (b) the case with different
penalization of the control strategies.

6.3 Test III: The heterogeneous case

In this latter test we consider the case of heterogeneous followers’ population,
described by their opinion w ∈ [−1, 1] and an additional competence variable
x ∈ [0,+∞]. This latter variable acts in the way the followers interact with
the leaders. In particular we consider the following interaction kernel for
the followers-type interactions,

P (w,w∗, x, x∗) = K(x, x∗), Rk(w, x, vk) = K(x,Ψ(vk)), (62)

where the function K(·, ·) is defined according to (56) with a = 50, and the
credibility function Ψ(·) according to (57) with parameters, γ = 0.75, ς =
0.001. We analyze a constrained dynamics where two populations of leaders
compete in order to attract an heterogeneous followers’ population. As
initial condition we consider the case of uniform opinion distribution in the
interval [−1, 1] and low knowledge, which evolves through interactions with
other agents and through a background z ∼ U([0, 10]). Furthermore, we
consider in the knowledge dynamics λ = 5 · 10−3, λB = 5 · 10−3, λ = λB +λ,
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(a) (b)

Figure 3: Test II. Plot of the leaders’ and followers’ densities in the (w, t)-
space.on the left (a) the case with uniform resources, on the right (b) the
case with different penalization of the control strategies.

Table 2: Computational parameters for Test III.

Test Lk Sk(·) v̄k ψk νk σηk F P (·) ση Rk(·) ckFL σηk

III 1 1 0.50 0.1 0.5 0.01 (62) 0.01 (62) 0.1 0.01
2 1 -0.5 0.75 0.1 0.01 (62) 0.1 0.01

σκ = 2.5 · 10−3. The detailed parameters for leaders’ populations used in
the numerical simulation are reported in Table 2.

In Figure 4–5 we can observe how the leader with a stronger populist
attitude is capable to drive the opinion of the followers with lower com-
petence due to their low credibility level. On the other hand, the leader
with a stronger radical attitude has a larger influence over the highly skilled
followers.

Conclusion

A differential game involving different groups of leaders, each one with its
own strategy, has been considered and studied in the case of a population
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(d) T = 10

Figure 4: Test III. From left to right: evolution of the leaders-followers
systems in the case of knowledge-based interactions. Leader 2’s population
has a radical strategy, ψ2 = 0.75, whereas Leader 1’s population has a
populist attitude, ψ1 = 0.1.

of heterogeneous followers. The approach used is based on a model predic-
tive approximation of the leaders’ game once it has been reduced to binary
interactions. This permits to obtain explicitly the best reply strategy for
each leader and to write the corresponding Boltzmann system. Approximat-
ing the system through a Fokker-Planck equation yields, as usual, analytic
stationary solutions for the corresponding opinion distributions. Numeri-
cal results show the strong impact of heterogeneity in the outcome of the
leaders’ competition.
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(a) T = 0 (b) T = 1

(c) T = 5 (d) T = 10

Figure 5: Test III. Evolution of the followers’ density, f(x,w, t), in the
knowledge-opinion space. The uniform followers’ density evolves in time
towards a final state, which is biased towards the more credible leaders’
population for higher level of knowledge, whereas for lower level of knowledge
the populist and less credible leader is more attractive.
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[21] Düring B, Markowich P, Pietschmann JF, Wolfram M.-T. 2009 Boltz-
mann and Fokker-Planck equations modelling opinion formation in the
presence of strong leaders. Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 465(2112): 3687–
3708.
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