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ON INDECOMPOSABLE IDEALS OVER SOME ALGEBRAS

ALESSANDRO ARDIZZONI AND FABIO STUMBO

Abstract. In this paper we investigate a family of algebras endowed with a
suitable non-degenerate bilinear form that can be used to define two different
notions of dual for a given right ideal. We apply our results to the classification
of the right ideals and their duals in the cyclic group algebra, in the Taft algebra
and in another example of Hopf algebra arising as bosonization.
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Introduction

Fix a base field k. Recall that a linear code of length n ≥ 2 is a vector sub-
space of kn. A linear code C is called cyclic whenever (c0, c1, · · · , cn−1) ∈ C im-
plies (cn−1, c0, c1, · · · , cn−2) ∈ C. By considering the cyclic group algebra k 〈x〉 :=
k [X ] / (Xn − 1), where we set x := X + (Xn − 1), then the assignments

(0.1) k 〈x〉 ∋ c0 + c1x+ · · ·+ cn−1x
n−1 ←→ (c0, c1, · · · , cn−1) ∈ kn

yield a bijective correspondence between ideals in k 〈x〉 and cyclic codes of length
n. Moreover, if g is the generator polynomial for a cyclic code, then the dual code
corresponds, via the map (0.1), to the orthogonal of the ideal (g) with respect to
the usual scalar product defined by

〈
xi, xj

〉
= δi,j .

Since k 〈x〉 is the group algebra over the cyclic group of order n, i.e. 〈x〉 :={
1, x, . . . , xn−1

}
, it is in particular a Hopf algebra. This constitutes a link between

Key words and phrases. Cyclic codes, monomial bilinear forms, indecomposable ideals, orthog-
onals, Hopf algebras.
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the study of the ideals in Hopf algebras and Coding Theory. It is then natural to
look at a right ideal in a Hopf algebra as a sort of “Hopf code”. Following this idea,
a characterization of all projective indecomposable ideals in the Taft algebra was
given in [CGL].

The particular description of dual codes in the Hopf algebra k 〈x〉 places the
notion of orthogonal with respect to a suitable non-degenerate bilinear form as the
proper counterpart of the concept of dual code.

We will show that both the cyclic group algebra and the Taft algebra come out
to be endowed with a non-degenerate bilinear form that we will call monomial and
that can be used to compute explicitly the indecomposable right ideals and their
orthogonals.

More generally in this paper we investigate a family of algebras endowed with
a monomial non-degenerate bilinear form: this form can be used to define two
different notions of dual for a given right ideal. As an application, we recover the
classification of the right ideals and their duals in the cyclic group and Taft algebras
and provide the same classification for another example of Hopf algebra arising as
a bosonization in [CDMM].

The paper is organized as follows.
In Section 1 we introduce and characterize the concept of monomial bilinear

form on a finite-dimensional vector space V . This type of form is the main tool in
our paper. In Lemma 8, we study the behaviour of orthogonals of subspaces of V
spanned by a subset of the basis, with respect to a monomial bilinear form.

In Section 2 we introduce the k-algebra k (ω,N) presented by generators and
relations. It can also be introduced as a quotient of an Ore extension with zero
derivation. In Theorem 12 we provide an irredundant set of representatives of inde-
composable right ideals in k (ω,N). We also give an explicit description of all inde-
composable right ideals therein. This is of interest from the Coding Theory point
of view because isomorphic ideals needs not to give rise to equivalent codes. Then
we attach to k (ω,N) a particular bilinear form which we prove to be monomial in
Lemma 13. In Theorem 14, we describe explicitly the orthogonals, with respect to
this form, of the representatives of indecomposable right ideals mentioned above.

In Section 3 we turn our attention to Hopf algebras. A peculiar result in Hopf
theory is the Structure Theorem for Hopf Modules. Given a finite-dimensional Hopf
algebra H , the structure theorem yields a right H-linear isomorphism φ : H → H∗.
Surprisingly, φ comes out to generalize the map (0.1) giving the correspondence
mentioned above for cyclic codes; thus φ looks like a natural tool to generalize cyclic
codes to Hopf algebras. In general φ yields a bijective correspondence between right
ideals in H and right H-submodules of H∗ (which play the role of generalized cyclic
codes). We attach to φ a specific non-degenerate bilinear form and use it to define
two different notions of dual for a given right ideal: both comes out to be right
ideals as well. We investigate this form in the case when H or its antipode S
satisfy some properties, such as H being cosemisimple in Lemma 19.

In Section 4 we collect and investigate the main examples and applications of
our results.

First we recover the cyclic group algebra as a trivial case of k (ω,N) taking
ω = Id and N = 1 in Subsection 4.1.

Then, in Subsection 4.2, we apply our machinery to the Taft algebra. This is
achieved regarding the Taft algebra as an algebra of the form k (ω,N) in Lemma 24
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and showing in Lemma 26 that the non-degenerate bilinear form attached to φ is
one of the canonical monomial forms we investigated on k (ω,N). As a consequence
we recover all indecomposable right ideals for the Taft algebra in Theorem 28 and
the corresponding orthogonals in Theorem 29.

Finally in Subsection 4.3, we consider a 24-dimensional Hopf algebra arising as
a bosonization described in [CDMM]. Following the lines of the previous examples,
we show in Lemma 30 that also this algebra is of the form k (ω,N) and in Lemma
32 that the non-degenerate bilinear form attached to φ is one of the canonical
monomial forms we investigated on k (ω,N). Also in this case we obtain a complete
description of indecomposable right ideals in Theorem 34 and their orthogonals in
35. This classification is new at the best of our knowledge.

1. Bilinear forms

In this section we deal with general results concerning vector spaces.
Let V be a finite-dimensional vector space and let 〈−,−〉 : V × V → k be

a bilinear form on V . The form is non-degenerate if and only if the linear map
φ : V → V ∗, defined by setting φ (v) = 〈v,−〉 for every v ∈ V , is an isomorphism.

If 〈−,−〉 is non-degenerate there is a unique linear map γ : V → V such that

(1.1) 〈x, y〉 = 〈y, γ (x)〉 , for all x, y ∈ V,

The map γ is necessarily injective whence invertible as V is finite-dimensional. We
call it the Nakayama isomorphism (if V is an algebra and the form is associative,
i.e. 〈xy, z〉 = 〈x, yz〉 for all x, y, z ∈ V , then γ becomes an algebra automorphism
known as the Nakayama automorphism).

Given a linear subspace W of V , we define the left and right orthogonals of W
as the vector subspaces

W⊥L := {x ∈ V | 〈x, y〉 = 0, ∀y ∈W} ,

W⊥R := {x ∈ V | 〈y, x〉 = 0, ∀y ∈W} .

We will simply write W⊥when W⊥L = W⊥R . In particular this happens if, for
every x, y ∈ V , one has 〈x, y〉 = 0⇔ 〈y, x〉 = 0.

Lemma 1. [Ja, Section 6.1] Assume 〈−,−〉 is non-degenarate and let U and W be
subspaces of V . Then

• if U ⊆W then W⊥L ⊆ U⊥L and W⊥R ⊆ U⊥R ;

• (U +W )
⊥L = U⊥L ∩W⊥L and (U +W )

⊥R = U⊥R ∩W⊥R ;

• (U ∩W )
⊥L = U⊥L +W⊥L and (U ∩W )

⊥R = U⊥R +W⊥R ;
• dimkW

⊥L = dimkV − dimkW = dimkW
⊥R ;

• W⊥R⊥L = W = W⊥L⊥R .

Lemma 2. Let γ : V → V be a k-linear isomorphism such that (1.1) holds true.
Then W⊥R = γ

(
W⊥L

)
for every subspace W of V .

Proof. Let x ∈ V . Then γ (x) ∈W⊥R if and only if 〈y, γ (x)〉 = 0, for every y ∈W .
By (1.1) this is equivalent to 〈x, y〉 = 0, for every y ∈ W i.e. x ∈ W⊥L . Thus
γ (x) ∈ W⊥R if and only if x ∈ W⊥L . Since γ is invertible we conclude. �

As usual let us denote by Sn the group of permutations of the set {1, . . . , n} for
every n ≥ 1.
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Definition 3. Given a k-vector space V with basis B = {v1, . . . , vn}, a right
monomial transformation of V with respect to B (see e.g. [Wo, page 12]) is a
k-linear map T := T (σ, ki) : V → V such that T (vi) = kivσ(i) where σ ∈ Sn and
ki ∈ k \ {0} for every i ∈ {1, . . . , n}.

Lemma 4. The following are equivalent for a basis B = {v1, . . . , vn} of V .

(1) There is σ ∈ Sn and non-zero elements di ∈ k such that, for every i, j ∈
{1, . . . , n}, one has 〈vi, vj〉 = diδσ(i),j.

(2) There is σ ∈ Sn and non-zero elements di ∈ k such that φ (vi) = div
∗
σ(i),

where v∗j is the dual basis element defined by v∗j (vi) = δi,j.

(3) The matrix of 〈−,−〉 relative to B is of form D·P where D is a non-singular
diagonal matrix and P is a permutation matrix.

(4) The k-linear map T : kn → kn : ei 7→
∑n

j=1 〈vi, vj〉 ej (i.e. the linear

map attached to the matrix of 〈−,−〉 relative to B) is a right monomial
transformation of kn with respect to the canonical basis {e1, . . . , en}.

Proof. (1)⇔ (2) . This equivalence follows from the equalities φ (vi) (vj) = 〈vi, vj〉

and
(
div

∗
σ(i)

)
(vj) = diδσ(i),j .

(1)⇔ (3) . Take D = diag (d1, . . . , dn) and let P be the matrix whose (i, j)-entry
is given by δσ(i),j . Then the (i, j)-entry of D · P is exactly diδσ(i),j .

(1) ⇔ (4) . By definition T is a right monomial transformation if and only if
there is a permutation σ of {1, . . . , n} and non-zero elements di ∈ k such that
T (ei) = dieσ(i). �

Definition 5. We say that the bilinear form 〈−,−〉 ismonomial (with respect to B)
if one of the equivalent conditions of Lemma 4 holds. Note that a monomial bilinear
form is necessarily non-degenarate since φ (vi) = div

∗
σ(i) for every i ∈ {1, . . . , n}.

Remark 6. Let V be a vector space with basis B = {v1, . . . , vn}. The following are
equivalent for τ ∈ Sn and non-zero elements ci ∈ k.

(1) For every i, j ∈ {1, . . . , n}, one has 〈vi, vj〉 = ci
〈
vj , vτ(i)

〉
.

(2) One has that (1.1) holds true where γ := T (τ, ci) : V → V is the linear
map defined by vi 7→ civτ(i). Note that γ is necessarily invertible.

Remark 7. Let B = {v1, . . . , vn} be a basis of V and let W be a subspace of V .
Assume there is a right monomial transformation γ = T (τ, ci) such that (1.1) holds
true. By [Wo, Proposition 6.1], we have that γ is an isometry of V with respect to
the basis B. By Lemma 2 we also have W⊥R = γ

(
W⊥L

)
. Then W⊥R and W⊥L

are equivalent codes in the sense of [Wo, page 565].

In the following result we describe the connection between the left and right
orthogonals in case of vector subspaces spanned by suitable basis elements.

Lemma 8. Let B = {v1, . . . , vn} be a basis of V and let WB := Span
k
{vi | i ∈ B}

for some B ⊆ {1, . . . , n}.
1) Assume there is a right monomial transformation γ = T (τ, ci) such that (1.1)

holds true. Then W⊥R

B = W⊥L

τ(B) where τ (B) :=
{
vτ(i) | i ∈ B

}
.

2) If 〈−,−〉 is monomial with respect to B, then the hypothesis of 1) holds for
τ := σ2.

Proof. 1) From the assumption one gets 〈vi, v〉 = ci
〈
v, vτ(i)

〉
for every v ∈ V . Since

ci 6= 0 we deduce that 〈vi, v〉 = 0 if and only if
〈
v, vτ(i)

〉
= 0. Now v ∈W⊥R

B if and
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only if 〈vi, v〉 = 0 for every i ∈ B if and only if, by the foregoing,
〈
v, vτ(i)

〉
= 0 for

every i ∈ B if and only v ∈W⊥L

τ(B).

2) By Lemma 4, there exists a permutation σ of {1, . . . , n} and 〈vi, vj〉 = diδσ(i),j
for some non-zero di ∈ k. Then we can take ci :=

di

dσ(i)
and compute

〈
vj , civσ2(i)

〉
= cidjδσ(j),σ2(i) = cidjδσ(i),j = cidσ(i)δσ(i),j = diδσ(i),j = 〈vi, vj〉 .

�

Remark 9. In the case of the Taft algebra A we will provide a particular 〈−,−〉
which satisfies the conditions in Lemma 8 but not 〈x, y〉 = 0⇔ 〈y, x〉 = 0 for every
x, y ∈ A, cf. [Ja, Theorem 6.2].

The proof of the following result is straightforward. We keep it for the reader’s
sake.

Proposition 10. Let A be an algebra. Let V be a vector space endowed with a
non-degenarate bilinear form 〈−,−〉. Let W be a subspace of V .

1) If V has a left A-module structure, then V has (necessarily unique) right
A-module structures ⊳ and ◭ defined for every x, y ∈ V, c ∈ A, respectively, by

〈x ⊳ c, y〉 = 〈x, cy〉 and 〈x, y ◭ c〉 = 〈cx, y〉 .

Moreover {c ∈ A | γ (cx) = cγ (x) , ∀x ∈ V } = {c ∈ A | y ⊳ c = y ◭ c, ∀y ∈ V }.
In particular γ is left A-linear if and only if ⊳=◭.

2) If V has a right A-module structure, then V has (necessarily unique) left
A-module structures ⊲ and ◮ defined for every x, y ∈ V, c ∈ A, respectively, by

〈c ⊲ x, y〉 = 〈x, yc〉 and 〈x, c ◮ y〉 = 〈xc, y〉 .

Moreover {c ∈ A | γ (xc) = γ (x) c, ∀x ∈ V } = {c ∈ A | c ⊲ y = c ◮ y, ∀y ∈ V }.
In particular γ is right A-linear if and only if ⊲=◮.

For c ∈ A, we have

(V ⊳ c)
⊥R = (V ◭ c)

⊥L = Ann
•V (c) := {v ∈ V | cv = 0} ,

(c ⊲ V )
⊥R = (c ◮ V )

⊥L = AnnV•
(c) := {v ∈ V | vc = 0} .

Let a, b ∈ A be such that ab = 1. Then

(bW )
⊥L = W⊥L ⊳ a and (W ⊳ a)

⊥R = bW⊥R

(W ◭ a)
⊥L = bW⊥L and (bW )

⊥R = W⊥R ◭ a

(Wa)
⊥L = b ⊲ W⊥L and (b ⊲ W )

⊥R = W⊥Ra

(b ◮ W )
⊥L = W⊥La and (Wa)

⊥R = b ◮ W⊥R

Proof. We just prove the assertions involving ⊳, the other ones being similar. Since
φ : V → V ∗ is an isomorphism and V ∗ is a right A-module we can endow V with a
unique right A-module structure such that φ is right A-linear. The right A-linearity
of φ is equivalent to 〈x ⊳ c, y〉 = 〈x, cy〉, for every x, y ∈ V, c ∈ A.

We compute

〈x, y ◭ c〉 = 〈cx, y〉 = 〈y, γ (cx)〉 ;

〈x, y ⊳ c〉 = 〈y ⊳ c, γ (x)〉 = 〈y, cγ (x)〉 .
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Thenγ (cx) = cγ (x) for every x ∈ V if and only if y ◭ c = y ⊳ c for every y ∈ V .

From 〈x ⊳ c, y〉 = 〈x, cy〉 it is clear that (V ⊳ c)⊥R = Ann
•V (c).

Then

〈x ⊳ a, by〉 = 〈x, aby〉 = 〈x, y〉

so that x ∈ W⊥L if and only if x ⊳ a ∈ (bW )⊥L . Thus (bW )⊥L = W⊥L ⊳ a.

Similarly (W ⊳ a)
⊥R = bW⊥R . �

2. Indecomposable ideals in k (ω,N)

Let us consider the main example of algebra we will deal with. Let N ≥ 2 be an
integer, let S be a finite set of cardinality at least N and let ω be a permutation
on S.

Consider the k-algebra A = k (ω,N) generated by {es, x | s ∈ S} with relations,
for every s, t ∈ S,

eset = δs,tet, 1A =
∑

s∈S

es, xN = 0, esx = xeω(s).(2.1)

It is clear that A has basis

B := {xnes | 0 ≤ n ≤ N − 1, s ∈ S} = {etx
n | 0 ≤ n ≤ N − 1, t ∈ S} ,

where the last equality follows by the relation esx = xeω(s), for all s ∈ S.

Let R = k
[
x | xN = 0

]
be the subalgebra of A generated by x.

Set also H := k [es | s ∈ S].
Following the lines of [CGL], for s ∈ S, t = 0, . . . , N − 1 we set Ns,t := esx

tR.

Remark 11. The algebra A given above can be constructed as follows. Let H =
kS = Map (S, k) be the algebra of functions on the set S. Define es : S → k by
setting es (t) := δs,t. Then {es | s ∈ S} is a basis of H and for every s, t ∈ S, one
has

eset = δs,tet, 1A =
∑

s∈S

es.

Define the map ϕ : H → H by setting ϕ (es) := eω−1(s). It is easy to check that
ϕ is an algebra map. Consider the Ore extension H [X,ϕ] with zero derivation i.e.
H [X ] as an abelian group with multiplication induced by Xes = ϕ (es)X . Then
A = k (ω,N) is the quotient ofH [X,ϕ] modulo the two-sided ideal

〈
XN

〉
generated

by XN , with notation x := X +
〈
XN

〉
and by identifying es with its class modulo〈

XN
〉
.

Denote by L (MR) the set of right R-submodules of a given right R-module MR.
Let Lin (MR) denote the set of right R-submodules which are indecomposable. The
first assertion of the following result was already proved for Taft algebras in [CGL,
Section 2], see also [CVZ, Theorem 2.5].

Theorem 12. Consider the algebra A = k (ω,N) and let R be the subalgebra of
A generated by x. Then the Ns,t’s form an irredundant set of representatives of
Lin (AA) and

Lin (AA) = {(1 + rx)Ns,t | r ∈ R, s ∈ S, 0 ≤ t ≤ N − 1} .
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Proof. We have already observed that A has basis

B := {xnes | 0 ≤ n ≤ N − 1, s ∈ S} = {etx
n | 0 ≤ n ≤ N − 1, t ∈ S} .

Let us show that A is a serial ring. Since 1A =
∑

s∈S es and the es’s are
orthogonal idempotents, we have that A =

⊕
s∈S esA. Thus each direct summand

esA of A is projective too. By (2.1), we deduce esA = esR and hence L (esAA) =
L (esRR). The map

gs : R→ esR : r 7→ esr

is an isomorphism of right R-modules so that it induces a bijection

L (RR)→ L (esRR) : I 7→ gs (I) = esI.

Since L (RR) = {x
tR | 0 ≤ t ≤ N} we get

L (esAA) = L (esRR) =
{
esx

tR | 0 ≤ t ≤ N
}
= {Ns,t | 0 ≤ t ≤ N − 1} ∪ {0} .

Since Ns,t ⊆ Ns,w for t ≥ w, we deduce that L (esAA) is totally ordered. Thus esA
is uniserial for every s ∈ S and hence A is a right serial ring. Similarly one proves
it is a left serial ring. Thus it is a serial ring as claimed.

Note that, since uniserial implies indecomposable, we get that

Lin (esAA) = L (esAA) \ {0} = {Ns,t | 0 ≤ t ≤ N − 1} .

Let M ∈ Lin (AA) . Apply [Fa, Theorem 3.29] to P = AA. Then there is a
decomposition AA = P1⊕ · · ·⊕Pl into uniserial projective modules such that M =
(M ∩ P1)⊕· · ·⊕(M ∩ Pl) . Since M is indecomposable, we getM = M∩Pw for some
w. Hence M ⊆ Pw. Since each Pi is uniserial, it is in particular indecomposable.

Note that EndA (esA) ∼= esAes
(2.1)
= esRes. Since R = k

[
x | xN = 0

]
is a local

ring, we have that esR is a local right R-module so that, by [Fa, Theorem 1.11], we
get that esRes is a local ring.

By Krull-Schmidt-Remak-Azumaya Theorem (cf. [Fa, Theorem 2.12]), the two
decompositions

⊕
s∈S esA = AA = P1 ⊕ · · · ⊕ Pl are necessarily isomorphic so that

Pw
∼= esA for some s ∈ S. Let fw : esA→ Pw this isomorphism of right A-modules.
We have fw (es) = fw (eses) = fw (es) es = Aes = Res so that we can write

fw (es) = ues for some u ∈ R. We can assume that u has the form u = (1 + rx) xt

for some w so that fw (es) = (1 + rx) xtes. Thus

Pw = fw (esA) = fw (es)A = (1 + rx) xtesA = (1 + rx) xtesR

= (1 + rx) eω−t(s)x
tR = (1 + rx)Nω−t(s),t.

Via fw we have that Pw
∼= esA = esR = Ns,0. Thus

N = dimk (Ns,0) = dimk (Pw)

= dimk

(
(1 + rx)Nω−t(s),t

)
= dimk

(
Nω−t(s),t

)
= N − t

so that t = 0 and hence Pw = (1 + rx)Ns,0 and fw (es) = (1 + rx) es. Hence
fw (a) = (1 + rx) a for every a ∈ esA.

The isomorphism fw induces a bijection

Lin (esAA)→ Lin ((Pw)A) : I 7→ fw (I) = (1 + rx) I.

Since M is indecomposable and M ⊆ Pw then M ∈ Lin ((Pw)A) so that its comes
out to be isomorphic to an element of Lin (esAA) = {Ns,t | s ∈ S, 0 ≤ t ≤ N − 1} .
This proves that the Ns,t’s form an irredundant set of representatives of Lin (AA) .
Moreover M = (1 + rx)Ns,t for some s ∈ S, 0 ≤ t ≤ N − 1.
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We have so proved that Lin (AA) ⊆ {(1 + rx)Ns,t | r ∈ R, s ∈ S, 0 ≤ t ≤ N − 1} .
For the other inclusion, since (1 + rx)Ns,t

∼= Ns,t and Ns,t ∈ Lin (esAA), we get
that (1 + rx)Ns,t is indecomposable. �

In the rest of this section we fix a permutation µ on S, a permutation ν on
{0, 1, . . . , N − 1} and define a bilinear form 〈−,−〉 : A × A → k by setting, for
s, t ∈ S, 0 ≤ m,n ≤ N − 1,

(2.2) 〈esx
m, etx

n〉 := d(s,m)δµ(s),tδν(m),n

where d(s,m) ∈ k \ {0} for all s,m.

Lemma 13. The form 〈−,−〉 is monomial with respect to the basis

B = {esx
m | s ∈ S, 0 ≤ m ≤ N − 1} .

Moreover the Nakayama isomorphism γ is given by

γ (esx
m) =

d(s,m)

d(µ(s),ν(m))
eµ2(s)x

ν2(m) ∀s,m.

Proof. Set v(s,m) := esx
m. Then

〈
v(s,m), v(t,n)

〉
= d(s,m)δσ((s,m)),(t,n) where σ is

the permutation defined by σ := µ× ν : (s,m) 7→ (µ (s) , ν (m)).
Thus, by definition, the form 〈−,−〉 is monomial with respect to B. By Lemma

8, there is a right monomial transformation γ = T
(
τ, c(s,m)

)
(which is necessarily

the Nakayama isomorphism) such that (1.1) holds true for τ := σ2 = µ2 × ν2 and

c(s,m) =
d(s,m)

dσ((s,m))
=

d(s,m)

d(µ(s),ν(m))
.

Thus γ
(
v(s,m)

)
= c(s,m)vτ((s,m)) and hence γ (esx

m) =
d(s,m)

d(µ(s),ν(m))
eµ2(s)x

ν2(m). �

Apply Proposition 10 to V = A and 〈−,−〉 as above. Then A has a unique right
A-module structure ⊳ defined by 〈x ⊳ c, y〉 = 〈x, cy〉, for every x, y, c ∈ A and a
unique right A-modules structure ◭ defined by 〈x, y ◭ c〉 = 〈cx, y〉.

Moreover, if a ∈ A is a unit, for every subspace W of A one has

(aW )⊥L = W⊥L ⊳ a−1 and (aW )⊥R = W⊥R ◭ a−1.

In view of Theorem 12, we know that

Lin (AA) = {(1 + rx)Ns,t | r ∈ R, s ∈ S, 0 ≤ t ≤ N − 1}

so that we can compute the orthogonals of all indecomposable right ideals as

((1 + rx)Ns,t)
⊥L = N⊥L

s,t ⊳ (1 + rx)−1(2.3)

((1 + rx)Ns,t)
⊥R = N⊥R

s,t ◭ (1 + rx)
−1

.(2.4)

It remains to compute N⊥L
s,m and N⊥R

s,m.

Theorem 14. Let s ∈ S and m be an integer such that 0 ≤ m ≤ N − 1. We have

N⊥R

s,0 = N⊥L

µ2(s),0 =
⊕

t6=µ(s)

Nt,0.

Assume ν (m) := N − 1−m for all m. Then

N⊥R
s,m = N⊥L

µ2(s),m and N⊥R
s,m = N⊥R

s,0 ⊕Nµ(s),N−m.
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Proof. Note that Ns,0 := esR has basis B = {esx
m | 0 ≤ m ≤ N − 1} which is a

subset of the basis B = {esx
m | s ∈ S, 0 ≤ m ≤ N − 1}. In view of Lemma 13, this

basis satisfies the conditions of Lemma 8 for τ = µ2 × ν2, so that

τ (B) =
{
eµ2(s)x

ν2(m) | 0 ≤ m ≤ N − 1
}
=
{
eµ2(s)x

n | 0 ≤ n ≤ N − 1
}

and hence N⊥R

s,0 = W⊥R

B = W⊥L

τ(B) = N⊥L

µ2(s),0.

By definition, we have

〈esx
m, etx

n〉 := d(s,m)δµ(s),tδν(m),n

so if t 6= µ (s) then Nt,0 ⊆ N⊥R

s,0 and hence
⊕

t6=µ(s) Nt,0 ⊆ N⊥R

s,0 . Now, counting

dimensions we get

dimk


 ⊕

t6=µ(s)

Nt,0


 =


 ∑

t6=µ(s)

N


 = N (|S| − 1) = N |S| −N

= N |S| − dimk Ns,0 = dimk N
⊥R

s,0

which implies the equality whence N⊥R

s,0 =
⊕

t6=µ(s) Nt,0.

Assume ν (m) := N − 1−m for all m (note that ν2 = Id). Since Ns,m := esx
mR

has basis B = {esx
t | m ≤ t ≤ N − 1}, we get

τ (B) =
{
eµ2(s)x

ν2(t) | m ≤ t ≤ N − 1
}
=
{
eµ2(s)x

t | m ≤ t ≤ N − 1
}

and hence N⊥R
s,m = N⊥L

µ2(s),m.

We now compute N⊥R
s,m.

If t = µ (s) then if n ≥ ν (m) + 1 = N − m we get 〈etx
n, esx

m〉 = 0, so

Nµ(s),N−m ⊆ N⊥R
s,m. Since N⊥R

s,0 =
⊕

t6=µ(s) Nt,0 we have that N⊥R

s,0 +Nµ(s),N−m =

N⊥R

s,0 ⊕Nµ(s),N−m and hence

N⊥R

s,0 ⊕Nµ(s),N−m ⊆ N⊥R
s,m.

Now, counting dimensions we get

dimk

(
N⊥R

s,0 ⊕Nµ(s),N−m

)
= (N |S| −N) +m = N |S| −N +m

= N |S| − dimk Ns,m = dimk N
⊥R
s,m

which implies the equality whence N⊥R
s,m = N⊥R

s,0 ⊕Nµ(s),N−m as desired. �

3. Ideals and their orthogonals for Hopf algebras

From now on, H will always be a finite-dimensional Hopf algebra with
antipode S.

Consider H∗ as a right Hopf module with action ↽ defined by (f ↽ h) (l) :=
f (lS (h)). Then, by [Sw, Corollary 5.1.6 and Theorem 5.1.3], we have that S is
invertible, the space

∫
l
(H∗) of left integrals in H∗ is one-dimensional (recall that

λ ∈ H∗ belongs to
∫
l
(H∗) if and only if

∑
h1λ(h2) = 1Hλ(h) for all h ∈ H) and

the map ∫

l

(H∗)⊗H → H∗ : f ⊗ h 7→ (f ↽ h)
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is bijective. Since
∫
l
(H∗) is one-dimensional, we can choose a non-zero integral

λ ∈ H∗ and the map

φ : H → H∗ : h 7→ (λ ↽ h)

is invertible, see [DNR, page 306]. The map φ is right H-linear:

φ (hh′) = λ ↽ (hh′) = (λ ↽ h) ↽ h′ = φ (h) ↽ h′.

Note that the structure of right H-module on H∗ is not the canonical one ↼ given
by (f ↼ h) (l) = f (lh).

Through φ one has a bijective correspondence between right ideals in H and
right H-submodules of H∗.

Remark 15. Set t := φ−1 (ε) ∈ H . By [DNR, Section 7.4], we have that t is a right
integral in H (i.e. th = tε (h) for every h ∈ H) and λ (t) = 1. Moreover

φ−1 (f) =
∑

t1f (t2) , for every f ∈ H∗.

Note that given any right integral t′ in H such that λ (t′) = 1 then S (t′) is a
left integral ([Ra, Exercise 10.5.1, page 305]) and λS (t′) = λ (t′) (by the left-right
handed version of [Ra, Exercise 10.5.3, page 311]) so that φ (t′) (y) = λ (yS (t′)) =
λ (ε (y)S (t′)) = ε (y)λ (S (t′)) = ε (y)λ (t′) = ε (y) and hence φ (t′) = ε. As a
consequence t′ = φ−1 (ε) = t.

We now are going to apply the results of Section 1 in the case V is a Hopf algebra
H. In the setting of Section 3, for every x, y ∈ H , we set

(3.1) 〈x, y〉 := φ (x) (y) = (λ ↽ x) (y) = λ [yS (x)] .

Note that, since φ is an isomorphism and H is finite-dimensional, the bilinear
form 〈−,−〉 is non-degenerate.

For x, y, h ∈ H , we have

(3.2) 〈xh, y〉 = λ [yS (xh)] = λ [yS (h)S (x)] = 〈x, yS (h)〉

and

(3.3)
∑
〈x1, y〉x2 =

∑
λ [yS (x1)]x2

(∗)
=
∑

y1λ [y2S (x)] =
∑

y1 〈x, y2〉

where in (∗) we used [DNR, Lemma 5.1.4].

The Frobenius bilinear form b : H × H → k is defined by setting b (x, y) :=(
φ ◦ S−1

)
(y) (x) = λ (xy) for every x, y ∈ H . This bilinear form is non-degenerate

because φ ◦ S−1 is invertible. Consider the associated Nakayama automorphism
η : H → H (we know that it is an algebra map because H is an algebra and the
form is associative). Note that η is uniquely determined by the equality b (x, y) =
b (y, η (x)) i.e. λ (xy) = λ (yη (x)) for every x, y ∈ H .

Lemma 16. In the setting of Proposition 10, take V the underlying algebra of H
with left and right regular actions. Then, for every h, x ∈ H, we have

h ⊲ x = xS−1 (h) and h ◮ x = xS (h) ,

x ⊳ h = S−1 (η (h)) x and x ◭ h = η−1 (S (h))x.

Moreover Ann
•H (h) =

(
η−1 (S (h))

)⊥L
and AnnH•

(h) = (S(h))
⊥L for every h ∈

H.
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Proof. By definition of ⊲,◮ and (3.2), we have

〈h ⊲ x, y〉 = 〈x, yh〉 =
〈
xS−1 (h) , y

〉
and 〈y, h ◮ x〉 = 〈yh, x〉 = 〈y, xS (h)〉 .

Since the form is non-degenerate, we get h ⊲ x = xS−1 (h) and h ◮ x = xS (h).
For every x, y, h ∈ H ,

〈x ⊳ h, y〉 = 〈x, hy〉 = λ (hyS (x)) = λ (yS (x) η (h)) =
〈
S−1 (η (h))x, y

〉

〈y, x ◭ h〉 = 〈hy, x〉 = λ (xS (y)S (h)) = λ
(
η−1 (S (h))xS (y)

)
=
〈
y, η−1 (S (h))x

〉

so that we obtain x ⊳ h = S−1 (η (h))x and x ◭ h = η−1 (S (h))x.
By Proposition 10, we have

(
η−1 (S (h))

)⊥L
= (H ◭ h)⊥L = Ann

•H (h)

(S(h))
⊥L = (h ◮ H)

⊥L = AnnH•
(h) .

�

Lemma 17. If I is a right ideal of H, then I⊥R and I⊥L are right ideals.

Proof. Given x ∈ I⊥L , y ∈ I and h ∈ H , we get 〈xh, y〉 = 〈x, yS (h)〉 = 0, as
yS (h) ∈ I, and hence xh ∈ I⊥L , so I⊥L is a right ideal.

Let now x ∈ I⊥R , y ∈ I and h ∈ H . Since H is finite-dimensional, S is surjective
so there exists an h′ ∈ H such that h = S (h′); we get 〈y, xh〉 = 〈y, xS (h′)〉 =
〈yh′, x〉 = 0 since yh′ ∈ I and hence xh ∈ I⊥R , so I⊥R is a right ideal. �

Remark 18. Let H be a Hopf algebra with basis B = {v1, . . . , vn}. Let γ : H → H
be a k-linear isomorphism such that (1.1) holds true. Then λS (x) = 〈x, 1〉 =
〈1, γ (x)〉 = λγ (x) so that

(3.4) λS = λγ.

Lemma 19. Let H be a Hopf algebra with basis B = {v1, . . . , vn}.

(1) Assume there is a right monomial trasformation γ such that (1.1) holds
true as in Remark 6. Then γ = γ (1)S2.

(2) Assume H is cosemisimple. If, for every i ∈ {1, . . . , n}, S2 (vi) = civi,
then for every i, j ∈ {1, . . . , n}, 〈vi, vj〉 = ci 〈vj , vi〉. Moreover the map
γ := T (Id, ci) of Remark 6 is exactly S2.

Proof. (1). We compute, for every x, y ∈ H

〈y, γ (x)〉
(1.1)
= 〈x, y〉

(3.2)
= 〈1, yS (x)〉

(1.1)
= 〈yS (x) , γ (1)〉

(3.2)
=
〈
y, γ (1)S2 (x)

〉
.

Since 〈−,−〉 is a non-degenerate we then get γ (x) = γ (1)S2 (x) for every x ∈ H .
(2) . Note that, in our setting, 〈x, y〉 = λ [yS (x)] for some non-zero integral λ.

Since H is cosemisimple, it has a total integral Λ. Since
∫
l
(H∗) is one-dimensional,

there is k ∈ k such that λ = kΛ. Thus, from ΛS = Λ, we obtain λS = kΛS = kΛ =
λ. Since S is invertible and S2 (vi) ∈ kvi, there is a non-zero element ci ∈ k such
that S2 (vi) = civi. Hence, for every x, y ∈ H , we have

ci 〈vj , vi〉 = ciλ [viS (vj)] = λ
[
S2 (vi)S (vj)

]

= λS [vjS (vi)] = λ [vjS (vi)] = 〈vi, vj〉 .

By definition γ (vi) = civi = S2 (vi). �
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As a consequence we recover the following well-known result.

Corollary 20. Let H be a finite-dimensional Hopf algebra.

(1) If 〈−,−〉 : H ⊗H → k is symmetric, then H is involutory (i.e. S2 = IdH).
(2) Assume H is cosemisimple. If H is involutory, then 〈−,−〉 : H ⊗H → k

is symmetric.

Remark 21. Let H be a finite-dimensional involutory Hopf algebra (e.g. H is either
commutative or cocommutative, see [DNR, Corollary 4.2.8]). Then H is semisimple
and H cosemisimple if and only if chark ∤ dimkH , see [LR, Corollary 2.6].

Lemma 22. Let H be a finite-dimensional Hopf algebra with basis B = {v1, . . . , vn}
and let I be a right ideal of H. Then S−1 (AnnH (I)) ⊆ I⊥L , where S−1 denotes
the composition inverse of the antipode.

Assume there is a right monomial transformation γ such that (1.1) holds true.
If I⊥L is a two-sided ideal, then equality holds.

Proof. Let x ∈ AnnH (I) := {h ∈ H | yh = 0, ∀y ∈ I}. Then, for every y ∈ I, we

have
〈
S−1 (x) , y

〉 (3.2)
= 〈1, yx〉 = 0 so that S−1 (x) ∈ I⊥L .

Let us prove the last part of the statement. Let x ∈ I⊥L . Then for every z ∈ H ,
we have

〈yS (x) , z〉
(1.1)
=
〈
γ−1 (z) , yS (x)

〉 (3.2)
=
〈
γ−1 (z)x, y

〉 γ−1(z)x∈I⊥L

= 0.

Since 〈−,−〉 is a non-degenerate, we get that yS (x) = 0 and hence S (x) ∈
AnnH (I). Thus S

(
I⊥L

)
⊆ AnnH (I). Applying S−1 on both sides we obtain

I⊥L ⊆ S−1 (AnnH (I)). �

4. Examples and applications

In the present section, for every n ≥ 2 and a, b ∈ Z, we use the notation

δ≡n

a,b :=

{
1, if a ≡n b
0, otherwise

4.1. Cyclic group algebra . The aim of this section is to show how our treat-
ment specializes to classical cyclic codes in case of the cyclic group algebra H :=
k [X ] / (Xn − 1) = k 〈x | xn = 1〉 where x := X + (Xn − 1). 1

Consider λ ∈ H∗ defined on generators by λ
(
xi
)
:= δi,0 for 0 ≤ i ≤ n − 1, see

[DNR, Example 5.2.9-2)]. Now t =
∑n−1

i=0 xi is both a left and right integral (see
[Sw, Examples 1)]), and λ (t) = 1 so that, by Remark 15,

φ−1 (f) =
∑

t1f (t2) =

n−1∑

i=0

xif
(
xi
)
, for every f ∈ H∗.

In this specific case we can express φ explicitly as follows:

φ : H → H∗ : c0 + c1x+ · · ·+ cn−1x
n−1 7→

∑
ciφ
(
xi
)

1Note that here we use the notation x for the generator because it is standard in Code Theory.
Later on, dealing with Taft algebras, we will use the notation g for the same element reminding
it is a group-like element.
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where φ
(
xi
)
∈ H∗ is defined by φ

(
xi
)
(xj) = λ

(
xj−i

)
= δi,j , ∀j ∈ {0, . . . , n− 1}

so that φ
(
x0
)
, . . . , φ

(
xn−1

)
is the dual basis of 1, . . . , xn−1.

Consider the isomorphism α : H∗ → kn : f 7→ (f0, f1, · · · , fn−1) where fi :=
f
(
xi
)
. It permits to regard the elements of H∗ as code words, although it strictly

depends on the chosen basis for H. In view of [Ab, 2.2, page 70], α is an algebra
map, where H∗ carries the convolution product. The right H-module structure of
H∗ given by ↽ induces, via α, a right H-module structure on kn. We want to give
this structure explicitly. To this aim, for every f ∈ H∗ and 0 ≤ i ≤ n − 1, let
fi := f

(
xi
)
. In other words α (f) = (f0, f1, · · · , fn−1). We compute

(f ↽ x)i = (f ↽ x)
(
xi
)
= f

(
xi−1

)
=

{
fn−1 if i = 0,

fi−1 if 1 ≤ i ≤ n− 1

so that α (f ↽ x) = (fn−1, f0, f1, · · · , fn−2) . Therefore the unique right H-module
structure on kn which makes α a morphism of right H-modules is given by

(4.1) (f0, f1, · · · , fn−1) ↽ x := (fn−1, f0, f1, · · · , fn−2) .

Thus we recover the right H-linear bijection (0.1) as

α ◦ φ : k 〈x〉 → kn : c0 + c1x+ · · ·+ cn−1x
n−1 7→ (c0, c1, · · · , cn−1) .

This map gives a bijective correspondence between right ideals of H and right
H-submodules of kn, with respect to the action ↽ . By formula (4.1), these sub-
modules are exactly the cyclic codes of length n.

Note also that

(4.2)
〈
xi, xj

〉
= λ

[
xjS

(
xi
)]

= λ
(
xj−i

)
= δi,j

so that 〈−,−〉 : H ⊗ H → k is symmetric,
{
1, x, x2, . . . , xn−1

}
is an orthonormal

basis and through (0.1), it corresponds to the scalar product on kn. Since the
bilinear form is symmetric the left and the right orthogonal coincide.

Let q ∈ k be a primitive n-th root of unity.
Note that k 〈x〉 identifies with the group algebra kG over the cyclic group G :=

〈x〉 with x of order n, as above. The existence of a primitive n-th root of unity
implies char (k) ∤ n so that, for every t ∈ Z, we can consider

et :=
1

n

n−1∑

i=0

qtixi.

It is well-known that the et’s form a complete set of orthogonal idempotents in kG.
This fact is the main tool used in [CGL].

As a consequence k 〈x〉 can be regarded as the algebra k (ω,N) where ω = Id
and N = 1 with basis {et | 0 ≤ t ≤ n− 1}.

For 0 ≤ s, t ≤ n− 1, we have

〈es, et〉 =

〈
1

n

n−1∑

i=0

qsixi,
1

n

n−1∑

j=0

qtjxj

〉
(4.2)
=

1

n2

n−1∑

i=0

q(s+t)i =
1

n
δ≡n

s+t,0.

In particular the form 〈−,−〉 is as in (2.2), where µ (t) := [−t]n , ν (0) := 0 and
d(s,0) :=

1
n
. Here [t]n denotes the remainder modulo n of t. As a consequence 〈−,−〉

is monomial with respect to B = {es | 0 ≤ s ≤ n− 1}. Since the form is symmetric,
we get that the Nakayama isomorphism γ is the identity. Note also that, since k 〈x〉
is commutative, also the Nakayama automorphism η is the identity.
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By Lemma 16 and since S−1 = S, we have x ⊳ h = S (h)x = x ◭ h.
By Theorem 12, we have Lin (AA) = {Ns,0 = esk | 0 ≤ s ≤ n− 1}.
By Theorem 14, we have N⊥

s,0 =
⊕

t6=µ(s) Nt,0 =
⊕

t6≡n−s Nt,0.

Remark 23. Consider a cyclic code I and its dual I⊥. We want to show that
I⊥ is, indeed, the classical orthogonal code. Consider the generator polynomial
g (X) = g0 + g1X + · · ·+ gs−1X

s−1 +Xs for the code I so that I = (g (x)). Note
that d := dimI = n− s as a k-basis for I is given by xig (x) , 0 ≤ i ≤ n− s− 1. Let

h (X) := h0 + h1X + · · ·+ hd−1X
d−1 +Xd

be the unique monic polynomial such that g (X)h (X) = Xn − 1, i.e. the parity-
check polynomial. Remark that h(0) = h0 6= 0 and g(x)h(x) = 0. By Lemma 16
we have

(S(h(x)))⊥L = AnnH•
(h(x)) = (g (x)) = I.

Since ⊥L=⊥R we get I⊥ = (S(h(x)))
⊥⊥

= (S(h(x))). Now define

g⊥(X) = h−1
0 Xdh(X−1) ∈ k [X ] .

We have deg g⊥(X) = d = deg h(X) and g⊥(x) = h−1
0 xdS(h(x)) ∈ I⊥ thus(

g⊥(x)
)
⊆ I⊥. Since dim

(
g⊥(x)

)
= n − deg g⊥(X) = n − d = s = dim

(
I⊥
)
,

we can conclude

I⊥ = (S(h(x))) =
(
g⊥(x)

)

so I⊥ is the classical dual code.

4.2. Taft algebra . Let us consider the main example investigated in [CGL]. Let
N ≥ 2 be an integer and let q ∈ k be a primitive N -th root of unity. Consider the
Taft algebra

A = k
〈
g, x | gN = 1, xN = 0, gx = qxg

〉
.

It is a Hopf algebra in a unique way such that

∆ (g) = g ⊗ g and ∆ (x) = g ⊗ x+ x⊗ 1.

Note that A has basis {xnga | 0 ≤ n, a ≤ N − 1} . From the structure above it fol-
lows that S (g) = g−1 and S (x) = −g−1x = −q−1xg−1.

Let R = k
[
x | xN = 0

]
be the subalgebra of A generated by x.

Set G := 〈g〉 the group of group-like elements in A and set H := kG. For the
reader’s sake we include in the following lemmas the proofs of main facts that will
be used later on.

Lemma 24. The following equalities hold for every m ∈ N, t, a ∈ Z,

etx
m = xmet+m, gaet = etg

a = q−taet(4.3)

S (et) = e−t, S (xm) = (−1)
m
q

−m(m+1)
2 xmg−m, S2 (xm) = q−mxm.(4.4)

A basis of A is given by {xmes | 0 ≤ s,m ≤ N − 1}.
As a consequence A = k (ω,N) as in Section 2 where the permutation ω of the

indexes of the es’s is defined by ω (s) := s+ 1 modulo N .
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Proof. We compute, for every m ∈ N, t, a ∈ Z,

etx
m =

1

N

N−1∑

i=0

qtigixm =
1

N

N−1∑

i=0

q(t+m)ixmgi = xmet+m,

etg
a =

1

N

N−1∑

i=0

qtigi+a =
1

N

N−1∑

i=0

q−taqt(i+a)gi+a = q−taet,

S (et) =
1

N

N−1∑

a=0

qtag−a =
1

N

N−1∑

a=0

q(−t)(−a)g−a = e−t,

S (xm) = S (x)
m

=
(
−g−1x

)m
= (−1)

m
q

−m(m+1)
2 xmg−m,

S2 (xm) =
(
S
(
−g−1x

))m
=
(
−S (x)S

(
g−1

))m
=
(
g−1xg

)m
= q−mxm.

Since etg
a = gaet, we get the thesis. These equations guarantee that the set

{xmes | 0 ≤ s,m ≤ N − 1} is a basis of A. �

Lemma 25. We have
∫
l
(A∗) = kλ where

λ (xmga) = δm,N−1δ
≡N

a,1 for all m ∈ N, a ∈ Z,

λ (xmes) =
1

N
qsδm,N−1 for all m ∈ N, s ∈ Z.(4.5)

Proof. One checks that
∫
l
(H∗) = kλ where λ (xmga) = δm,N−1δa,1 for 0 ≤ m, a ≤

N − 1. From this expression for λ one easily deduces the general one for m ∈ N, a ∈
Z. From it we get

λ (xmes) = λ

(
xm 1

N

N−1∑

i=0

qsigi

)
=

1

N

N−1∑

i=0

qsiλ
(
xmgi

)

=
1

N

N−1∑

i=0

qsiδm,N−1δi,1 =
1

N
qsδm,N−1.

�

We now compute explicitly our bilinear form in two slightly different basis, the
first one needed in the proof of Theorem 29.

Lemma 26. We have

〈etx
n, esx

m〉 =
1

N
(−1)

n
q

−(n+2t)(n+1)
2 δ≡N

s+t,1δm+n,N−1;

〈xveb, x
uea〉 =

1

N
(−1)

v
q

(v−2b)(v+1)
2 δ≡N

a+b,0δu+v,N−1.

In particular the form 〈−,−〉 is as in (2.2), where µ (t) := [1− t]N , ν (n) :=

N − 1 − n and d(s,m) := 1
N
(−1)

m
q

−(m+2s)(m+1)
2 . Here [t]N denotes the remain-

der modulo N of t. As a consequence 〈−,−〉 is monomial with respect to B =
{esx

m | 0 ≤ s,m ≤ N − 1}. Moreover the Nakayama isomorphism γ is given by
γ (h) = hg, for every h ∈ A.

Proof. We compute

esx
mS (etx

n) = esx
mS (xn)S (et)

= esx
m (−1)

n
q

−n(n+1)
2 xng−ne−t
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= (−1)
n
q

−n(n+1)
2 esx

m+ng−ne−t

= (−1)n q
−n(n+1)

2 −tnesx
m+ne−t

= (−1)
n
q

−n(n+1)
2 −tnxm+nes+m+ne−t

= (−1)
n
q

−n(n+1)
2 −tnδ≡N

s+t+m+n,0x
m+ne−t.

Thus we have

〈etx
n, esx

m〉 = λ [esx
mS (etx

n)]

= (−1)n q
−n(n+1)

2 −tnδ≡N
s+t+m+n,0λ

(
xm+ne−t

)

= (−1)n q
−n(n+1)

2 −tn 1

N
q−tδ≡N

s+t+m+n,0δm+n,N−1

=
1

N
(−1)

n
q

−(n+2t)(n+1)
2 δ≡N

s+t+N−1,0δm+n,N−1

=
1

N
(−1)

n
q

−(n+2t)(n+1)
2 δ≡N

s+t,1δm+n,N−1.

Moreover

〈xveb, x
uea〉 = 〈eb−vx

v, ea−ux
u〉 =

1

N
(−1)

v
q

−(v+2b−2v)(v+1)
2 δ≡N

a−u+b−v,1δu+v,N−1

=
1

N
(−1)

v
q

(v−2b)(v+1)
2 δ≡N

a+b,0δu+v,N−1.

By the foregoing, it is clear that 〈−,−〉 is as in 2.2, where µ (t) := [1− t]N and
ν (n) := N − 1− n.

Thus, by Lemma 13 the form 〈−,−〉 is monomial with respect to the basis
B = {esx

m | 0 ≤ s,m ≤ N − 1}. Moreover, γ is given by

γ (esx
m) =

d(s,m)

d(µ(s),ν(m))
eµ2(s)x

ν2(m) ∀s,m.

Since µ2 = Id = ν2 we obtain γ (esx
m) =

d(s,m)

d(µ(s),ν(m))
esx

m. We compute

d(s,m)

d(µ(s),ν(m))
=

1
N
(−1)

m
q

−(m+2s)(m+1)
2

1
N
(−1)

N−1−m
q

−(N−1−m+2−2s)(N−1−m+1)
2

= (−1)
N−1

q
−(m+2s)(m+1)+(N−m+1−2s)(N−m)

2

= (−1)
N−1

q
N−2m−2s−2Nm−2Ns+N²

2 = (−1)
N−1

q−
N(N+1)

2 −(m+s)

= (−1)
N−1

(−1)
N−1

q−(m+s) = q−(m+s).

where we note that xN − 1 =
∏N−1

i=0

(
x− qi

)
implies −1 = (−1)

N
q

N(N−1)
2 and

hence q−
N(N+1)

2 = (−1)
N−1

. Thus γ (esx
m) = q−(m+s)esx

m = q−mesgx
m = esx

mg
and hence γ (h) = hg for every h ∈ H . �

Lemma 27. In the setting of Proposition 10, take V the Taft algebra A with left
regular action. Then ⊳=◭ and, for every x ∈ H, r ∈ R, we have x ⊳ r = S (r) x.

Proof. By Lemma 26, we have that the Nakayama isomorphism γ is given by γ (h) =
hg, for every h ∈ A. Thus γ is left A-linear. By Proposition 10, we have that ⊳=◭.
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By (3.4), we have that

λS (xnet) = λγ (xnet) = λ (xnetg)
(4.3)
= q−tλ (xnet)

(4.5)
= =

1

N
δn,N−1.

We compute

λ (xuesx
m) = λ (es−ux

uxm)

= λ
(
es−ux

m+u
)

=
1

N
qs+mδm+u,N−1

= q−u 1

N
qs+m+uδm+u,N−1

= q−uλ
(
esx

m+u
)

= λ
(
esx

mq−uxu
)

(4.4)
= λ

(
esx

mS2 (xu)
)

which implies λ (rh) = λ
(
hS2 (r)

)
for every r ∈ R, h ∈ A. As a consequence, if η

is the Nakayama automorphism, we get η (r) = S2 (r) for every r ∈ R. By Lemma
16we have x ⊳ r = S−1 (η (r))x = S (r) x. �

We are now ready to compute the indecomposable ideals and their orthogonals.
Denote by L (MR) the set of right R-submodules of a given right R-module MR.

Let Lin (MR) denote the set of right R-submodules which are indecomposable.

Theorem 28. Consider the Taft Hopf algebra

A = k
〈
g, x | gN = 1, xN = 0, gx = qxg

〉

and let R be the subalgebra of A generated by x. As in [CGL], for s, t = 0, . . . , N−1
set Ns,t := esJ

t = esx
tR. Then the Ns,t’s form an irredundant set of representatives

of Lin (AA) and

Lin (AA) = {(1 + rx)Ns,t | r ∈ R, 0 ≤ s, t ≤ N − 1} .

Proof. By Lemma 24 A is of the form k (ω,N) as in Section 2. Thus the statement
follows by Theorem 12. �

Theorem 29. Let a = a (x) ∈ R be an invertible element (we can assume a (0) =
1), s,m integers such that 0 ≤ s,m ≤ N − 1; then we have

N⊥
s,0 =

⊕

t6≡N1−s

Nt,0, N⊥
s,m = N⊥

s,0 ⊕N1−s,N−m and

(aNs,m)
⊥
= S

(
a−1

)
N⊥

s,m.

Proof. By Lemma 27 and (2.3),(2.4), we have that (aNs,m)⊥L = S
(
a−1

)
N⊥L

s,m and

(aNs,m)
⊥R = S

(
a−1

)
N⊥R

s,m for every s,m. Note that µ (s) = 1 − s modulo N (so

that µ2 = Id) and ν (m) = N − 1 −m in our case. Thus by Theorem 14, we get
N⊥R

s,m = N⊥L
s,m for every s,m (hence we can use the notation ⊥) and the equalities

in the present statement holds. �
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4.3. Another example. Consider the commutative Hopf algebra H = D̂n of
[CDMM, Section 4] for n = 6, where Dn denotes the dihedral group of order 2n
(note that in [CDMM] it is denoted by D2n). Assume that k contains ζ a primitive
6-th root of 1 and observe that in this case H ∼= (kDn)

∗ ∼= kDn so that H is both
semisimple and cosemisimple. Recall that H is given by the generators a, b and
relations a2 = 1 = b6 and ab = ba. The element a is group-like while

∆ (b) = b⊗ e0b+ b−1 ⊗ e1b, ε (b) = 1, S (b) = e0b
−1 + e1b,

where

e0 =
1

2
(1 + a) and e1 =

1

2
(1− a) .

We also set

fj =
1

6

5∑

i=0

ζjibi and ei,j := eifj.

Since the subalgebra k 〈b〉 of H generated by b is a group algebra (note it is not
a subbialgebra since is not group-like), as in Subsection (4.1), we get that the fj ’s
form a complete set of orthogonal idempotents in k 〈b〉. As a consequence, since H
is commutative, the ei,j’s form a complete set of orthogonal idempotents in H . It
is clear that {ei,j | 0 ≤ i ≤ 1, 0 ≤ j ≤ 5} is a generating set whence a basis for H
over k.

In this section, consider as A the Hopf algebra R#H in [CDMM, Theorem 4.1],
where R := Rq (H, g, χ) where g := b3 (note that g is group-like) and χ : H → k

is defined by χ (a) = 1 and χ (b) = −1. Note that q = χ (g) = χ (b)3 = −1 so that
N = o (q) = 2.

Following [CDMM, Section 2], we get that A is given by the generators x, a, b
such that H is a Hopf subalgebra of A and with the further relations x2 = 0, hx =
x
∑

χ (h1)h2 for every h ∈ H . Taking h = a, b we get ax = xa and bx = −xb
respectively. Moreover

∆ (x) = g ⊗ x+ x⊗ 1 = b3 ⊗ x+ x⊗ 1, ε (x) = 0, S (x) = −gx = xg.

By the foregoing {xmei,j | 0 ≤ m, i ≤ 1, 0 ≤ j ≤ 5} is a basis for A over k.

Lemma 30. The following equality holds for every m ∈ N, i, j ∈ Z

ei,jx
m = xmei,j+3m, ei,jg

m = gmei,j = (−1)jm ei,j ,(4.6)

ei,ja
m = amei,j = (−1)

im
ei,j , ei,jb

m = bmei,j = ζ−jmei,j ,(4.7)

S (ei,j) = (e0f−j + e1fj) ei = ei,(−1)i+1j ,

S (xm) = xmgm,

S2 (xm) = (−1)
m
xm.

As a consequence A = k (ω,N) as in Section 2 where the permutation ω of the
indexes of the ei,j’s is defined by ω ((i, j)) := (i, [j + 3]6) where [t]6 denotes the
remainder modulo 6 of t.

Proof. Since ei,j := eifj the equalities involving a, b follows analogously to (4.3).
We compute

fjx
m =

1

6

5∑

i=0

ζjibixm = xm 1

6

5∑

i=0

ζji (−1)
im

bi = xm 1

6

5∑

i=0

ζ(j+3m)ibi = xmfj+3m
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and hence

ei,jx
m = eifjx

m = eix
mfj+3m = xmeifj+3m = xmei,j+3m.

Moreover

ei,jg
m = eifjb

3m = ei
1

6

5∑

i=0

ζjibi+3m

= ζ−3jmei
1

6

5∑

i=0

ζj(i+3m)bi+3m = ζ−3jmei,j = (−1)
jm

ei,j .

We have

S (fj) =
1

6

5∑

i=0

ζjiS (b)i =
1

6

5∑

i=0

ζji
(
e0b

−i + e1b
i
)

= e0
1

6

5∑

i=0

ζjib−i + e1
1

6

5∑

i=0

ζjibi = e0f−j + e1fj .

so that S (ei,j) = (e0f−j + e1fj) ei = ei,(−1)i+1j . Note that gx = b3x = −xb3 = qxg
so that the subalgebra of A generated by g and x is a Taft algebra. As a consequence
S (xm) is as in (4.4) i.e.

S (xm) = (−1)
m
q

−m(m+1)
2 xmg−m = (−1)

m
(−1)

−m(m+1)
2 xmgm

= (−1)
m(m−1)

2 xmgm = xmgm

as 0 ≤ m ≤ 1. We also have

S2 (xm) = S (xmgm) = S (gm)S (xm) = g−mxmgm = (−1)
m
xm

where the last equality holds since 0 ≤ m ≤ 1 again. �

Lemma 31. We have that
∫
l
(A∗) = kλ where

λ
(
xmaibj

)
= δm,1δi,0δ

≡6

j,3 for all m ∈ N, i, j ∈ Z,

λ (xmei,j) =
(−1)

j

12
δm,1 for all m ∈ N, i, j ∈ Z.

Proof. We compute

∆
(
xmaibj

)
= ∆(x)

m
∆(a)

i
∆(b)

j

=

(
m∑

t=0

(
m

t

)

−1

(x⊗ 1)
m−t (

b3 ⊗ x
)t
)
(
ai ⊗ ai

) (
bj ⊗ e0b

j + b−j ⊗ e1b
j
)

=

m∑

t=0

(
m

t

)

−1

(
xm−taib3t+j ⊗ xtaie0b

j
)
+

m∑

t=0

(
m

t

)

−1

(
xm−taib3t−j ⊗ xtaie1b

j
)

=
m∑

t=0

(
m

t

)

−1

(
xm−taib3t+j ⊗ xte0b

j
)
+ (−1)i

m∑

t=0

(
m

t

)

−1

(
xm−taib3t−j ⊗ xte1b

j
)
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Let us check that λ as in the statement is a left integral in A∗. For 0 ≤ m, i ≤ 1
and 0 ≤ j ≤ 5, we have

∑(
xmaibj

)
1
λ
((
xmaibj

)
2

)
=

m∑

t=0

(
m

t

)

−1

xm−taib3t+jλ
(
xte0b

j
)

+ (−1)
i

m∑

t=0

(
m

t

)

−1

xm−taib3t−jλ
(
xte1b

j
)

=

m∑

t=0

(
m

t

)

−1

xm−taib3t+j 1

2
δt,1δj,3

+ (−1)
i

m∑

t=0

(
m

t

)

−1

xm−taib3t−j 1

2
δt,1δj,3

=
1

2

(
m

1

)

−1

xm−1aiδj,3 +
1

2
(−1)

i

(
m

1

)

−1

xm−1aiδj,3

=
1 + (−1)

i

2
(m)−1 x

m−1aiδj,3

=
1 + (−1)

i

2

1− (−1)
m

2
xm−1aiδj,3

i,m≤1
= δi,0δm,1x

m−1aiδj,3 = δi,0δm,1δj,3 = λ
(
xmaibj

)
.

Hence λ is a left integral in A∗. We have observed that
∫
l
(A∗) is one-dimensional

so that
∫
l
(A∗) = kλ . We compute

λ (xmei,j) = λ (xmeifj) =

1∑

s=0

5∑

t=0

(−1)
s

12
ζjtλ

(
xmasbt

)

=

1∑

s=0

5∑

t=0

(−1)
s

12
ζjtδm,1δs,0δt,3 =

1

12
ζ3jδm,1 =

(−1)
j

12
δm,1.

�

Lemma 32. We have

〈xmei,j , x
neu,v〉 =

(−1)j(m+1)

12
δ≡2

u,iδ
≡6

v,(−1)i+1j
δm+n,1,

〈ei,jx
m, eu,vx

n〉 =
(−1)

j(m+1)

12
δ≡2

u,iδ
≡6

v,(−1)i+1j−3
δm+n,1.

In particular the form 〈−,−〉 is as in 2.2, where

µ ((i, j)) :=
(
i,
[
(−1)

i+1
j − 3

]
6

)
, ν (m) := 1−m and d(i,j,m) :=

(−1)
j(m+1)

12
.

As a consequence the form 〈−,−〉 is monomial with respect to the basis B =
{ei,jx

m | 0 ≤ s,m ≤ N − 1}. Moreover the Nakayama isomorphism γ is given by
γ (h) = hg, for every h ∈ A.

Proof. We compute

xneu,vS (xmei,j) = xneu,vS (ei,j)S (xm)

= xneu,vei,(−1)i+1jS (xm)
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= xneu,vei,(−1)i+1jx
mgm

= δ≡2

u,iδ
≡6

v,(−1)i+1j
xneu,vx

mg−m

= δ≡2

u,iδ
≡6

v,(−1)i+1j
xnxmeu,v+3mg−m

= (−1)
(v+3m)m

δ≡2

u,iδ
≡6

v,(−1)i+1j
xm+neu,v+3m

Thus we have

〈xmei,j , x
neu,v〉 = λ (xneu,vS (xmei,j))

= (−1)
(v+3m)m

δ≡2

u,iδ
≡6

v,(−1)i+1j
λ
(
xm+neu,v+3m

)

=
(−1)v+3m

12
(−1)

(v+3m)m
δ≡2

u,iδ
≡6

v,(−1)i+1j
δm+n,1

=
(−1)

v(m+1)

12
δ≡2

u,iδ
≡6

v,(−1)i+1j
δm+n,1

=
(−1)

j(m+1)

12
δ≡2

u,iδ
≡6

v,(−1)i+1j
δm+n,1.

We also have

〈ei,jx
m, eu,vx

n〉 = 〈xmei,j+3m, xneu,v+3n〉

=
(−1)

(j+3m)(m+1)

12
δ≡2

u,iδ
≡6

v+3n,(−1)i+1(j+3m)
δm+n,1

=
(−1)

j(m+1)

12
δ≡2

u,iδ
≡6

v+3n,(−1)i+1j+(−1)i+13m
δm+n,1

=
(−1)

j(m+1)

12
δ≡2

u,iδ
≡6

v+3n,(−1)i+1j−3m
δm+n,1

=
(−1)

j(m+1)

12
δ≡2

u,iδ
≡6

v,(−1)i+1j−3
δm+n,1.

By the foregoing it is clear that as in 2.2, where µ ((i, j)) :=
(
i,
[
(−1)

i+1
j − 3

]
6

)
,

ν (m) := 1−m and d(i,j,m) :=
(−1)j(m+1)

12 .
Thus, by Lemma 13, the form 〈−,−〉 is monomial with respect to the basis

B = {ei,jx
m | 0 ≤ s,m ≤ N − 1}. Moreover the Nakayama isomorphism γ is given

by γ (ei,jx
m) =

d(i,j,m)

d(µ((i,j)),ν(m))
eµ2(i,j)x

ν2(m) for all i, j,m. Since µ2 = Id = ν2, we

obtain γ (ei,jx
m) =

d(i,j,m)

d(µ((i,j)),ν(m))
ei,jx

m. We compute

d(i,j,m)

d(µ((i,j)),ν(m))
=

(−1)j(m+1)

12

(−1)((−1)i+1j−3)(1−m+1)

12

=
(−1)

j(m+1)+(−1)i+1jm−3m

12
= (−1)

j+m

Thus

γ (ei,jx
m) =

d(i,j,m)

d(µ((i,j)),ν(m))
ei,jx

m = (−1)
j+m

ei,jx
m = (−1)

m
ei,jgx

m = ei,jx
mg

and hence γ (h) = hg for every h ∈ H . �

Lemma 33. In the setting of Proposition 10, take V the algebra A as above with left
regular action. Then ⊳=◭ and, for every x ∈ H, r ∈ R, we have x ⊳ r = S (r) x.



22 ALESSANDRO ARDIZZONI AND FABIO STUMBO

Proof. By Lemma 32, we have that the map γ is given by γ (h) = hg for every
h ∈ H . Thus γ is left A-linear. By Proposition 10, we have ⊳=◭ . �

By (3.4) we have

λS (xmes,t) = λγ (xmes,t) = λ (xmes,tg)

= (−1)
t
λ (xmes,t) = (−1)

t (−1)
t

12
δm,1 =

1

12
δm,1.

We compute

λ (xuxmes,t) = λ
(
xu+mes,t

)
=

(−1)
t

12
δu+m,1

=(−1)u
(−1)

t+3u

12
δu+m,1 = (−1)u λ

(
xu+mes,t+3u

)

=(−1)
u
λ (xmxues,t+3u) = λ (xmes,t (−1)

u
xu) = λ

(
xmes,tS

2 (xu)
)

which implies λ (rh) = λ
(
hS2 (r)

)
for every r ∈ R, h ∈ A. As a consequence, we

get x ⊳ r = S (r) x as in the proof of Lemma 27.
We are now able to compute the indecomposable ideals and their orthogonals.

Theorem 34. Consider the Hopf algebra

A = k
〈
a, b, x | a2 = 1 = b6, x2 = 0, ab = ba, ax = xa, bx = −xb

〉

and let R be the subalgebra of A generated by x. For 0 ≤ m, s ≤ 1, 0 ≤ t ≤ 5 set
Ns,t,m := es,tx

mR. Then the Ns,t,m’s form an irredundant set of representatives of
L (AA) and

Lin (AA) = {(1 + rx)Ns,t,m | r ∈ R, 0 ≤ m, s ≤ 1, 0 ≤ t ≤ 5} .

Proof. By Lemma 24 A is of the form k (ω,N) as in Section 2. Thus the statement
follows by Theorem 12. �

Theorem 35. Let a = a (x) ∈ R be an invertible element (we can assume a (0) =
1), s, t,m integers such that 0 ≤ m, s ≤ 1, 0 ≤ t ≤ 5; then we have

N⊥
s,t,0 =


⊕

j

N1−s,j,0


⊕


 ⊕

j 6≡6(−1)s+1t+3

Ns,j,0


 ,

N⊥
s,t,m = N⊥

s,t,0 ⊕Ns,(−1)s+1t+3,2−m,

(aNs,t,m)⊥ = S
(
a−1

)
N⊥

s,t,m.

Proof. By Lemma 33 and (2.3),(2.4), we have that (aNs,t,m)⊥L = S
(
a−1

)
N⊥L

s,t,m

and (aNs,t,m)
⊥R = S

(
a−1

)
N⊥R

s,t,m for every s, t,m. We know that µ ((i, j)) :=(
i,
[
(−1)

i+1
j − 3

]
6

)
=
(
i,
[
(−1)

i+1
j + 3

]
6

)
(so that µ2 = Id) and ν (m) := 1−m

in our case. Thus by Theorem 14, we get N⊥R

s,t,m = N⊥L

s,t,m for every s, t,m (hence we
can use the notation ⊥) and the equalities in the present statement holds as (i, j) 6=

µ ((s, t)) =
(
s,
[
(−1)

s+1
t+ 3

]
6

)
means either i = 1− s or j 6≡6 (−1)

s+1
t+ 3. �
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[DNR] S. Dăscălescu, C. Năstăsescu, Ş. Raianu, Hopf algebras. An introduction. Monographs

and Textbooks in Pure and Applied Mathematics, 235. Marcel Dekker, Inc., New York,
2001.

[Fa] A. Facchini, Module theory. Endomorphism rings and direct sum decompositions in

some classes of modules. Progress in Mathematics, 167. Birkhäuser Verlag, Basel, 1998.
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