
Undefined 0 (2017) 1–0 1
IOS Press

cplint on SWISH: Probabilistic Logical
Inference with a Web Browser

Marco Alberti a Elena Bellodi b Giuseppe Cota b Fabrizio Riguzzi a Riccardo Zese b

a Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
b Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

Abstract. cplint on SWISH is a web application that allows users to perform reasoning tasks on probabilistic logic
programs. Both inference and learning systems can be performed: conditional probabilities with exact, rejection
sampling and Metropolis-Hasting methods. Moreover, the system now allows hybrid programs, i.e., programs where
some of the random variables are continuous. To perform inference on such programs likelihood weighting and
particle filtering are used. cplint on SWISH is also able to sample goals’ arguments and to graph the results. This
paper reports on advances and new features of cplint on SWISH, including the capability of drawing the binary
decision diagrams created during the inference processes.

Keywords: Probabilistic Logic Programming, Probabilistic Logical Inference, Hybrid program

1. Introduction

Probabilistic Programming (PP) [Pfe16] allows
users to define complex probabilistic models and
perform inference and learning on them. In partic-
ular, within the whole set of PP proposals, Prob-
abilistic Logic Programming (PLP) [DRK15] can
model complex domains containing many uncer-
tain relationships among their entities.

Many systems have been proposed for reasoning
with PLP, most of them freely available. However,
in many cases the installation process of these sys-
tems is prone to errors and they require that one
must follow a non-trivial learning phase before be-
coming a proficient user. In order to facilitate the
use of our PLP systems, we developed cplint on
SWISH [RBL+16], a web application for reason-
ing on PLP with just a web browser. The ap-
plication is available at http://cplint.lamping.
unife.it and Figure 1 shows its interface. Here,
users have just to use their browser to post queries
and see the results, while all the execution is de-
manded to a web server.

Fig. 1. Interface of cplint on SWISH.

cplint on SWISH uses the reasoning algo-

rithms included in the cplint suite, including ex-

act and approximate inference and parameter and

structure learning. This article extends [ACRZ16],

where we presented several algorithms for comput-

ing conditional probabilities with exact, rejection

sampling and Metropolis-Hasting methods. The

system also allowed hybrid programs, where some

of the random variables are continuous, a feature

0000-0000/17/$00.00 c© 2017 – IOS Press and the authors. All rights reserved

http://cplint.lamping.unife.it
http://cplint.lamping.unife.it

2

that is, to the best of our knowledge, a novelty for
web applications.

A similar system is ProbLog2 [FdBR+15], which
also has an online version1. The main difference
between cplint on SWISH and ProbLog2 is that
the former currently offers also structure learning,
approximate conditional inference through sam-
pling and handling of continuous variables. More-
over, cplint on SWISH is based on SWISH2 - a
web framework for Logic Programming using fea-
tures and packages of SWI-Prolog and its Pengines
library - and utilizes a Prolog-only software stack
in the server, whereas ProbLog2 relies on several
different technologies, including Python 3 and the
DSHARP compiler. In particular, it writes inter-
mediate files to disk in order to call external pro-
grams such as DSHARP, while we work in main
memory only.

In this paper we aim to show that PP based on
Logic Programming is flexible and mature enough
to develop complex systems equipped with many
features and algorithms with relative ease. PLP
has moved from a niche language suitable for spe-
cific applications to a versatile framework able to
offer many features that were previously typical of
imperative or functional PP languages only, such
as hybrid programs, likelihood weighting and par-
ticle filtering.
cplint on SWISH not only offers such features

but also the possibility of developing programs on-
line and in collaboration. The system contains a
wide variety of examples, representing many prob-
abilistic models such as Markov Logic Networks,
generative models, Gaussian processes, Gaussian
mixtures, Dirichlet processes, Bayesian estimation
and Kalman filters. As such, the system shows the
soundness of PLP also from a software engineering
point of view, opening the way to complex indus-
trial/real world applications.

After introducing the syntax and semantics of
PLP in Section 2, we discuss approaches for in-
ference in Section 3. Section 4 presents the pred-
icates the user can call to perform inference in
cplint on SWISH. Section 5 contains a num-
ber of examples that illustrate the new features
of cplint on SWISH and Section 6 concludes
the paper. All the examples presented in the pa-
per named as <name>.pl can be accessed online

1https://dtai.cs.kuleuven.be/problog/
2http://swish.swi-prolog.org

at http://cplint.lamping.unife.it/example/
inference/<name>.pl.

2. Syntax and Semantics

The distribution semantics [Sat95] is one of the
most used approaches for representing probabilis-
tic information in Logic Programming and it is at
the basis of many languages, such as Independent
Choice Logic, PRISM, Logic Programs with An-
notated Disjunctions (LPADs) and ProbLog.

We consider first the discrete version of proba-
bilistic logic programming languages. In this ver-
sion, each atom is a Boolean random variable that
can assume values true or false. Facts and rules of
the program specify the dependences among the
truth value of atoms and the main inference task
is to compute the probability that a ground query
is true, often conditioned on the truth of another
ground goal, the evidence. All the languages fol-
lowing the distribution semantics allow the speci-
fication of alternatives either for facts and/or for
clauses. We present here the syntax of LPADs be-
cause it is the most general [VVB04].

An LPAD is a finite set of annotated disjunc-
tive clauses of the form hi1 : Πi1; . . . ;hini

:
Πini

:- bi1, . . . , bimi
. where bi1, . . . , bimi

are liter-
als, hi1, . . . hini

are atoms and Πi1, . . . ,Πini
are

real numbers in the interval [0, 1]. This clause can
be interpreted as “if bi1, . . . , bimi is true, then hi1
is true with probability Πi1 or . . . or hini

is true
with probability Πini

.”
Given an LPAD P , the grounding ground(P) is

obtained by replacing variables with terms from
the Herbrand universe in all possible ways. If P
does not contain function symbols and P is finite,
ground(P) is finite as well.
ground(P) is still an LPAD from which, by se-

lecting a head atom for each ground clause, we
can obtain a normal logic program, called “world”,
to which we can assign a probability by multiply-
ing the probabilities of all the head atoms chosen.
In this way we get a probability distribution over
worlds from which we can define a probability dis-
tribution over the truth values of a ground atom:
the probability of an atom q being true is the sum
of the probabilities of the worlds where q is true,
that can be checked because the worlds are nor-
mal programs that we assume have a two-valued
well-founded model.

https://dtai.cs.kuleuven.be/problog/
http://swish.swi-prolog.org
http://cplint.lamping.unife.it/example/inference/<name>.pl
http://cplint.lamping.unife.it/example/inference/<name>.pl

3

This semantics can be given also a sampling in-
terpretation: the probability of a query q is the
fraction of worlds, sampled from the distribution
over worlds, where q is true. To sample from the
distribution over worlds, you simply randomly se-
lect a head atom for each clause according to
the probabilistic annotations. Note that you don’t
even need to sample a complete world: if the sam-
ples you have taken ensure the truth value of q
is determined, you don’t need to sample more
clauses.

To compute the conditional probability P (q|e)
of a query q given evidence e, you can use the
definition of conditional probability, P (q|e) =
P (q, e)/P (e), and compute first the probability of
q, e (the sum of probabilities of worlds where both
q and e are true) and the probability of e and then
divide the two.

If the program P contains function symbols,
a more complex definition of the semantics is
necessary, because ground(P) is infinite, a world
would be obtained by making an infinite number
of choices and so its probability, the product of in-
finite numbers all smaller than one, would be 0. In
this case you have to work with sets of worlds and
use Kolmogorov’s definition of probability space
[Rig16].

Up to now we have considered only discrete ran-
dom variables and discrete probability distribu-
tions. How can we consider continuous random
variables and probability density functions, for ex-
ample real variables following a Gaussian distri-
bution? cplint allows the specification of density
functions over arguments of atoms in the head of
rules. For example, in

g(X,Y):gaussian(Y,0,1):- object(X).

X takes terms while Y takes real numbers as val-
ues. The clause states that, for each X such that
object(X) is true, the values of Y such that
g(X,Y) is true follow a Gaussian distribution with
mean 0 and variance 1. You can think of an atom
such as g(a,Y) as an encoding of a continuous
random variable associated to term g(a). A se-
mantics to such programs was given independently
in [GTK+11] and [IRR12]. In [NDLDR16] the se-
mantics of these programs, called Hybrid Prob-
abilistic Logic Programs (HPLP), is defined by
means of a stochastic generalization STp of the Tp
operator that applies to continuous variables the
sampling interpretation of the distribution seman-

tics: STp is applied to interpretations that contain
ground atoms (as in standard logic programming)
and terms of the form t = v where t is a term
indicating a continuous random variable and v is
a real number. If the body of a clause is true in
an interpretation I, STp(I) will contain a sample
from the head.

In [IRR12] a probability space for N continu-
ous random variables is defined by considering the
Borel σ-algebra over RN and a Lebesgue measure
on this set as the probability measure. The prob-
ability space is lifted to cover the entire program
using the least model semantics of constraint logic
programs.

If an atom encodes a continuous random vari-
able (such as g(X,Y) above), asking the probabil-
ity that a ground instantiation, such as g(a,0.3),
is true is not meaningful, as the probability that a
continuous random variables takes a specific value
is always 0. In this case you are more interested in
computing the distribution of Y of a goal g(a,Y),
possibly after having observed some evidence. If
the evidence is on an atom defining another con-
tinuous random variable, the definition of condi-
tional probability cannot be applied, as the prob-
ability of the evidence would be 0 and so the frac-
tion would be undefined. This problem is resolved
in [NDLDR16] by providing a definition using lim-
its.

3. Inference

Computing all the worlds is impractical be-
cause their number is exponential in the num-
ber of ground probabilistic clauses. Alternative
approaches have been considered that can be
grouped in exact and approximate ones.

For exact inference from discrete programs with-
out function symbols a successful approach finds
explanations for the query q [DKT07], where an
explanation is a set of clause choices that are suf-
ficient for entailing the query. Once all explana-
tions for the query are found, they are encoded
as a Boolean formula in DNF (with a proposi-
tional variable per choice and a conjunction per
explanation) and the problem is reduced to that
of computing the probability that a propositional
formula is true. This problem is difficult (#P
complexity) but converting the DNF into a lan-
guage from which the computation of the probabil-

4

ity is polynomial (knowledge compilation [DM02])
yields algorithms able to handle problems of signif-
icant size [DKT07,RS11]. One of the most efficient
ways of solving the problem makes use of the lan-
guage of Binary Decision Diagrams (BDDs). They
represent a function f(X) taking Boolean values
on a set of Boolean variables X by means of a
rooted graph that has one level for each variable.
Each node is associated with the variable of its
level and has 2 children. Given values for all the
variables, we can compute the value of the func-
tion (in this case the DNF formula) by traversing
the graph from the root and returning the value
associated with the leaf that is reached: the dia-
gram will have a path to a 1-leaf for each world
where the query is true.

Given a BDD, the probability of the correspond-
ing Boolean function can be computed with a dy-
namic programming algorithm. The probability of
a leaf is either 1 or 0 if the leaf is 1 or 0 respectively.
The probability P (n) of a node n associated with
variable V is P (n) = P (V) · P (child1(n)) + (1 −
P (V)) · P (child0(n)) where child1(n) (child0(n))
is the 1-child (0-child) of n. In practice, memoriza-
tion of intermediate results is used to avoid recom-
putation at nodes that are shared between multi-
ple paths.

For approximate inference one of the most used
approach consists in Monte Carlo sampling, fol-
lowing the sampling interpretation of the seman-
tics given above. Monte Carlo backward reason-
ing has been implemented in [KDD+11,Rig13] and
found to give good performance in terms of qual-
ity of the solutions and of running time. Monte
Carlo sampling is attractive for the simplicity of
its implementation and because you can improve
the estimate as more time is available. Moreover,
Monte Carlo can be used also for programs with
function symbols, in which goals may have infi-
nite explanations and exact inference may loop.
In sampling, infinite explanations have probability
0, so the computation of each sample eventually
terminates.

Monte Carlo inference provides also smart al-
gorithms for computing conditional probabilities:
rejection sampling or Metropolis-Hastings Markov
Chain Monte Carlo (MCMC). In rejection sam-
pling [VN51], you first query the evidence and,
if the query is successful, query the goal in the
same sample, otherwise the sample is discarded.
In Metropolis-Hastings MCMC [NR14], a Markov

chain is built by taking an initial sample and by
generating successor samples.

The initial sample is built by randomly sampling
choices so that the evidence is true. A successor
sample is obtained by deleting a fixed number of
sampled probabilistic choices. Then the evidence
is queried by taking a sample starting with the
undeleted choices. If the query succeeds, the goal
is queried by taking a sample. The sample is ac-
cepted with a probability of min{1, N0

N1
} where N0

is the number of choices sampled in the previous
sample and N1 is the number of choices sampled in
the current sample. Then the number of successes
of the query is increased by 1 if the query suc-
ceeded in the last accepted sample. The final prob-
ability is given by the number of successes over the
number of samples.

When you have evidence on ground atoms that
have continuous values as arguments, you can still
use Monte Carlo sampling. You cannot use rejec-
tion sampling or Metropolis-Hastings, as the prob-
ability of the evidence is 0, but you can use likeli-
hood weighting [NDLDR16] to obtain samples of
continuous arguments of a goal.

For each sample to be taken, likelihood weight-
ing samples the query and then assigns a weight
to the sample on the basis of evidence. The weight
is computed by deriving the evidence backward
in the same sample of the query starting with
a weight of one: each time a choice should be
taken or a continuous variable sampled, if the
choice/variable has already been taken, the cur-
rent weight is multiplied by the probability of the
choice/by the density value of the continuous vari-
able.

If likelihood weighting is used to find the poste-
rior density of a continuous random variable, you
obtain a set of samples for the variables with each
sample associated with a weight that can be inter-
preted as a relative frequency. The set of samples
without the weight, instead, can be interpreted as
the prior density of the variable. These two sets
of samples can be used to plot the density before
and after observing the evidence.

When you have a dynamic model and observa-
tions on continuous variables for a number of time
points, or your evidence is represented by many
atoms, likelihood weighting has numerical stabil-
ity problems, as samples’ weight goes rapidly to
0. In this case, particle filtering can be useful, be-

5

cause it periodically resamples the individual sam-
ples/particles so that their weight is reset to 1.

You can sample arguments of queries also for
discrete goals: in this case you get a discrete dis-
tribution over the values of one or more arguments
of a goal. If the query predicate is determinate in
each world, i.e., given values for input arguments
there is a single value for output arguments that
make the query true, you get a single value for each
sample. Moreover, if clauses sharing an atom in the
head are mutually exclusive, i.e., in each world the
body of at most one clause is true, then the query
defines a probability distribution over output ar-
guments. In this way we can simulate those lan-
guages such as PRISM and Stochastic Logic Pro-
grams that define probability distributions over ar-
guments rather than probability distributions over
truth values of ground atoms.

4. Inference with cplint

cplint on SWISH uses two modules for per-
forming inference, pita for exact inference by
knowledge compilation and mcintyre for approx-
imate inference by sampling. In this section we
discuss the algorithms and predicates provided by
these two modules.

The unconditional probability of an atom can
be asked using pita with the predicate

prob(:Query:atom,-Probability:float).

The conditional probability of a query atom given
an evidence atom can be asked with the predicate

prob(:Query:atom,:Evidence:atom,-Probability:float).

The BDD representation of the explanations for
the query atom can be obtained with the predicate

bdd_dot_string(:Query:atom,BDD:string,Var:list).

With mcintyre, you can estimate the probability
of a goal by taking a given number of samples using
the predicate

mc_sample(:Query:atom,+Samples:int,

-Probability:float).

Moreover, you can sample arguments of queries
with:

mc_sample_arg(:Query:atom,+Samples:int,?Arg:var,

-Values:list).

that returns in Values a list of couples V-W where
L is the list of values of Arg for which Query suc-
ceeds in a world sampled at random and N is the
number of samples returning that list of values.
The version

mc_sample_arg_first(:Query:atom,+Samples:int,

?Arg:var,-Values:list).

also samples arguments of queries but just com-
putes the first answer of the query for each sam-
pled world.

You can ask conditional queries with rejection
sampling or with Metropolis-Hastings MCMC,
too. In the first case, the available predicate is:

mc_rejection_sample(:Query:atom,:Evidence:atom,

+Samples:int,-Successes:int,-Failures:int,

-Probability:float).

In the second case, mcintyre follows the algo-
rithm proposed in [NR14] (the non adaptive ver-
sion). The initial sample is built with a back-
tracking meta-interpreter that starts with the goal
and randomizes the order in which clauses are se-
lected during the search so that the initial sample
is unbiased. Then the goal is queried using regu-
lar mcintyre. A successor sample is obtained by
deleting a number of sampled probabilistic choices
given by the parameter lag. Then the evidence is
queried using regular mcintyre starting with the
undeleted choices. If the query succeeds, the goal is
queried using regular mcintyre. The sample is ac-
cepted with the probability indicated in Section 3.

In [NR14] the lag is always 1. However, in
[NR14], the proof that the acceptance probability
(which is min{1, N0

N1
} where N0 is the number of

choices sampled in the previous sample and N1 is
the number of choices sampled in the current sam-
ple) yields a valid Metropolis-Hastings algorithm
holds also when forgetting more than one sampled
choice, so the lag is user-defined in cplint.

You can take a given number of samples with
Metropolis-Hastings MCMC using

mc_mh_sample(:Query:atom,:Evidence:atom,Samples:int,

+Lag:int,-Successes:int,-Failures:int,

-Probability:float).

Moreover, you can sample the arguments of the
queries with rejection sampling and Metropolis-
Hastings MCMC using

6

mc_rejection_sample_arg(:Query:atom,:Evidence:atom,

+Samples:int,?Arg:var,-Values:list).

mc_mh_sample_arg(:Query:atom,:Evidence:atom,

+Samples:int,+Lag:int,?Arg:var,-Values:list).

Finally, you can compute expectations with

mc_expectation(:Query:atom,+N:int,?Arg:var,

-Exp:float).

that returns the expected value of the argument
Arg in Query by sampling. It takes N samples of
Query and sums up the value of Arg in each sam-
ple. The overall sum is divided by N to give Exp.

To compute conditional expectations, use

mc_mh_expectation(:Query:atom,:Evidence:atom,+N:int,

+Lag:int,?Arg:var,-Exp:float).

For visualizing the results of sampling arguments
you can use

mc_sample_arg_bar(:Query:atom,+Samples:int,

?Arg:var,-Chart:dict).

mc_rejection_sample_arg_bar(:Query:atom,

:Evidence:atom,+Samples:int,

?Arg:var,-Chart:dict).

mc_mh_sample_arg_bar(:Query:atom,:Evidence:atom,

+Samples:int,+Lag:int,

?Arg:var,-Chart:dict).

that return in Chart a bar chart with a bar for each
possible sampled value whose size is the number
of samples returning that value.

When you have continuous random variables,
you may be interested in sampling arguments of
goals representing continuous random variables. In
this way you can build a probability density of
the sampled argument. When you do not have ev-
idence or you have evidence on atoms not depend-
ing on continuous random variables, you can use
the above predicates for sampling arguments.

When you have evidence on ground atoms with
continuous values as arguments, you need to use
likelihood weighting [NDLDR16] or particle filter-
ing [FC90,KF09] to obtain samples of the contin-
uous arguments of a goal.

For each sample to be taken, likelihood weight-
ing uses a meta-interpreter to find a sample where
the goal is true, randomizing the choice of clauses
when more than one resolves with the goal, in
order to obtain an unbiased sample. This meta-
interpreter is similar to the one used to generate
the first sample in Metropolis-Hastings.

Then a different meta-interpreter is used to
evaluate the weight of the sample. This meta-

interpreter starts with the evidence as the query
and a weight of 1. Each time the meta-interpreter
encounters a probabilistic choice over a continu-
ous variable, it first checks whether a value has al-
ready been sampled. If so, it computes the proba-
bility density of the sampled value and multiplies
the weight by it. If the value had not been sam-
pled, it takes a sample and records it, leaving the
weight unchanged. In this way, each sample in the
result has a weight that is 1 for the prior distribu-
tion and that may be different from the posterior
distribution, reflecting the influence of evidence.

The predicate

mc_lw_sample_arg(:Query:atom,:Evidence:atom,

+N:int,?Arg:var,-ValList:list).

returns in ValList a list of couples V-W where V

is a value of Arg for which Query succeeds and
W is the weight computed by likelihood weighting
according to Evidence (a conjunction of atoms is
allowed here).

In particle filtering, the evidence is a list of
atoms. Each sample is weighted by the likelihood
of an element of the evidence and constitutes a
particle. After weighting, particles are resampled
and the next element of the evidence is considered.

The predicate

mc_particle_sample_arg(:Query:atom,+Evidence:term,

+Samples:int,?Arg:var,-Values:list).

samples the argument Arg of Query using particle
filtering given that Evidence is true. Evidence is
a list of goals and Query can be either a single goal
or a list of goals.

When Query is a single goal, the predicate re-
turns in Values a list of couples V-W where V is a
value of Arg for which Query succeeds in a parti-
cle in the last set of particles, and W is the weight
of the particle. For each element of Evidence, the
particles are obtained by sampling Query in each
current particle and weighting the particle by the
likelihood of the evidence element.

When Query is a list of goals, Arg is a list of
variables, one for each query of Query; in this
case Arg and Query must have the same length
as Evidence. Values is then a list of the same
length as Evidence and each of its elements is a
list of couples V-W where V is a value of the corre-
sponding element of Arg for which the correspond-
ing element of Query succeeds in a particle, and
W is the weight of the particle. For each element

7

of Evidence, the particles are obtained by sam-
pling the corresponding element of Query in each
current particle and weighting the particle by the
likelihood of the evidence element.

You can use the samples to draw the probability
density function of the argument. The predicate

histogram(+List:list,+NBins:int,-Chart:dict).

draws a histogram of the samples in List dividing
the domain in NBins bins. List must be a list of
couples of the form [V]-W where V is a sampled
value and W is its weight. This is the format of
the list of samples returned by argument sampling
predicates except mc_lw_sample_arg/5, that re-
turns a list of couples V-W. In this case you can
use

densities(+PriorList:list,+PostList:list,+NBins:int,

-Chart:dict).

that draws a line chart of the density of two sets of
samples, usually prior and post observations. The
samples from the prior are in PriorList as cou-
ples [V]-W, while the samples from the posterior
are in PostList as couples V-W where V is a value
and W its weight. The lines are drawn dividing the
domain in NBins bins.

5. Examples

5.1. Binary Decision Diagrams

Example epidemic.pl models the development
of an epidemic or a pandemic with an LPAD: if
somebody has the flu and the climate is cold, there
is the possibility that an epidemic arises with prob-
ability 0.6 and the possibility that a pandemic
arises with probability 0.3, whereas with 0.1 prob-
ability neither an epidemic nor a pandemic arises.
We are uncertain whether the climate is cold but
we know for sure that David and Robert have the
flu.

epidemic:0.6; pandemic:0.3 :- flu(_), cold.

cold : 0.7.

flu(david).

flu(robert).

In order to calculate the probability that a pan-
demic arises, you can call the query:

?- prob(pandemic,Prob).

or

?- prob_bar(pandemic,Prob).

The latter shows the probabilistic results of the
query as a histogram (Fig. 2a).

The corresponding BDD can be obtained with:

?- bdd_dot_string(pandemic,BDD,Var).

and is represented in Fig. 2b. A solid edge indicates
a 1-child, a dashed edge indicates a 0-child and
a dotted edge indicates a negated 0-child. Each
level of the BDD is associated with a variable of
the form XIJ indicated on the left: I indicates the
multivalued variable index and J the index of the
Boolean variable of I.

5.2. Markov Logic Networks

Markov Networks (MNs) and Markov Logic
Networks (MLNs)[RD06] can be encoded with
Probabilistic Logic Programming. The encoding
is based on the observation that a MN factor
can be represented with a Bayesian Network with
an extra node that is always observed. In or-
der to model MLN formulas with LPADs, we can
add an extra atom clausei(X) for each formula
Fi = wi Ci where wi is the weight associated
with Ci and X is the vector of variables appear-
ing in Ci. Then, when we ask for the probability
of query q given evidence e, we have to ask for
the probability of q given e ∧ ce, where ce is the
conjunction of the groundings of clausei(X) for
all values of i. Then, clause Ci should be trans-
formed into a Disjunctive Normal Form formula
Ci1 ∨ . . . ∨ Cini , where the disjuncts are mutually
exclusive and the LPAD should contain the clauses
clausei(X) : eα/(1+eα)← Cij for all j in 1, ..., ni.
Similarly, ¬Ci should be transformed into a dis-
joint sum Di1 ∨ . . . ∨Dimi

and the LPAD should
contain the clauses clausei(X) : 1/(1 + eα)← Dil

for all l in 1, ...,mi.
Alternatively, if α is negative, eα will be smaller

than 1 and we can use the two probability val-
ues eα and 1 with the clauses clausei(X) : eα ←
Cij . . . clausei(X) ← Dil. This solution has the
advantage that some clauses are certain, reducing
the number of random variables. If α is positive in
the formula α C, we can consider the equivalent
formula −α ¬C.

MLN formulas can also be added to a regu-
lar probabilistic logic program, their effect being

http://cplint.lamping.unife.it/example/inference/epidemic.pl

8

(a) Histogram of the probabilistic result of query pan-
demic in the epidemic.pl example.

(b) Binary Decision Diagram for query pan-
demic in the epidemic.pl example.

Fig. 2. Graphical representations for query pandemic in
epidemic.pl.

equivalent to a soft form of evidence, where cer-
tain worlds are weighted more than others. This is
similar to soft evidence in Figaro [Pfe16].

The transformation above is illustrated by the
following example. Here, ∼= indicates the trunca-
tion function. Given the MLN

1.5 Intelligent(x) => GoodMarks(x)

1.1 Friends(x,y) => (Intelligent(x)<=>Intelligent(y))

the first formula is translated into the clauses:

clause1(X):0.8175 :- \+intelligent(X).

clause1(X):0.1824 :- intelligent(X),

\+good_marks(X).

clause1(X):0.8175 :- intelligent(X),good_marks(X).

where 0.8175 ∼= e1.5/(1+e1.5) and 0.1824 ∼= 1/(1+
e1.5).
The second formula is translated into the clauses

clause2(X,Y):0.7502 :- \+friends(X,Y).

clause2(X,Y):0.7502 :- friends(X,Y),

intelligent(X),

intelligent(Y).

clause2(X,Y):0.7502 :- friends(X,Y),

\+intelligent(X),

\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),

intelligent(X),

\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),

\+intelligent(X),

intelligent(Y).

where 0.7502 ∼= e1.1/(1+e1.1) and 0.2497 ∼= 1/(1+
e1.1).

A priori we have a uniform distribution over stu-
dent intelligence, good marks and friendship:

intelligent(_):0.5.

good_marks(_):0.5.

friends(_,_):0.5.

and there are two students:

student(anna).

student(bob).

We have evidence that Anna is friend with Bob
and Bob is intelligent. The evidence must also in-
clude the truth of all groundings of the clauseN
predicates:

evidence_mln :- clause1(anna),clause1(bob),

clause2(anna,anna),clause2(anna,bob),

clause2(bob,anna),clause2(bob,bob).

ev_intelligent_bob_friends_anna_bob :-

intelligent(bob),friends(anna,bob),

evidence_mln.

If we want to query the probability that Anna gets
good marks given the evidence, we can ask:

?- prob(good_marks(anna),

ev_intelligent_bob_friends_anna_bob,P).

while the prior probability of Anna getting good
marks is given by:

?- prob(good_marks(anna),evidence_mln,P).

9

The probability resulting from the first query is
higher (P = 0.733) than the second query (P =
0.607), since it is conditioned to the evidence that
Bob is intelligent and Anna is her friend.

In the alternative transformation, the first MLN
formula is translated into:

clause1(X) :- \+intelligent(X).

clause1(X):0.2231 :- intelligent(X),\+good_marks(X).

clause1(X) :- intelligent(X), good_marks(X).

where 0.2231 ∼= e−1.5.

5.3. Generative Model

Program arithm.pl encodes a model for gener-
ating random functions:

eval(X,Y) :- random_fn(X,0,F), Y is F.

op(+):0.5; op(-):0.5.

random_fn(X,L,F) :- comb(L), random_fn(X,l(L),F1),

random_fn(X,r(L),F2), op(Op), F=..[Op,F1,F2].

random_fn(X,L,F) :- \+comb(L),base_random_fn(X,L,F).

comb(_):0.3.

base_random_fn(X,L,X) :- identity(L).

base_random_fn(_,L,C) :- \+identity(L),

random_const(L,C).

identity(_):0.5.

random_const(_,C):discrete(C,[0:0.1,1:0.1,2:0.1,

3:0.1,4:0.1,5:0.1,6:0.1,7:0.1,8:0.1,9:0.1]).

A random function is either an operator (‘+’ or
‘-’) applied to two random functions or a base ran-
dom function. A base random function is either an
identity or a constant drawn uniformly from the
integers 0, . . . , 9.

You may be interested in the distribution of the
output values of the random function with input 2
given that the function outputs 3 for input 1. You
can get this distribution with

?- mc_mh_sample_arg_bar(eval(2,Y),eval(1,3),1000,1,

Y,V).

that samples 1000 values for Y in eval(2,Y) and
returns them in V. A bar graph of the frequencies
of the sampled values is shown in Figure 3. Since
each world of the program is determinate, in each
world there is a single value of Y in eval(2,Y)

and the list of sampled values contains a single
element.

5.4. Gaussian Process

A Gaussian Process (GP) (example gpr.pl) de-
fines a probability distribution over functions. This

[8]

[6]

[4]

[5]

0 50 100 150 200 250 300 350 400 450 500 550

Fig. 3. Distribution of sampled values in the arithm.pl

example.

distribution has the property that, given N val-
ues, their image through a function sampled from
the gaussian process follows a multivariate normal
with mean 0 and covariance matrix K. A Gaus-
sian Process is defined by a kernel function k that
determines K. GPs can be used for regression: the
random functions predicts the y value correspond-
ing to a x value given a set X and Y of observed val-
ues. When performing GP regression, you choose
the kernel and you want to estimate the param-
eters of the kernel. You can define a prior dis-
tribution over the parameters. The following pro-
gram can sample kernels (and thus functions) and
compute the expected value of the predictions for
a squared exponential kernel (defined by predi-
cate sq_exp_p) with parameters l uniformly dis-
tributed in 1, 2, 3 and σ uniformly distributed in
[−2, 2].

The predicate gp, given a list of values X and
a kernel name, returns in Y the list of values of
type f(x) where x belongs to X and f is a function
sampled from the Gaussian process. gp_predict,
given the points described by the lists XT and YT
and a kernel, predict the Y values of points with X
values in XP and returns them in YP. Prediction
is performed by Gaussian process regression.

gp(X,Kernel,Y) :-

compute_cov(X,Kernel,0,C),

gp(C,Y).

gp(Cov,Y):gaussian(Y,Mean,Cov):-

length(Cov,N),

list0(N,Mean).

compute_cov(X,Kernel,Var,C) :-

length(X,N),

cov(X,N,Kernel,Var,CT,CND),

transpose(CND,CNDT),

http://cplint.lamping.unife.it/example/inference/arithm.pl
http://cplint.lamping.unife.it/example/inference/gpr.pl

10

matrix_sum(CT,CNDT,C).

cov([],_,_,_,[],[]).

cov([XH|XT],N,Ker,Var,[KH|KY],[KHND|KYND]) :-

length(XT,LX),

N1 is N-LX-1,

list0(N1,KH0),

cov_row(XT,XH,Ker,KH1),

call(Ker,XH,XH,KXH0),

KXH is KXH0+Var,

append([KH0,[KXH],KH1],KH),

append([KH0,[0],KH1],KHND),

cov(XT,N,Ker,Var,KY,KYND).

cov_row([],_,_,[]).

cov_row([H|T],XH,Ker,[KH|KT]) :-

call(Ker,H,XH,KH),

cov_row(T,XH,Ker,KT).

gp_predict(XP,Kernel,Var,XT,YT,YP) :-

compute_cov(XT,Kernel,Var,C),

matrix_inversion(C,C_1),

transpose([YT],YST),

matrix_multiply(C_1,YST,C_1T),

gp_predict_single(XP,Kernel,XT,C_1T,YP).

gp_predict_single([],_,_,_,[]).

gp_predict_single([XH|XT],Kernel,X,C_1T,[YH|YT]) :-

compute_k(X,XH,Kernel,K),

matrix_multiply([K],C_1T,[[YH]]),

gp_predict_single(XT,Kernel,X,C_1T,YT).

compute_k([],_,_,[]).

compute_k([XH|XT],X,Ker,[HK|TK]) :-

call(Ker,XH,X,HK),

compute_k(XT,X,Ker,TK).

sq_exp_p(X,XP,K) :-

sigma(Sigma),

l(L),

K is Sigma^2*exp(-((X-XP)^2)/2/(L^2)).

l(L):uniform(L,[1,2,3]).

sigma(Sigma):uniform(Sigma,-2,2).

By calling the query ?-draw_fun(sq_exp_p,C).

over the program:

draw_fun(Kernel,C) :-

X=[-3,-2,-1,0,1,2,3],

draw_fun(X,Kernel,C).

draw_fun(X,Kernel,C) :-

mc_sample_arg_first(gp(X,Kernel,Y),5,Y,L).

we get 5 functions sampled from the Gaussian pro-
cess with a squared exponential kernel at points
X = [−3,−2,−1, 0, 1, 2, 3], shown in Fig. 4a.

f1 f2 f3 f4 f5

(a) Functions sampled from a Gaussian process with
a squared exponential kernel in gpr.pl.

y f1 f2 f3

(b) Functions from a Gaussian process predicting
points with X=[0,...,10] with a squared exponential
kernel in gpr.pl.

Fig. 4. Functions sampled from a Gaussian Process in the

gpr.pl example.

The query ?-draw_fun_pred(sq_exp_p,C).
called over the program:

draw_fun_pred(Kernel,C) :-

numlist(0,10,X),

XT=[2.5,6.5,8.5],

YT=[1,-0.8,0.6],

mc_lw_sample_arg(gp_predict(X,Kernel,

0.3,XT,YT,Y),gp(XT,Kernel,YT),5,Y,L).

draws 3 functions predicting points with X val-
ues in [0,...,10] given the three couples of points
XT=[2.5,6.5,8.5], YT=[1,-0.8,0.6] with a squared
exponential kernel. The graph (Fig. 4b) shows as
dots the given points.

5.5. Gaussian Mixture Model

Example gaussian mixture.pl defines a mix-
ture of two Gaussians:

heads:0.6; tails:0.4.

g(X):gaussian(X, 0, 1).

http://cplint.lamping.unife.it/example/inference/gaussian_mixture.pl

11

Fig. 5. Density of X of mix(X) in gaussian mixture.pl.

h(X):gaussian(X, 5, 2).

mix(X) :- heads, g(X).

mix(X) :- tails, h(X).

The argument X of mix(X) follows a model mix-
ing two Gaussians, one with mean 0 and variance
1 with probability 0.6 and one with mean 5 and
variance 2 with probability 0.4. The query

?- mc_sample_arg(mix(X),10000,X,L0),

histogram(L0,40,Chart).

draws the density of the random variable X of
mix(X), shown in Figure 5.

5.6. Dirichlet Processes

A Dirichlet process (DP) is a probability dis-
tribution whose range is itself a set of probability
distributions. The DP is specified by a base dis-
tribution, which represents the expected value of
the process. New samples have a nonzero probabil-
ity of being equal to already sampled values. The
process depends on a parameter α, called concen-
tration parameter: with α → 0 a single value is
sampled, with α→∞ the distribution is equal to
the base distribution. There are several equivalent
views of the Dirichlet process, that are presented
in the following.

5.6.1. The stick-breaking process
Example dirichlet process.pl encodes the

stick-breaking process view of the DP.
In this example the base distribution is a Gaus-

sian with mean 0 and variance 1. To sample a
value, a sample β1 is taken from the beta distribu-
tion Beta(1, α) and a coin with heads probability
equal to β1 is flipped. If the coin lands on heads,
a sample from the base distribution is taken and
returned. Otherwise, a sample β2 is taken again

from Beta(1, α) and a coin is flipped. This proce-
dure is repeated until heads is obtained, the index
i of βi being the index of the value to be returned.

The distribution of values is handled by pred-
icates dp_value/3, which returns in V the NVth
sample from the DP with concentration parameter
Alpha, and dp_n_values/4, which returns in L a
list of N-N0 samples from the DP with concentra-
tion parameter Alpha.

The distribution of indexes is handled by pred-
icates dp_stick_index.

dp_n_values(N,N,_Alpha,[]) :- !.

dp_n_values(N0,N,Alpha,[[V]-1|Vs]) :-

N0<N,

dp_value(N0,Alpha,V),

N1 is N0+1,

dp_n_values(N1,N,Alpha,Vs).

dp_value(NV,Alpha,V) :-

dp_stick_index(NV,Alpha,I),

dp_pick_value(I,V).

dp_pick_value(_,V):gaussian(V,0,1).

dp_stick_index(NV,Alpha,I) :-

dp_stick_index(1,NV,Alpha,I).

dp_stick_index(N,NV,Alpha,V) :-

stick_proportion(N,Alpha,P),

choose_prop(N,NV,Alpha,P,V).

choose_prop(N,NV,_Alpha,P,N) :-

pick_portion(N,NV,P).

choose_prop(N,NV,Alpha,P,V) :-

neg_pick_portion(N,NV,P),

N1 is N+1,

dp_stick_index(N1,NV,Alpha,V).

stick_proportion(_,Alpha,P):

beta(P,1,Alpha).

pick_portion(_,_,P):P;

neg_pick_portion(_,_,P):1-P.

The query

?-mc_sample_arg(dp_stick_index(1,10.0,V),200,V,L),

histogram(L,100,Chart).

draws the density of indexes with concentration
parameter 10 using 200 samples (Fig 6a).

The query

?- mc_sample_arg_first(dp_n_values(0,200,10.0,V),1,

V,L),

L=[Vs-_],

histogram(Vs,100,Chart).

http://cplint.lamping.unife.it/example/inference/dirichlet_process.pl

12

draws the density of values with concentration pa-
rameter 10 using 200 samples (Fig 6b).

The query

?-hist_repeated_indexes(100,40,G).

called over the program:

hist_repeated_indexes(Samples,NBins,Chart) :-

repeat_sample(0,Samples,L),

histogram(L,NBins,Chart).

repeat_sample(S,S,[]) :- !.

repeat_sample(S0,S,[[N]-1|LS]) :-

mc_sample_arg_first(dp_stick_index(1,1,

10.0,V),10,V,L),

length(L,N),

S1 is S0+1,

repeat_sample(S1,S,LS).

shows the distribution of unique indexes in 100
samples with concentration parameter 10 (Fig 6c).

5.6.2. The Chinese restaurant process
The Chinese restaurant process is a discrete-

time stochastic process, analogous to seating cus-
tomers at tables in a Chinese restaurant. It results
from considering the conditional distribution of
one component assignment given all previous ones
in a Dirichlet distribution mixture model with K
components, and then taking the limit as K goes
to infinity.

In the example dp chinese.pl the base distri-
bution is a Gaussian with mean 0 and variance 1.
X1 is drawn from the base distribution. For n > 1,
with probability α

α+n−1 Xn is drawn from the
base distribution; with probability nx

α+n−1 Xn = x,
where nx is the number of previous observations
Xj , j < n, such that Xj = x. Counts are kept by
predicate update_counts/5.

dp_n_values(N0,N,Alpha,[[V]-1|Vs],

Counts0,Counts) :-

N0<N,

dp_value(N0,Alpha,Counts0,V,Counts1),

N1 is N0+1,

dp_n_values(N1,N,Alpha,Vs,Counts1,Counts).

dp_value(NV,Alpha,Counts,V,Counts1) :-

draw_sample(Counts,NV,Alpha,I),

update_counts(0,I,Alpha,Counts,Counts1),

dp_pick_value(I,V).

update_counts(_I0,_I,Alpha,[_C],[1,Alpha]) :- !.

update_counts(I,I,_Alpha,[C|Rest],[C1|Rest]) :-

(a) Distribution of indexes with concentration param-
eter 10.

(b) Distribution of values with concentration parame-
ter 10.

(c) Distribution of unique indexes with concentration
parameter 10.

Fig. 6. Representation of the distributions in the

dirichlet process.pl example.

C1 is C+1.

update_counts(I0,I,Alpha,[C|Rest],[C|Rest1]) :-

I1 is I0+1,

update_counts(I1,I,Alpha,Rest,Rest1).

draw_sample(Counts,NV,Alpha,I) :-

NS is NV+Alpha,

maplist(div(NS),Counts,Probs),

http://cplint.lamping.unife.it/example/inference/dp_chinese.pl

13

Fig. 7. Distribution of values in the dp chinese.pl example.

length(Counts,LC),

numlist(1,LC,Values),

maplist(pair,Values,Probs,Discrete),

take_sample(NV,Discrete,I).

take_sample(_,D,V):discrete(V,D).

dp_pick_value(_,V):gaussian(V,0,1).

div(Den,V,P) :- P is V/Den.

pair(A,B,A:B).

The query

?- mc_sample_arg_first(dp_n_values(0,200,10.0,V,

[10.0],_),1,V,L),

L=[Vs-_],histogram(Vs,100,Chart).

draws the distribution of values with concentration
parameter 10 using 200 samples (Fig 7).

5.6.3. Mixture model
A particularly important application of Dirich-

let processes is as a prior probability distribution
in infinite mixture models. The target is to build a
mixture model which does not require us to spec-
ify the number of k components from the begin-
ning. In the example dp mix.pl samples are drawn
from a mixture of normal distributions whose pa-
rameters are defined by means of a Dirichlet pro-
cess. For each component, the variance is sam-
pled from a gamma distribution and the mean is
sampled from a Gaussian with mean 0 and vari-
ance 30 times the variance of the component. The
program in this case is equivalent to the one en-
coding the stick-breaking example, except for the
dp_pick_value/3 predicate that is reported in the
following.

dp_pick_value(I,NV,V) :-

ivar(I,IV),

Var is 1.0/IV,

mean(I,Var,M),

value(NV,M,Var,V).

ivar(_,IV):gamma(IV,1,0.1).

mean(_,V0,M):gaussian(M,0,V) :- V is V0*30.

value(_,M,V,Val):gaussian(Val,M,V).

Given a vector of observations obs([-1,7,3]),
the queries

?- prior(200,100,G).

?- post(200,100,G).

called over the program:

prior(Samples,NBins,Chart) :-

mc_sample_arg_first(dp_n_values(0,Samples,10.0,V),

1,V,L),

L=[Vs-_],

histogram(Vs,NBins,Chart).

post(Samples,NBins,Chart) :-

obs(O),

maplist(to_val,O,O1),

length(O1,N),

mc_lw_sample_arg_log(dp_value(0,10.0,T),

dp_n_values(0,N,10.0,O1),Samples,T,L),

maplist(keys,L,LW),

min_list(LW,Min),

maplist(exp(Min),L,L1),

density(L1,NBins,-8,15,Chart).

keys(_-W,W).

exp(Min,L-W,L-W1) :- W1 is exp(W-Min).

to_val(V,[V]-1).

draw the prior and the posterior densities respec-
tively using 200 samples (Fig. 8a, 8b).

5.7. Bayesian Estimation

Let us consider a problem proposed on the An-
glican [WvdMM14] web site3. We are trying to es-
timate the true value of a Gaussian distributed
random variable, given some observed data. The
variance is known (its value is 2) and we suppose
that the mean has itself a Gaussian distribution
with mean 1 and variance 5. We take different

3http://www.robots.ox.ac.uk/~fwood/anglican/

examples/viewer/?worksheet=gaussian-posteriors

http://cplint.lamping.unife.it/example/inference/dp_mix.pl
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=gaussian-posteriors
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=gaussian-posteriors

14

(a) Prior density in the dp mix.pl example.

(b) Posterior density in the dp mix.pl example.

Fig. 8. Representation of the distributions in the dp mix.pl

example.

measurements (e.g. at different times), indexed by
an integer.

This problem, handled in gauss mean est.pl,
can be modeled with:

value(I,X) :- mean(M), value(I,M,X).

mean(M):gaussian(M,1.0,5.0).

value(_,M,X):gaussian(X,M,2.0).

Given that we observe 9 and 8 at indexes 1 and 2,
how does the distribution of the random variable
(value at index 0) change with respect to the case
of no observations? This example shows that the
parameters of the distribution atoms can be taken
from the probabilistic atoms (gaussian(X,M,2.0)
and value(_,M,X) respectively). The query

?- mc_sample_arg(value(0,Y),100000,Y,L0),

mc_lw_sample_arg(value(0,X),(value(1,9),

value(2,8)),1000,X,L),

densities(L0,L,40,Chart).

takes 100,000 samples of the argument X of
value(0,X) before and after the observation of

Fig. 9. Prior and posterior densities in gauss mean est.pl.

value(1,9),value(2,8) and draws the prior and
posterior densities of the samples using a line
chart. Figure 9 shows the resulting graph where
the posterior is clearly peaked at around 7.

5.8. Kalman Filter

The example kalman filter.pl (adapted from
[NR14]) encodes a Kalman filter, i.e., a Hidden
Markov model with a real value as state and a real
value as output.

kf(N,O,T) :- init(S), kf_part(0,N,S,O,T).

kf_part(I,N,S,[V|RO],T) :- I < N, NextI is I+1,

trans(S,I,NextS),emit(NextS,I,V),

kf_part(NextI,N,NextS,RO,T).

kf_part(N,N,S,[],S).

trans(S,I,NextS) :- {NextS =:= E+S},trans_err(I,E).

emit(NextS,I,V) :- {V =:= NextS+X},obs_err(I,X).

init(S):gaussian(S,0,1).

trans_err(_,E):gaussian(E,0,2).

obs_err(_,E):gaussian(E,0,1).

The next state is given by the current state plus
Gaussian noise (with mean 0 and variance 2 in this
example) and the output is given by the current
state plus Gaussian noise (with mean 0 and vari-
ance 1 in this example). A Kalman filter can be
considered as modeling a random walk of a single
continuous state variable with noisy observations.

Continuous random variables are involved in
arithmetic expressions (in the predicates trans/3
and emit/3). It is often convenient, as in this case,
to use CLP(R) constraints so that the same clauses
can be used both to sample and to evaluate the
weight of the sample on the basis of the evidence,
otherwise different clauses have to be written.

Given that at time 0 the value 2.5 was observed,
what is the distribution of the state at time 1 (fil-

http://cplint.lamping.unife.it/example/inference/gauss_mean_est.pl
http://cplint.lamping.unife.it/example/inference/kalman_filter.pl

15

tering problem)? Likelihood weighting can be used
to condition the distribution on evidence on a con-
tinuous random variable (evidence with probabil-
ity 0). CLP(R) constraints allow both sampling
and weighting samples with the same program:
when sampling, the constraint {V=:=NextS+X} is
used to compute V from X and NextS. When
weighting, the constraint is used to compute X

from V and NextS. The above query can be ex-
pressed with

?- mc_sample_arg(kf(1,_O1,Y),10000,Y,L0),

mc_lw_sample_arg(kf(1,_O2,T),kf(1,[2.5],_T),

10000,T,L),

densities(L0,L,40,Chart).

that returns the graph of Figure 10a, from which it
is evident that the posterior distribution is peaked
around 2.5.

Given a Kalman filter with four observations,
the value of the state at the same time points can
be sampled by running particle filtering:

?-[O1,O2,O3,O4]=[-0.133, -1.183, -3.212, -4.586],

mc_particle_sample_arg([kf_fin(1,T1),kf_fin(2,T2),

kf_fin(3,T3),kf_fin(4,T4)],[kf_o(1,O1),kf_o(2,O2),

kf_o(3,O3),kf_o(4,O4)],100,[T1,T2,T3,T4],

[F1,F2,F3,F4]).

The list of samples is returned in [F1,F2,F3,F4],
with each element being the sample for a time
point.

Given the states from which the observations
were obtained, Figure 10b shows a graph with the
distributions of the state variable at time 1, 2, 3
and 4 (S1, S2, S3, S4, density on the left Y axis)
and with the points for the observations and the
states with respect to time (time on the right Y
axis).

5.9. Stochastic Logic Programs

Stochastic logic programs (SLPs) [Mug00] are a
probabilistic formalism where each clause is anno-
tated with a probability. The probabilities of all
clauses with the same head predicate sum to one
and define a mutually exclusive choice on how to
continue a proof. Furthermore, repeated choices
are independent, i.e., no stochastic memorization
is done. SLPs are used most commonly for defin-
ing a distribution over the values of arguments of
a query. SLPs are a direct generalization of proba-
bilistic context-free grammars and are particularly
suitable for representing them. For example, the
grammar

pre post

(a) Prior and posterior densities in kalman.pl.

D
e
n
si

ty

Ti
m

e

True State Obs S1 S2 S3 S4

(b) Example of particle filtering in kalman.pl.

Fig. 10. Representation of the distributions in the

kalman filter.pl example.

0.2:S->aS 0.2:S->bS 0.3:S->a 0.3:S->b

can be represented with the SLP

0.2::s([a|R]):- s(R). 0.2::s([b|R]):- s(R).

0.3::s([a]). 0.3::s([b]).

This SLP (slp pcfg.pl) can be encoded in
cplint as:

s_as(N):0.2;s_bs(N):0.2;s_a(N):0.3;s_b(N):0.3.

s([a|R],N0):- s_as(N0), N1 is N0+1, s(R,N1).

s([b|R],N0):- s_bs(N0), N1 is N0+1, s(R,N1).

s([a],N0):- s_a(N0). s([b],N0):- s_b(N0).

s(L):-s(L,0).

where we have added an argument to s/1 for pass-
ing a counter to ensure that different calls to s/2

are associated with independent random variables.
By using the argument sampling features of

cplint we can simulate the behavior of SLPs. For
example the query

?- mc_sample_arg_bar(s(S),100,S,L).

samples 100 sentences from the language and
draws the bar chart of Figure 11.

http://cplint.lamping.unife.it/example/inference/slp_pcfg.pl

16

Fig. 11. Samples of sentences of the language defined in
slp pcfg.pl.

6. Conclusions

cplint on SWISH is a web application for PLP
that offers many features, including some that
used to be present only in other PP paradigms,
such as functional or imperative PP. For example,
the possibility of handling hybrid programs, con-
taining both discrete and continuous variables, is
relatively novel in PLP and cplint on SWISH is
the first online system offering it.
cplint on SWISH allows users to perform rea-

soning tasks by using just a web browser, with-
out requiring the installation of a PLP system on
their machine, an usually complex process. In this
way we hope to reach out to a wider audience and
increase the user base of PLP.

In the future we plan to explore in more detail
the connection with PP using functional/imperative
languages and exploit the techniques developed in
that field. We are currently working on supporting
a probabilistic extension [ALRZ16] of hybrid logic
knowledge bases [MR10], for combining probabilis-
tic logic programming with probabilistic descrip-
tion logics. Moreover, we plan to add the support
to tractable languages and causal probability the-
ory. Finally, we are working on the implementa-
tion of a new feature which will allow users to ex-
ploit also the R language for improving statistical
computing functionalities.

A complete online tutorial [RC16] is available at
http://ds.ing.unife.it/~gcota/plptutorial/.

Acknowledgements

This work was supported by the “GNCS-
INdAM”.

References

[ACRZ16] Marco Alberti, Giuseppe Cota, Fabrizio

Riguzzi, and Riccardo Zese. Probabilistic log-
ical inference on the web. In Giovanni Adorni,

Stefano Cagnoni, Marco Gori, and Marco
Maratea, editors, AI*IA 2016 Advances in

Artificial Intelligence, volume 10037 of Lec-

ture Notes in Artificial Intelligence. Springer,
2016.

[ALRZ16] Marco Alberti, Evelina Lamma, Fabrizio

Riguzzi, and Riccardo Zese. Probabilistic
hybrid knowledge bases under the distribu-

tion semantics. In Giovanni Adorni, Stefano

Cagnoni, Marco Gori, and Marco Maratea,
editors, AI*IA 2016 Advances in Artificial

Intelligence, volume 10037 of Lecture Notes

in Artificial Intelligence. Springer, 2016.
[DKT07] Luc De Raedt, Angelika Kimmig, and Hannu

Toivonen. ProbLog: A probabilistic Prolog

and its application in link discovery. In IJCAI
2007, volume 7, pages 2462–2467, Palo Alto,

California USA, 2007. AAAI Press.
[DM02] Adnan Darwiche and Pierre Marquis. A

knowledge compilation map. J. Artif. Intell.

Res., 17:229–264, 2002.
[DRK15] Luc De Raedt and Angelika Kimmig. Proba-

bilistic (logic) programming concepts. Mach.

Learn., 100(1):5–47, 2015.
[FC90] Robert M Fung and Kuo-Chu Chang. Weigh-

ing and integrating evidence for stochastic

simulation in bayesian networks. In Fifth An-
nual Conference on Uncertainty in Artificial

Intelligence, pages 209–220. North-Holland

Publishing Co., 1990.
[FdBR+15] Daan Fierens, Guy Van den Broeck, Joris

Renkens, Dimitar Sht. Shterionov, Bernd
Gutmann, Ingo Thon, Gerda Janssens, and

Luc De Raedt. Inference and learning in

probabilistic logic programs using weighted
boolean formulas. Theor. Pract. Log. Prog.,

15(3):358–401, 2015.

[GTK+11] Bernd Gutmann, Ingo Thon, Angelika Kim-
mig, Maurice Bruynooghe, and Luc De

Raedt. The magic of logical inference in prob-

abilistic programming. Theor. Pract. Log.
Prog., 11(4-5):663–680, 2011.

[IRR12] Muhammad Asiful Islam, CR Ramakrishnan,

and IV Ramakrishnan. Inference in proba-
bilistic logic programs with continuous ran-

dom variables. Theor. Pract. Log. Prog.,
12:505–523, 2012.

[KDD+11] Angelika Kimmig, Bart Demoen, Luc De

Raedt, Vitor Santos Costa, and Ricardo
Rocha. On the implementation of the proba-

bilistic logic programming language ProbLog.

Theor. Pract. Log. Prog., 11(2-3):235–262,
2011.

[KF09] Daphne Koller and Nir Friedman. Probabilis-

tic Graphical Models: Principles and Tech-
niques. Adaptive computation and machine

http://ds.ing.unife.it/~gcota/plptutorial/

17

learning. MIT Press, Cambridge, MA, 2009.
[MR10] Boris Motik and Riccardo Rosati. Reconcil-

ing description logics and rules. J. ACM,

57(5):30:1–30:62, June 2010.
[Mug00] Stephen Muggleton. Learning stochastic logic

programs. Electron. Trans. Artif. Intell.,
4(B):141–153, 2000.

[NDLDR16] Davide Nitti, Tinne De Laet, and Luc

De Raedt. Probabilistic logic programming
for hybrid relational domains. Mach. Learn.,

103(3):407–449, 2016.

[NR14] Arun Nampally and CR Ramakrishnan.
Adaptive MCMC-based inference in prob-

abilistic logic programs. arXiv preprint

arXiv:1403.6036, 2014.
[Pfe16] Avi Pfeffer. Practical Probabilistic Program-

ming. Manning Publications, 2016.

[RBL+16] Fabrizio Riguzzi, Elena Bellodi, Evelina
Lamma, Riccardo Zese, and Giuseppe Cota.

Probabilistic logic programming on the web.

Software Pract. and Exper., 46(10):1381–
1396, October 2016.

[RC16] Fabrizio Riguzzi and Giuseppe Cota. Proba-
bilistic logic programming tutorial. The As-

sociation for Logic Programming Newsletter,

29(1):1–1, March/April 2016.
[RD06] Matthew Richardson and Pedro Domingos.

Markov logic networks. Mach. Learn., 62(1-

2):107–136, 2006.
[Rig13] Fabrizio Riguzzi. MCINTYRE: A Monte

Carlo system for probabilistic logic program-

ming. Fund. Inform., 124(4):521–541, 2013.

[Rig16] Fabrizio Riguzzi. The distribution semantics
for normal programs with function symbols.

Int. J. Approx. Reason., 77:1 – 19, 2016.

[RS11] Fabrizio Riguzzi and Terrance Swift. The
PITA system: Tabling and answer subsump-

tion for reasoning under uncertainty. Theor.

Pract. Log. Prog., 11(4–5):433–449, 2011.
[Sat95] Taisuke Sato. A statistical learning method

for logic programs with distribution seman-

tics. In Leon Sterling, editor, ICLP-95, pages
715–729, Cambridge, Massachusetts, 1995.

MIT Press.

[VN51] John Von Neumann. Various techniques used
in connection with random digits. Nat. Bu-

reau Stand. Appl. Math. Ser., 12:36–38, 1951.
[VVB04] Joost Vennekens, Sofie Verbaeten, and Mau-

rice Bruynooghe. Logic Programs With An-

notated Disjunctions. In Bart Demoen and
Vladimir Lifschitz, editors, Logic Program-

ming: 20th International Conference, ICLP

2004, Saint-Malo, France, September 6-10,
2004. Proceedings, volume 3132 of LNCS,

pages 431–445, Berlin Heidelberg, Germany,

2004. Springer Berlin Heidelberg.
[WvdMM14] Frank Wood, Jan Willem van de Meent, and

Vikash Mansinghka. A new approach to prob-

abilistic programming inference. In Proceed-
ings of the 17th International conference on

Artificial Intelligence and Statistics, pages

1024–1032, 2014.

