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0. Introduction

The motivation of this note is the following question, raised in [5]: Does there exist a smooth, integral
curve C' C P3, of degree 8, genus 3, which is self-linked? We recall that a curve is self-linked if it is the
locus of (simple) contact of two surfaces (see Section 1). This question in turn is motivated by the following
fact (proved in [5], Proposition 7.5): let S C P3 be a surface with ordinary singularities. Let C' C S be a
smooth, irreducible curve which is the set theoretic complete intersection (s.t.c.i.) of S with another surface.
If C ¢ Sing(S), then C is self-linked (on S) (see Remark 7 for a precise statement). We recall that the
problem to know whether or not every smooth irreducible curve C' C P? is a s.t.c.i. is still open. The study
of self-linked curves is a first step in this long standing open problem. Self-linked curves have been studied
by many authors (see [5] and the bibliography therein).

In this note we show that, as expected, no curve of degree 8, genus 3 is self-linked. This follows from our
main result (Theorem 4) which gives necessary conditions on the invariants of a curve to be self-linked. As
a consequence we obtain that if d > 13 and d > g — 3, then no curve of degree d, genus g can be self-linked
(Corollary 6).

In the last section we obtain similar results for curves which are set theoretic complete intersections with
a triple structure (i.e. curves admitting a triple structure which is a complete intersection).
Throughout this note we work over an algebraically closed field of characteristic zero.

E-mail address: phe@Qunife.it.

http://dx.doi.org/10.1016/j.jpaa.2014.04.010
0022-4049/© 2014 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.jpaa.2014.04.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
mailto:phe@unife.it
http://dx.doi.org/10.1016/j.jpaa.2014.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2014.04.010&domain=pdf

78 Ph. Ellia / Journal of Pure and Applied Algebra 219 (2015) 77-82

1. Generalities

We denote by C' C P? a smooth, irreducible curve of degree d, genus ¢g. The curve C is self-linked if
it is (algebraically) linked to itself by a complete intersection F, N F}, of two surfaces of degrees a,b. In
particular 2d = ab. This is equivalent to say that there exists a double structure, Cs, on C which is a
complete intersection of type (a,b).

Let’s observe that if C' is not a complete intersection, then C' N Sing(F,) # 0 and C' N Sing(Fy) # @. This
follows from the fact (see [5], Lemma 7.6) that for a surface S C P3, Pic(S)/Pic(P?) is a torsion free abelian
group.

The two surfaces Fy, F}, are tangents almost everywhere along C'. Moreover at every point x € C one of
the two is smooth (otherwise the embedding dimension of the intersection would be three). So Fy,, F}, define
a sub-line bundle L C N¢. Abusing notation L = N¢ g, = N¢.r,. The quotient N5 — L* — 0 defines the
double structure Cs, hence:

0—=L*—=0Oc, > 0Oc—0 (1)
By the exact sequence of liaison:
0—>Zc, > Zc s we(d—a—0) =0
we see that Z¢ ¢, ~ we(4 — a — b). This means that L* = wa(4 — a — b). In particular:
deg(L) =:l=d(a+b—4) —2g9+2 (2)

Remark 1. If C' is a complete intersection, then C is self-linked. If C is a curve on a quadric cone, then C'
is self-linked. In all these cases N¢ splits.

On the other hand it is easy to give examples of curves which are not self-linked. Let C C P? be
a smooth, irreducible curve whose degree, d, is an odd prime number. Assume h°(Z¢(2)) = 0. If C is
self-linked by F, N Fy, then 2d = ab,a < b. Since d is prime, a = 2, in contradiction with the assumption
M(Zo(2) = 0.

A less evident fact: if C' C P? is a smooth subcanonical curve (i.e. we ~ O¢(a) for some a € Z) which is
not a complete intersection, then C' is not self-linked (see [1]).

We can add a further class of examples:

Lemma 2. Let C' be a smooth, irreducible curve lying on a smooth quadric Q@ C P3. If C is not a complete
intersection and deg(C) > 4, then C is never self-linked.

Proof. Assume C is self-linked by F, N Fy, a < b. Let (o, ), a < (3, denote the bi-degree of C' on Q. If
F, = Q, then F, N Q is a curve of bi-degree (b,b) = (2a,20). It follows that « = 8 and C is a complete
intersection. So we may assume that F, is not a multiple of Q). The intersection F, N consists of C' and of
curve A of bi-degree (a — a,a — ). Since A is not empty (C' is not a complete intersection) we have a > «
and a > . It follows that: 2a > a+ 3 = d. So a > d/2. Since ab = 2d, we get b=2d/a > a > d/2,s0a < 3
hence d < 5. If d = 5, then (a,b) = (2,5) in contradiction with a > d/2. Hence d < 4. O

If d < 5, then C is rational or elliptic, see Theorem 4. This lemma is in contrast with the fact that every
curve on a quadric cone is self-linked.
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2. The Gauss map associated to L C N¢

We first recall some constructions associated with a sub-bundle of N¢. In what follow we don’t assume
C self-linked, C' is just any smooth, irreducible curve not contained in a plane. If L is a sub-bundle of
N¢, then L(—1) C Ne(—1) comes from a rank two vector bundle: 7y, C Tps(—1)|C. At each point z € C,
Tr(z) C Tps(—1)(z) = V/d,, defines a plane of P? containing the tangent line T,,C (here we see P? as the
projective space of lines of the four dimensional vector space V and d, C V is the line corresponding to the
point = € P3).

Local computations show that the plane 77 (z) is the Zariski tangent plane to the double structure Co
defined by N& — L* — 0.

Now the bundle T}, defines the Gauss map ¢, : C — D C P§ (pr(x) = Tr(z)). It is known that ¢, can’t
be constant and that D can’t be a line ([2,6] Theorem 1.6). By Nakano’s exact sequence ¢} (Op; (1)) =
Tps(—1)|C/TL, which has degree d — deg(7.). Since L(—1) = T,/T(—1)¢, we get:

deg(07 (Op;(1))) = deg(pr). deg(D) = 3d + 29 — 2 — | (3)

Now consider the dual curve of D, D* C P? (defined by the osculating planes of D). The tangent surface
Tan(D*) is called the characteristic surface of L and is denoted by Sy . This surface is the envelope surface
of the family of planes {7 (z)}zec. Since the T (x) are the tangent spaces to the double structure Cs, we
have Cy C SY (see also [8] Lemma 2.1.2).

If D is a plane curve, then S) is the cone over the (plane) dual curve D*.

We will need the following result, which is contained in [7]:

Lemma 3. A smooth, integral curve C C P2, of degree 9, genus 7 is never self-linked.

Proof. If C is self-linked it is by a complete intersection of type (3,6). If the cubic surface, F3, is normal,
then by (the proof of) Theorem 3.1 in [7], we should have 9.6 < 6.7, which is not the case. If the cubic
is ruled we conclude with Propositions 3.4, 3.5 of [7]. Finally if F3 is a cone, it has to be the cone over a
smooth cubic curve (see the proof of Theorem 5.1 of [7]). But a degree 9 curve on such a cone is a complete
intersection (3,3), hence has genus 10. O

Now we can state and prove our main result:

Theorem 4. Let C C P? be a smooth, irreducible curve of degree d, genus g. Assume d > 5 and h®(Z¢(2)) = 0.
If C is self-linked by a complete intersection of type (a,b), then one of the following occurs:
g=3,d=06 and (a,b) = (3,4), or:

g>4 and 4g>dla+b—T7)+12 (4)
Proof. From (2) and (3) we get
r = deg(¢ (Op3 (1)) = deg(r). deg(D) = 4g — 4 — d(a + b — 7) (5)
Hence we have:
4g—4—r=d(a+b—7) and 2d = abd. (6)

The assumption h°(Z¢(2)) = 0 implies b > a > 3 and deg(D) > 3. Indeed we already know that deg(D) > 2.
If we have equality, then C' C S) which is a cone over the dual conic D*. So we have: r > 3.
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Ifg<1,49—4—d(a+b—"7)> 3 implies a + b < 6, hence (a,b) = (3, 3), which is impossible. So g > 2.
If 2 < g <3, we get (a,b) = (3,4), hence d = 6. Moreover r =4 if g =2 and r =8 if g = 3.

Assume first that ¢y, is bi-rational. Then D C Pj is an integral curve of degree r and geometrical genus g.
If D is not contained in a plane, then g < p,(D) < G(r,2), where G(r,2) is given by Halphen—Castelnuovo’s
bound: G(r,2) = (r — 2)?/4 if r is even, G(r,2) = (r — 1)(r — 3)/4, if r is odd. It follows that g <
G(7,2) = 6. Since g > 2 we immediately get » > 5. From what we said above, this implies g > 3, hence
d > 6. We have 49 — 4 — r < 15 and from (6), since d > 6, a + b — 7 < 2. It follows that (a,b;d) =
(3,4;6),(4,4;8),(3,6;9), (4,5;10). From (6) we get: 4(g — 1) = r,r + 8,7 + 18,r 4+ 20 and we see that there
is no solution with 5 <r <7, 3 < g <6.

In conclusion if » < 7 and if ¢y is bi-rational, then D is a plane curve of degree r and geometric
genus g > 2. We have 2 < g < (r — 1)(r — 2)/2 = po(D). Moreover C5 lies on the cone, K, over the
(plane) dual curve D*. Finally since ¢y, is bi-rational, C' is a unisecant on the cone K. This implies that
deg(D*) +e =d (+), where ¢ = 1,0, according to whether C' passes through the vertex of the cone or not.

Since g > 2, we get r > 4.

If r = 4 then 2 < g < 3 and we already know that d = 6. If ¢ = 3, D is smooth and deg(D*) = 12,
in contradiction with (4). If g = 2, D has one double point which can be a node, a cusp or a tacnode. It
follows that deg(D*) = 10,9 or 8. In any case we get a contradiction with (+).

If r = 5, then 2 < g < 6 and from (6) we get 49 —9 =d(a+b— 7). Since d > 5, the cases 2 < g < 3 are
impossible. If g = 4, the only possibility is d = 7,a + b = 8. Hence a = b = 8, but then again d = ab/2 = 8:
contradiction. In the same way we see that the cases g = 5,6 are impossible.

If r = 6 then 2 < g < 10 and 49 — 10 = d(a + b — 7), with d = ab/2. Observe that if a +b—7 = 1,
thena=b=4and d=38,if a+b— 7 =2, then (a,b,d) = (3,6,9) or (4,5,10). We get that for g < 10 the
only possibility is ¢ = 7,d = 9, (a,b) = (3,6), which is excluded by Lemma 3. Finally if g = 10, then D is
smooth. It follows that d = deg(D*) + ¢ = 30 4 . Since (6) yields 30 = d(a + b — T7), we get d = 30 and
a = b =4, which is impossible.

Ifr="7then 2 < g<15and 49— 11 = d(a+b— 7). For most values of g < 15, 4g — 11 is a prime number
and anyway it always has a simple factorization into prime numbers. Bearing in mind that if a +b—7 =1,
then a =b=4and d =8;if a+b— 7 = 2 the (a,b,d) = (3,6,9) or (4,5,10) and if a + b — 7 = 3, then
(a,b,d) = (4,6,12), we easily see that there are no solutions.

In conclusion if r < 7 and ¢y, is bi-rational, then the only possibility is for r = 6, d =9, g = 7 and
(a,b) = (3,6) (in this case D is a plane curve with a triple point).

Now for 3 <r <7, r = deg(¢r). deg(D) and deg(D) > 3, we see that if ¢y, is not bi-rational, then r = 6,
deg(pr) = 2 and deg(D) = 3.

If D is not contained in a plane it is a twisted cubic. The dual curve D* is again a twisted cubic and
SV = Tan(D*) is a quartic surface. Since Co C SV, SV = AF, + BF,. If b > 4, it follows that F, = SV, i.e.
a = 4. From (6) we get: 49 = d(d—6)/2+10. Since b = d/2, d is even, hence d = 0,2 (mod 4) and we see that
the previous equation never gives an integral value for g. This shows b < 4, hence (a,b,d) = (3,4, 6), (4,4, 8).
Plugging these values into (6) we get a contradiction.

It follows that D must be a cubic plane curve. If D is smooth (has a node, a cusp), then deg(D*) = 6 (4
or 3). Since ¢y, has degree two, C'is a bi-secant on the cone S¥ over D*. It follows that d = 2deg(D*) + ¢.
Since Cy C SV, SV = AF, + BF,. If b > deg(D*), then F, = SY and a = deg(D*). It follows that
b = 2d/ deg(D*). This implies b = 4. Tt follows that (a,b,d) = (3,4,6), (4,4,8). Plugging these values into
(6) we get a contradiction.

In conclusion we must have r > 8. O

Remark 5. Because of Lemma 2 the assumption h°(Zo(2)) = 0 is harmless.
There exist smooth curves of degree 6, genus 3 which are self-linked [3,4].
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This improves Theorem 7.8 of [5]. It follows from (4) that no curve of degree 8, genus 3 can be self-linked.
This answers to a question raised in [5] (Introduction and Remark 7.19).

Corollary 6. Let C C P? be a smooth, irreducible curve of degree d > 4, genus g, with h°(Zo(2)) = 0. If C
is self-linked, then:

+3 (7)
Moreover if d > 13 and d > g — 3 no curve of degree d, genus g can be self-linked.

Proof. If 2d = ab,a > 2, then a + b varies from d + 2 (a = 2,b = d) to 2v/2d (a = b = v/2d). The inequality
then follows from (4).

A curve with d > g — 3 and d > 13 cannot lie on a quadric cone. Moreover if d > 13, then 2d = ab > 26.
It follows that a + b > 11 and inequality (4) is never satisfied if d > g —3. O

Remark 7. A reduced surface S C P3 is said to have ordinary singularities if its singular locus consists of
a double curve, R, the surface having transversal tangent planes at most points of R, plus a finite number
of pinch points and non-planar triple points. As proved in [5], Proposition 7.5, if a smooth curve is a set
theoretic complete intersection on S with ordinary singularities and if C' ¢ Sing(S), then C is self-linked
(on 5).

3. Triple structures

To conclude let’s see how this approach applies also to set theoretic complete intersections (s.t.c.i.) with
a triple structure. Assume F, N F, = C3, where C3 is a triple structure on a smooth, irreducible curve of
degree d, genus g (i.e. C3 is a locally Cohen-Macaulay (in our case l.c.i.) scheme with Supp(Cs) = C and
ab = 3d). The complete intersection F, N F} links C' to a double structure, Cs, on C. By liaison we have:
a(C2) —g = d(a+b—4)/2. Now Cs (which as any double structure on C is a locally complete intersection
curve) corresponds to a sub-line bundle L C N¢. From the exact sequence (1), we get:

d
l::deg(L):i(aerfél)ngrl (8)
Theorem 8. Let C' C P3 be a smooth, connected curve of degree d, genus g. Assume C does not lie on a

plane nor on a quadric cone. If there exists a triple structure on C' which is the complete intersection of two
surfaces of degrees a,b, then:

[\CRRSH

39> -(a+b—-10)+6 9)
In particular: g > %(\/ 12d — 10) + 1.
Proof. As before we consider the Gauss map ¢r. By (3) and (8), we have:

d
r:=deg(pr).deg(D) =39 — 3 — 5(& +b—10).

We know that r > 2 and if equality C' lies on a quadric cone. So we may assume r > 3 and (9) follows. For
the second inequality, if ab = 3d, then a + b > 2v/3d. O

Combining with Corollary 6 we get:
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Corollary 9. Let C C P? be a smooth, connected curve of degree d, genus g. If C is not contained in a plane

nor in a quadric cone and if g < d(v12d-10)+6 '12016_10)%

m < 3.

, then C cannot be a s.t.c.i. with a structure of multiplicity

By the way let us observe the following elementary fact:

Lemma 10. Let C C P? be a smooth, connected curve of degree d, genus g. Let s denote the minimal degree
of a surface containing C. Assume C is the set theoretic complete intersection of two surfaces of degrees
a,b;a < b and that a is minimal with respect to this property. Let md = ab. If a > s or if h°(Zc(s)) > 1,
then m > d/s?.

Proof. Assume C = F, N F}, as sets with a < b and ab = md. If S € H°(Z¢(s)), then S™ € H?(Zx), where
X denotes the (m — 1)-th infinitesimal neighborhood of C (Zx = Z7). It follows that S™ € (Fy, F}p). So
S™ = AF, + BF,. If b > sm, then S™ = AF, and since S is integral, we get S' = F,. It follows that
SN F, =C as sets. By minimality of a, it follows that F, = S. This is excluded by our assumptions (a > s
or h°(Zc(s)) > 1). So b < sm. Thus m > b/s, hence m? > ab/s* = md/s? and the result follows. 0O

Let C C @, @ a smooth quadric surface. Assume C' is the s.t.c.i. of two surfaces of degrees a,b. Then if
d > 3 and C is not a complete intersection, it is easy to see that b > a > 2. Hence m > d/4, where dm = ab.
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