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We give necessary conditions on the degree and the genus of a smooth, integral curve
C ⊂ P

3 to be self-linked (i.e. locus of simple contact of two surfaces). We also give
similar results for set theoretically complete intersection curves with a structure of
multiplicity three (i.e. locus of 2-contact of two surfaces).
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0. Introduction

The motivation of this note is the following question, raised in [5]: Does there exist a smooth, integral
curve C ⊂ P

3, of degree 8, genus 3, which is self-linked? We recall that a curve is self-linked if it is the
locus of (simple) contact of two surfaces (see Section 1). This question in turn is motivated by the following
fact (proved in [5], Proposition 7.5): let S ⊂ P

3 be a surface with ordinary singularities. Let C ⊂ S be a
smooth, irreducible curve which is the set theoretic complete intersection (s.t.c.i.) of S with another surface.
If C �⊂ Sing(S), then C is self-linked (on S) (see Remark 7 for a precise statement). We recall that the
problem to know whether or not every smooth irreducible curve C ⊂ P

3 is a s.t.c.i. is still open. The study
of self-linked curves is a first step in this long standing open problem. Self-linked curves have been studied
by many authors (see [5] and the bibliography therein).

In this note we show that, as expected, no curve of degree 8, genus 3 is self-linked. This follows from our
main result (Theorem 4) which gives necessary conditions on the invariants of a curve to be self-linked. As
a consequence we obtain that if d ≥ 13 and d > g − 3, then no curve of degree d, genus g can be self-linked
(Corollary 6).

In the last section we obtain similar results for curves which are set theoretic complete intersections with
a triple structure (i.e. curves admitting a triple structure which is a complete intersection).

Throughout this note we work over an algebraically closed field of characteristic zero.
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1. Generalities

We denote by C ⊂ P
3 a smooth, irreducible curve of degree d, genus g. The curve C is self-linked if

it is (algebraically) linked to itself by a complete intersection Fa ∩ Fb of two surfaces of degrees a, b. In
particular 2d = ab. This is equivalent to say that there exists a double structure, C2, on C which is a
complete intersection of type (a, b).

Let’s observe that if C is not a complete intersection, then C ∩ Sing(Fa) �= ∅ and C ∩ Sing(Fb) �= ∅. This
follows from the fact (see [5], Lemma 7.6) that for a surface S ⊂ P

3, Pic(S)/Pic(P3) is a torsion free abelian
group.

The two surfaces Fa, Fb are tangents almost everywhere along C. Moreover at every point x ∈ C one of
the two is smooth (otherwise the embedding dimension of the intersection would be three). So Fa, Fb define
a sub-line bundle L ⊂ NC . Abusing notation L = NC,Fa

= NC,Fb
. The quotient N∗

C → L∗ → 0 defines the
double structure C2, hence:

0 → L∗ → OC2 → OC → 0 (1)

By the exact sequence of liaison:

0 → IC2 → IC → ωC(4 − a− b) → 0

we see that IC,C2 	 ωC(4 − a− b). This means that L∗ = ωC(4 − a− b). In particular:

deg(L) =: l = d(a + b− 4) − 2g + 2 (2)

Remark 1. If C is a complete intersection, then C is self-linked. If C is a curve on a quadric cone, then C

is self-linked. In all these cases NC splits.
On the other hand it is easy to give examples of curves which are not self-linked. Let C ⊂ P

3 be
a smooth, irreducible curve whose degree, d, is an odd prime number. Assume h0(IC(2)) = 0. If C is
self-linked by Fa ∩ Fb, then 2d = ab, a ≤ b. Since d is prime, a = 2, in contradiction with the assumption
h0(IC(2)) = 0.

A less evident fact: if C ⊂ P
3 is a smooth subcanonical curve (i.e. ωC 	 OC(a) for some a ∈ Z) which is

not a complete intersection, then C is not self-linked (see [1]).

We can add a further class of examples:

Lemma 2. Let C be a smooth, irreducible curve lying on a smooth quadric Q ⊂ P
3. If C is not a complete

intersection and deg(C) > 4, then C is never self-linked.

Proof. Assume C is self-linked by Fa ∩ Fb, a ≤ b. Let (α, β), α < β, denote the bi-degree of C on Q. If
Fa = Q, then Fb ∩ Q is a curve of bi-degree (b, b) = (2α, 2β). It follows that α = β and C is a complete
intersection. So we may assume that Fa is not a multiple of Q. The intersection Fa ∩Q consists of C and of
curve A of bi-degree (a− α, a− β). Since A is not empty (C is not a complete intersection) we have a > α

and a ≥ β. It follows that: 2a > α+ β = d. So a > d/2. Since ab = 2d, we get b = 2d/a ≥ a > d/2, so a ≤ 3
hence d ≤ 5. If d = 5, then (a, b) = (2, 5) in contradiction with a > d/2. Hence d ≤ 4. �

If d < 5, then C is rational or elliptic, see Theorem 4. This lemma is in contrast with the fact that every
curve on a quadric cone is self-linked.
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2. The Gauss map associated to L ⊂ NC

We first recall some constructions associated with a sub-bundle of NC . In what follow we don’t assume
C self-linked, C is just any smooth, irreducible curve not contained in a plane. If L is a sub-bundle of
NC , then L(−1) ⊂ NC(−1) comes from a rank two vector bundle: TL ⊂ TP3(−1)|C. At each point x ∈ C,
TL(x) ⊂ TP3(−1)(x) = V/dx, defines a plane of P3 containing the tangent line TxC (here we see P

3 as the
projective space of lines of the four dimensional vector space V and dx ⊂ V is the line corresponding to the
point x ∈ P

3).
Local computations show that the plane TL(x) is the Zariski tangent plane to the double structure C2

defined by N∗
C → L∗ → 0.

Now the bundle TL defines the Gauss map ϕL : C → D ⊂ P
∗
3 (ϕL(x) = TL(x)). It is known that ϕL can’t

be constant and that D can’t be a line ([2,6] Theorem 1.6). By Nakano’s exact sequence ϕ∗
L(OP∗

3 (1)) =
TP3(−1)|C/TL, which has degree d− deg(TL). Since L(−1) = TL/T (−1)C , we get:

deg
(
ϕ∗
L

(
OP

∗
3 (1)

))
= deg(ϕL).deg(D) = 3d + 2g − 2 − l (3)

Now consider the dual curve of D, D∗ ⊂ P
3 (defined by the osculating planes of D). The tangent surface

Tan(D∗) is called the characteristic surface of L and is denoted by S∨
L . This surface is the envelope surface

of the family of planes {TL(x)}x∈C . Since the TL(x) are the tangent spaces to the double structure C2, we
have C2 ⊂ S∨

L (see also [8] Lemma 2.1.2).
If D is a plane curve, then S∨

L is the cone over the (plane) dual curve D∗.
We will need the following result, which is contained in [7]:

Lemma 3. A smooth, integral curve C ⊂ P
3, of degree 9, genus 7 is never self-linked.

Proof. If C is self-linked it is by a complete intersection of type (3, 6). If the cubic surface, F3, is normal,
then by (the proof of) Theorem 3.1 in [7], we should have 9.6 ≤ 6.7, which is not the case. If the cubic
is ruled we conclude with Propositions 3.4, 3.5 of [7]. Finally if F3 is a cone, it has to be the cone over a
smooth cubic curve (see the proof of Theorem 5.1 of [7]). But a degree 9 curve on such a cone is a complete
intersection (3, 3), hence has genus 10. �

Now we can state and prove our main result:

Theorem 4. Let C ⊂ P
3 be a smooth, irreducible curve of degree d, genus g. Assume d ≥ 5 and h0(IC(2)) = 0.

If C is self-linked by a complete intersection of type (a, b), then one of the following occurs:
g = 3, d = 6 and (a, b) = (3, 4), or:

g ≥ 4 and 4g ≥ d(a + b− 7) + 12 (4)

Proof. From (2) and (3) we get

r := deg(ϕ∗
L

(
OP

∗
3 (1)

)
= deg(ϕL).deg(D) = 4g − 4 − d(a + b− 7) (5)

Hence we have:

4g − 4 − r = d(a + b− 7) and 2d = ab. (6)

The assumption h0(IC(2)) = 0 implies b ≥ a ≥ 3 and deg(D) ≥ 3. Indeed we already know that deg(D) ≥ 2.
If we have equality, then C ⊂ S∨

L which is a cone over the dual conic D∗. So we have: r ≥ 3.
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If g ≤ 1, 4g − 4 − d(a + b− 7) ≥ 3 implies a + b ≤ 6, hence (a, b) = (3, 3), which is impossible. So g ≥ 2.
If 2 ≤ g ≤ 3, we get (a, b) = (3, 4), hence d = 6. Moreover r = 4 if g = 2 and r = 8 if g = 3.

Assume first that ϕL is bi-rational. Then D ⊂ P
∗
3 is an integral curve of degree r and geometrical genus g.

If D is not contained in a plane, then g ≤ pa(D) ≤ G(r, 2), where G(r, 2) is given by Halphen–Castelnuovo’s
bound: G(r, 2) = (r − 2)2/4 if r is even, G(r, 2) = (r − 1)(r − 3)/4, if r is odd. It follows that g ≤
G(7, 2) = 6. Since g ≥ 2 we immediately get r ≥ 5. From what we said above, this implies g ≥ 3, hence
d ≥ 6. We have 4g − 4 − r ≤ 15 and from (6), since d ≥ 6, a + b − 7 ≤ 2. It follows that (a, b; d) =
(3, 4; 6), (4, 4; 8), (3, 6; 9), (4, 5; 10). From (6) we get: 4(g − 1) = r, r + 8, r + 18, r + 20 and we see that there
is no solution with 5 ≤ r ≤ 7, 3 ≤ g ≤ 6.

In conclusion if r ≤ 7 and if ϕL is bi-rational, then D is a plane curve of degree r and geometric
genus g ≥ 2. We have 2 ≤ g ≤ (r − 1)(r − 2)/2 = pa(D). Moreover C2 lies on the cone, K, over the
(plane) dual curve D∗. Finally since ϕL is bi-rational, C is a unisecant on the cone K. This implies that
deg(D∗) + ε = d (+), where ε = 1, 0, according to whether C passes through the vertex of the cone or not.

Since g ≥ 2, we get r ≥ 4.
If r = 4 then 2 ≤ g ≤ 3 and we already know that d = 6. If g = 3, D is smooth and deg(D∗) = 12,

in contradiction with (+). If g = 2, D has one double point which can be a node, a cusp or a tacnode. It
follows that deg(D∗) = 10, 9 or 8. In any case we get a contradiction with (+).

If r = 5, then 2 ≤ g ≤ 6 and from (6) we get 4g − 9 = d(a + b− 7). Since d ≥ 5, the cases 2 ≤ g ≤ 3 are
impossible. If g = 4, the only possibility is d = 7, a + b = 8. Hence a = b = 8, but then again d = ab/2 = 8:
contradiction. In the same way we see that the cases g = 5, 6 are impossible.

If r = 6 then 2 ≤ g ≤ 10 and 4g − 10 = d(a + b − 7), with d = ab/2. Observe that if a + b − 7 = 1,
then a = b = 4 and d = 8, if a + b− 7 = 2, then (a, b, d) = (3, 6, 9) or (4, 5, 10). We get that for g < 10 the
only possibility is g = 7, d = 9, (a, b) = (3, 6), which is excluded by Lemma 3. Finally if g = 10, then D is
smooth. It follows that d = deg(D∗) + ε = 30 + ε. Since (6) yields 30 = d(a + b − 7), we get d = 30 and
a = b = 4, which is impossible.

If r = 7 then 2 ≤ g ≤ 15 and 4g−11 = d(a+ b−7). For most values of g ≤ 15, 4g−11 is a prime number
and anyway it always has a simple factorization into prime numbers. Bearing in mind that if a+ b− 7 = 1,
then a = b = 4 and d = 8; if a + b − 7 = 2 the (a, b, d) = (3, 6, 9) or (4, 5, 10) and if a + b − 7 = 3, then
(a, b, d) = (4, 6, 12), we easily see that there are no solutions.

In conclusion if r ≤ 7 and ϕL is bi-rational, then the only possibility is for r = 6, d = 9, g = 7 and
(a, b) = (3, 6) (in this case D is a plane curve with a triple point).

Now for 3 ≤ r ≤ 7, r = deg(ϕL).deg(D) and deg(D) ≥ 3, we see that if ϕL is not bi-rational, then r = 6,
deg(ϕL) = 2 and deg(D) = 3.

If D is not contained in a plane it is a twisted cubic. The dual curve D∗ is again a twisted cubic and
S∨ = Tan(D∗) is a quartic surface. Since C2 ⊂ S∨, S∨ = AFa +BFb. If b > 4, it follows that Fa = S∨, i.e.
a = 4. From (6) we get: 4g = d(d−6)/2+10. Since b = d/2, d is even, hence d ≡ 0, 2 (mod 4) and we see that
the previous equation never gives an integral value for g. This shows b ≤ 4, hence (a, b, d) = (3, 4, 6), (4, 4, 8).
Plugging these values into (6) we get a contradiction.

It follows that D must be a cubic plane curve. If D is smooth (has a node, a cusp), then deg(D∗) = 6 (4
or 3). Since ϕL has degree two, C is a bi-secant on the cone S∨ over D∗. It follows that d = 2 deg(D∗) + ε.
Since C2 ⊂ S∨, S∨ = AFa + BFb. If b > deg(D∗), then Fa = S∨ and a = deg(D∗). It follows that
b = 2d/ deg(D∗). This implies b = 4. It follows that (a, b, d) = (3, 4, 6), (4, 4, 8). Plugging these values into
(6) we get a contradiction.

In conclusion we must have r ≥ 8. �
Remark 5. Because of Lemma 2 the assumption h0(IC(2)) = 0 is harmless.

There exist smooth curves of degree 6, genus 3 which are self-linked [3,4].



Ph. Ellia / Journal of Pure and Applied Algebra 219 (2015) 77–82 81
This improves Theorem 7.8 of [5]. It follows from (4) that no curve of degree 8, genus 3 can be self-linked.
This answers to a question raised in [5] (Introduction and Remark 7.19).

Corollary 6. Let C ⊂ P
3 be a smooth, irreducible curve of degree d > 4, genus g, with h0(IC(2)) = 0. If C

is self-linked, then:

g ≥ d(
√

8d− 7)
4 + 3 (7)

Moreover if d ≥ 13 and d > g − 3 no curve of degree d, genus g can be self-linked.

Proof. If 2d = ab, a ≥ 2, then a+ b varies from d+ 2 (a = 2, b = d) to 2
√

2d (a = b =
√

2d). The inequality
then follows from (4).

A curve with d > g − 3 and d ≥ 13 cannot lie on a quadric cone. Moreover if d ≥ 13, then 2d = ab ≥ 26.
It follows that a + b ≥ 11 and inequality (4) is never satisfied if d > g − 3. �
Remark 7. A reduced surface S ⊂ P

3 is said to have ordinary singularities if its singular locus consists of
a double curve, R, the surface having transversal tangent planes at most points of R, plus a finite number
of pinch points and non-planar triple points. As proved in [5], Proposition 7.5, if a smooth curve is a set
theoretic complete intersection on S with ordinary singularities and if C �⊂ Sing(S), then C is self-linked
(on S).

3. Triple structures

To conclude let’s see how this approach applies also to set theoretic complete intersections (s.t.c.i.) with
a triple structure. Assume Fa ∩ Fb = C3, where C3 is a triple structure on a smooth, irreducible curve of
degree d, genus g (i.e. C3 is a locally Cohen–Macaulay (in our case l.c.i.) scheme with Supp(C3) = C and
ab = 3d). The complete intersection Fa ∩ Fb links C to a double structure, C2, on C. By liaison we have:
pa(C2)− g = d(a+ b− 4)/2. Now C2 (which as any double structure on C is a locally complete intersection
curve) corresponds to a sub-line bundle L ⊂ NC . From the exact sequence (1), we get:

l := deg(L) = d

2(a + b− 4) − g + 1 (8)

Theorem 8. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. Assume C does not lie on a

plane nor on a quadric cone. If there exists a triple structure on C which is the complete intersection of two
surfaces of degrees a, b, then:

3g ≥ d

2(a + b− 10) + 6 (9)

In particular: g ≥ d
6 (
√

12d− 10) + 1.

Proof. As before we consider the Gauss map ϕL. By (3) and (8), we have:

r := deg(ϕL).deg(D) = 3g − 3 − d

2(a + b− 10).

We know that r ≥ 2 and if equality C lies on a quadric cone. So we may assume r ≥ 3 and (9) follows. For
the second inequality, if ab = 3d, then a + b ≥ 2

√
3d. �

Combining with Corollary 6 we get:
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Corollary 9. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. If C is not contained in a plane

nor in a quadric cone and if g < d(
√

12d−10)+6
6 , then C cannot be a s.t.c.i. with a structure of multiplicity

m ≤ 3.

By the way let us observe the following elementary fact:

Lemma 10. Let C ⊂ P
3 be a smooth, connected curve of degree d, genus g. Let s denote the minimal degree

of a surface containing C. Assume C is the set theoretic complete intersection of two surfaces of degrees
a, b; a ≤ b and that a is minimal with respect to this property. Let md = ab. If a > s or if h0(IC(s)) > 1,
then m ≥ d/s2.

Proof. Assume C = Fa ∩ Fb as sets with a ≤ b and ab = md. If S ∈ H0(IC(s)), then Sm ∈ H0
∗ (IX), where

X denotes the (m − 1)-th infinitesimal neighborhood of C (IX = Im
C ). It follows that Sm ∈ (Fa, Fb). So

Sm = AFa + BFb. If b > sm, then Sm = AFa and since S is integral, we get St = Fa. It follows that
S ∩ Fb = C as sets. By minimality of a, it follows that Fa = S. This is excluded by our assumptions (a > s

or h0(IC(s)) > 1). So b ≤ sm. Thus m ≥ b/s, hence m2 ≥ ab/s2 = md/s2 and the result follows. �
Let C ⊂ Q, Q a smooth quadric surface. Assume C is the s.t.c.i. of two surfaces of degrees a, b. Then if

d > 3 and C is not a complete intersection, it is easy to see that b ≥ a > 2. Hence m ≥ d/4, where dm = ab.
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