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Abstract—Solid State Drives (SSDs) faced an astonishing
development in the last few years, becoming the cornerstone
to new paradigms and markets of the Information Technology,
such as cloud computing and big data centers. So far, the
SSD design approach was focused on the optimization of the
Flash Translation Layer, the firmware devoted to fulfill the
compatibility with traditional Hard Disk Drives. For hyperscaled
SSDs this strategy is no longer valid since their performance
and reliability are strictly linked to that of the NAND Flash
memories that constitute the storage medium, in particular when
the multilevel cell paradigm is considered. For this reason the
design flow must follow a bottom-up approach that, starting from
an accurate knowledge of the time and use dependent reliability
of the NAND Flash memories, selects the most appropriate error
correction strategy to extend the SSD lifetime while reducing its
performance degradation. Then the design flow moves to that of
the SSD controller and of the interface towards the host where
the application is running.

This paper will thoroughly discuss this bottom-up approach
and finally it will show how it is possible to leverage new
approaches, such as the software defined storage system that, by
exploiting a hardware/software co-design of the SSD controller
architecture and of the host application will be able to revolu-
tionize the traditional computer/memory interaction.

Index Terms—Solid State Drive, SSD, NAND Flash memories,
Memory reliability, SSD design, SSD performance, Software
defined flash

I. INTRODUCTION

Solid State Drives (SSDs) are one of the electronic systems
with the higher development rate in the last decade: they are
widely used in hyperscale systems such as cloud computing
and big data servers where performance is a constraint, as well
as in consumer electronics by replacing traditional hard-disk
drives (HDDs) [1].

SSDs’ design, in the last 5 years, faced an extraordinary
evolution caused by the continuous development of NAND
Flash memories representing their storage medium [2]. With
this respect, as shown in Fig. 1, NAND Flash memories have
completely transformed the way information is processed and
stored. Starting as film and tape replacement for cameras
and voice recorders, NAND Flash memories rapidly surpassed
traditional magnetic storage supports and now they represent
an obliged choice for high-performance storage solutions. The
availability of NAND Flash-based SSDs also materialized
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Fig. 1. Evolution of NAND Flash-based systems: from tape, film and floppy
disk replacement to the explosive SSDs applications for cloud computing and
big data centers.

as an astonishing proliferation of global-scaled corporations
whose commercial strength is tightly coupled to the avail-
ability of SSDs engineered for big data centers and cloud
computing. The previous developing strategy of SSDs, in fact,
was based on a full compatibility with HDDs and therefore
the SSDs’ performance optimization was focused on that of
the Flash Translation Layer (FTL), the firmware managing the
basic memory operations [3], [4], [5]. FTL is responsible for a
plug-and-play connection between the host system where the
application is running and the SSD. To this respect it must
be considered that in the last 4 decades user applications have
been designed to work with traditional magnetic HDDs, which
are conceptually different from SSDs. Therefore, rather than
redesign the whole architecture of the application, it is more
convenient to leverage a command translation layer.

The development of SSDs was made possible by the use
of sufficiently reliable Single Level Cells (SLC) NAND Flash
memories [6], storing a single bit per cell in the traditional 0/1
digital paradigm with a low read error probability, thus requir-
ing the design of simple engines for Error Correction Codes
(ECC) [7]. The SATA protocol [8] interfacing the memory
system and the host was sufficient to guarantee the requested
Quality of Service (QoS), that is the ability of keeping a
sustained performance over time within a defined threshold
[9], [10]. As a whole, the SSD architecture optimization and
the development of dedicated CAD tools for the exploration
of the SSD design space were FTL-oriented, in a top-down
approach.

In the last few years, the need for SSDs with higher storage
capacities and performance joined to the availability of high
density NAND Flash memories able to store 2, 3 or even 4
bits in a single cell [11], moved the design paradigm from a
Top-Down to a Bottom-Up approach where the performance
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and the reliability of the storage medium dictate the design
constraints [12]. NAND Flash memories with scaled technolo-
gies, in fact, suffer from several physical mechanisms able to
impact their reliability figures such as: i) Endurance, that
is the maximum number of Program/Erase (P/E) operations
that the memory can withstand before leading to a failure; ii)
Data Retention, denoting the ability of a memory to keep a
stored information over time with no biases applied ; iii) the
immunity from Read Disturbs, representing the stress suffered
by a memory cell when reading neighbor cells [13], [14], [15].

In NAND Flash memories information is associated to the
amount of charge present in a storage layer. P/E operations rely
on charge transport through a thin oxide via Fowler-Nordheim
(FN) tunneling into/from the storage layer [16]. Electron tun-
neling is responsible for a slow, but continuous, oxide wear out
causing undesired charge flowing into/from the storage layer.
As the number of P/E cycles increases, this effect strongly
impacts the writing operations. To deal with endurance effects,
sophisticated (but slow and power hungry) algorithms are
adopted to tightly control the amount of charge transferred
into/from the storage layer [17]. However, the relentless oxide
degradation strongly affects the ability of keeping unaltered the
charge content into the storage layer for extremely long times,
a mandatory requirement to fulfill the nonvolatile paradigm.
These reliability issues become more and more significant in
Multi-Level Cells (MLC) [18], Triple-Level Cells (TLC) [19]
and Quadruple-Level Cells (QLC) [20] storing 2, 3, and 4
bits per cell, respectively, where the undesired transfer of few
electrons into/from the storage layer may alter significantly the
memory information content. Hereafter MLC, TLC, and QLC
architectures will be generically denoted as multilevel cells.

The basic parameter characterizing the NAND Flash mem-
ory reliability is the Raw Bit Error Rate (RBER), representing
the fraction of erroneous bits retrieved during a read operation
[15]. The knowledge of this parameter whose value increases
with: technology scaling, the number of bits that a cell can
store, the number of P/E operations, the time elapsed between
two successive read operations, the number of repeated read
operations on the same memory location, is now the driver for
architectural and software design of present SSDs [21].

Multilevel NAND Flash memories require the availability
of an ECC scheme able to correct the errors detected when
reading the memory. The choice of the ECC code and the
design of the correction engine represent the key point for
present SSDs design since they must be carefully calibrated
with respect to the figures of merit of the selected nonvolatile
memories. A too simple ECC scheme may not be able to
guarantee a suitable reliability, whereas a too complex one
may reduce severely the read bandwidth because of the time
required for error correction, with a consequent impact also
on the system power consumption [22]. On the basis of
the selected ECC code and of the designed ECC engine,
an optimal error reduction algorithm for the memory read
operation can be identified. The selection of the appropriate
NAND Flash memories and the identification of the adequate
ECC scheme represent the key point to guarantee a high QoS
for the SSD to be designed.

Once the ECC scheme has been designed, the Bottom-Up

design flow rises to the memory controller, representing the
interface towards the ECC engine and the memory storage
system. The bandwidth provided by the ECC block must be
guaranteed by the controller, to avoid that the design efforts
devoted to optimize the ECC scheme vanish. With this respect,
the SSD controller must be designed in order to manage a
sufficient amount of commands to fully exploit the bandwidth
of the underlying storage system. Similarly, also the interface
towards the host must be able to guarantee the expected
bandwidth. For this reason, SATA protocol is no longer able to
deal with the performance made available by the other blocks
in the SSD architecture [23] so that SAS [24] and PCI-Express
[25] are adopted for enterprise environments.

On the basis of this bottom-up SSDs design flow, from
an accurate knowledge of the performance and limits of the
selected NAND memories to the design of a suitable ECC
engine and, successively to that of the controller and of the
host interface, also CAD tools for SSD design must follow
this Bottom-Up vision, while relaxing the efforts previously
devoted to the FTL design [26].

In this paper, starting from a review of the basic reliability
issues in multilevel NAND Flash memories, several aspects
related to the design of an SSD architecture will be presented.
Emphasis will be given to the choice of the appropriate
ECC code, the design constraints of the ECC engine able
to guarantee the optimal trade-off between performance and
reliability [27], the controller design and the selection of the
host interface protocol able to sustain the bandwidth provided
by the storage system. All the elements will be provided to
understand why the SSD performance rapidly decreases with
use and time and why a different design approach allows fully
exploiting the NAND Flash features while extending the SSD
lifetime.

The paper is organized as follows: in Section II multilevel
NAND Flash operations and reliability will be analyzed with
emphasis on how oxide ageing impacts on endurance, data
retention and read disturbs. In Section III, the need of ECC
in NAND Flash memories will be discussed focusing on
the choice of the proper ECC scheme, on the impact of
the decoding time on data read throughput, on the design
of read algorithms improving data correction, on the design
of ECC engines trading off between architecture efficiency
and read bandwidth. In Section IV, a high abstraction-level
internal architecture will be described, with emphasis on
design constraints for optimal performance exploitation, on
the advantages introduced by dedicated command queueing
strategies, and on the adoption of DRAM-caching [28] . In
Section V, the criteria for the optimal host interface selection
will be discussed, focusing on the trade-off between cost and
perfomances, on the relationship between queue depth and
bandwidth, and on the host payload co-design for optimal
performance exploitation. Finally, in Section VI, the paper
will speculate on future research opportunities made possible
by high-performance SSDs leveraging multi-core controllers,
able to revolutionize the traditional computer-memory interac-
tion paradigm by introducing new concepts such as software
defined storage systems [29].
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II. NAND FLASH MEMORY CELLS: OPERATIONS AND
RELIABILITY

A. Fundamental principles

The traditional Flash memory cell is a metal-oxide-
semiconductor device with an electrically isolated floating gate
(FG). The insulation is achieved by a tunnel oxide and an
interpoly oxide (see Fig. 2) [30]. The former oxide plays a
basic role for the control of the device threshold voltage VT
whose value represents, from a physical point of view, the
stored information. In quiescent conditions, thanks to the two
oxides, the charge stored into the FG does not leak away, thus
granting the nonvolatile paradigm fulfillment.

Fig. 2. Standard floating gate memory cell used in NAND architectures

By referring for sake of simplicity to a SLC architecture,
storing just one bit per cell, programming is performed by in-
jecting electrons within the FG, whereas erasing is performed
by removing that charge from the FG [31]. The charge within
the FG modifies substantially the cell’s VT and, consequently,
the voltage to be applied to the Control Gate (CG) to switch
on the cell as well as the current flowing through the device
when a fixed voltage VCG is applied to the CG [32]. Cell
writing occurs thanks to the FN tunneling [16]: by applying
high electric field to the tunnel oxide, it is possible to transfer
charge to/from the FG. This operation requires an accurate
control of both VCG and the pulse duration tp, since VT must
be placed in a well defined interval [VTPmin, VTPmax] (see
Fig. 3, where the VT distributions of a cell array are shown).
Using VT < VTPmin would reduce the threshold window,
that is the read margin guaranteeing a read operation immune
from errors, whereas VT > VTPmax could provoke read
errors in other cells of the array due to the over-programming
phenomenon [33], [34].

During a cell programming, the charge injected within the
FG reduces the electric field applied to the oxide. Therefore,
to avoid a reduction of the program efficiency, this operation is
accomplished by applying to the CG a sequence of pulses with
duration tp and increasing amplitude. Each pulse is followed
by a verify operation [35] that ends the program operation
when the target VT interval has been reached, thus realizing
the so-called Incremental Step Pulse Programming (ISPP)
algorithm [17], [36]. It can be demonstrated that the amplitude
increment ∆VCG almost coincides with the threshold shift
∆VT produced by the pulse itself [37]. The choice of the
two parameters ∆VCG and tp allows controlling the overall
programming time and the accuracy of the placement of the
cell VT within the target interval. Long pulses and/or high
∆VCG reduce the programming time with a difficult control of

Fig. 3. Threshold voltage distributions in SLC cells. VTPminx and VTPmax

represent the minimum and the maximum target VT for a programmed cell,
respectively. VTEmax represents the maximum VT for an erased cell while
VR denotes the read voltage.

Fig. 4. Threshold voltage distributions in MLC and TLC cells. For the MLC
case the 3 reference voltages VR1, VR2, and VR3 are shown, whereas for the
TLC case only 2 out of 7 reference voltages are shown.

the cell final VT , whereas short pulses and/or reduced ∆VCG

increase the programming time but allow a tight control of the
electron transfer to the FG [37], [38].

Read operation is performed by evaluating the current
flowing through the cell when a fixed reference voltage VR
is applied to CG (see Fig. 3) [30], [39]. In a programmed cell
(high VT ) the current is limited and the read circuitry produces
a bit equal to 0, whereas in an erased cell (negative VT ) the
high measured current is interpreted as a 1.

With the introduction of multilevel architectures (MLC,
TLC, QLC) able to store 2, 3 and even 4 bits in a single cell,
the programming and the reading operations become much
more complex [18], [19], [20]. Since VTPmax cannot be in-
creased because of architectural and operating constrains [40],
3, 7 or even 15 different threshold intervals must be allocated
within the same voltage range, each one corresponding to
a different set of 2, 3 or 4 bits stored within the cell (see
Fig. 4). The amplitude reduction of each interval calls for a
very tight control of the charge injected within the FG. Since
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the relationship ∆VCG ' ∆VT is still valid [37], the ∆VT
reduction forces the overall program time to increase with the
number of bits stored in a cell. The read operation too, requires
longer times since successive read procedures with different
threshold voltage references must be considered [19], [18].
In addition, the reduced separation between adjacent intervals
may trigger read errors.

Erase operation, bringing back the cells to the logical ”all-
1” state is performed simultaneously on all cells belonging
to the same block of cells sharing the same Source line [41],
[42].

The operations of Flash memory cells described so far
refer to an ideal case. In the real world, tunnel oxides face a
continuous wear-out reducing the FN efficiency and triggering
long-term reliability effects; the charge stored in the FG is not
stable but leaks away producing read errors; cell dimensions
are so scaled that cell-to-cell variability must be taken into
account [43]; the number of electrons injected in the FG is so
small that statistical effects during programming may produce
errors. Finally, even an ideal cell is embedded in a complex
array architecture so that write and read operations performed
on neighbor cells may alter its stored content.

B. Reliability effects
Tunnel oxide degradation represents the fundamental cause

affecting Flash memories reliability. Because of the continuous
charge transport through the insulator, traps can be created at
the SiO2 interfaces or within the oxide, which can modify the
FN tunneling dynamics [13], [40], [44]. The ability of control-
ling tight threshold distributions decreases with the number of
Program/Erase (P/E) operations, thus affecting the memory
endurance [14], [15]. Fig. 5a sketches the effects of a reduced
ability in producing tight distributions as the number of P/E
cycles increases. The Program & Verify approach stops the
program operation of a cell when the target threshold interval
has been reached [35]. However, because of the tunnel oxide
wear-out, some cells can be slightly over-programmed and
their thresholds could end in an adjacent interval [33], [40]. As
a consequence of this distribution broadening, read errors are
produced. Fig. 6 shows the RBER measured in a TLC NAND
Flash manufactured in the 1x-nm planar technology node as a
function of the number of P/E cycles, evidencing a reliability
reduction induced by successive write operations.

Oxide ageing and traps creation also reduce the data reten-
tion feature, that is the ability of keeping unaltered the charge
within the FG when the cell is in a quiescent state. Electrons
may escape from the FG because of trap-assisted tunneling
or Stress-Induced-Leakage-Current (SILC) effects [45], [46],
[47], [48], [49], [50]. Fig. 5b outlines the threshold distribution
shifts that may produce read errors that become more probable
with the time elapsed since the last program operation. The
risk that the threshold of a cell programmed in a given interval
shifts to an adjacent interval increases significantly with the
number of bits stored in a single cell. It is worth to point out
that in a MLC or TLC architecture the number of electrons
differentiating two adjacent intervals is in order of few tens,
whereas in QLC cells it is sufficient that one or two electrons
escape from the FG to produce a read error [51].

Fig. 5. Shifts of the threshold voltage distributions in TLC cells caused by
oxide ageing (dashed line: virgin samples; full line: ageing effects). Shifts
towards higher intervals are caused by endurance effects (a), since the correct
placement of the threshold voltage in a given interval becomes more difficult,
whereas shifts towards lower intervals are due to electrons escaping from the
FG causing a reduced data retention (b)

Fig. 6. RBER measured in a 128 Gb TLC NAND Flash die manufactured in
the 1x-nm planar technology node as a function of the number of P/E cycles,
up to twice the rated endurance (900 P/E cycles).

Besides the degradation mechanisms related to oxide wear-
out described so far, other effects may worsen the ability of
controlling the correct number of electrons to be transferred
in the FG during a single programming pulse. Among them,
the Random Telegraph Noise (RTN) related to filling/empting
of tunnel oxide traps affects the VT distributions stability few
microseconds after the application of the programming pulse,
creating distribution tails below the target verification level
[52], [53], [54], [55]. Additionally, positive trapped charge in
the tunnel oxide during cycling results in a modified FN tunnel
dynamics that may trigger erratic effects [33], [56], [57], [58].
These sporadic mechanisms, that may potentially affect any
cell in the array, have a random and transient nature; they can
occur during any programming pulse and they may produce
threshold shifts larger than expected, with the risk of pro-
gramming some cells with a threshold voltage larger than the
desired one. The limited number of electrons discriminating
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Fig. 7. Schematic organization of a NAND flash array. Each cell string is
connects to a Bit line and a Source line through two select transistors (BLS
and SLS, respectively).

between adjacent intervals makes the programming operation
discrete [38], [59], [60].

Fig. 7 shows the schematic of a typical memory array.
Cells are organized in strings, which are the minimum read
unit. Read and program operations are performed page-wise,
by reading/programming simultaneously 2 kB or 4 kB cells
belonging to the same word line [32].

Architectural solutions for memory operations may also
affect the overall reliability, by producing errors and even
cell failures. The most common effects are the so called
disturbs, that can be interpreted as the influence of an operation
performed on a cell (Read or Write) on the charge content of
a different cell. Read disturbs are the most frequent source
of disturbs in NAND architectures [32], [61], [62]. This kind
of disturb may occur when reading many times the same cells
without any erase operation of the entire block they belong to.
All the cells belonging to the same string of the cell to be read
must be driven in an ON state, independently of their stored
charge (see Fig. 8). The relatively high VPASS > VTPmax

applied to the CG of the unselected cells to turn on their con-
duction and the sequence of pulses applied during successive
read operations may induce a charge gain due to SILC effects
[61] or hot carrier effects [62]. These cells suffer a threshold
voltage shift that may lead to read errors, when addressed.
The probability of suffering from read disturb increases with
the P/E number (i.e., towards the end of the memory useful
lifetime) and it is higher in damaged cells. Read disturbs do
not provoke permanent oxide damages: if erased and then
reprogrammed, the correct charge content will be present
within the FG.

The NAND Flash technology scaling has introduced addi-
tional disturbance mechanisms affecting the array reliability:
the cell-to-cell interference [63], [64], [65], [66] and the
Gate Induced Drain Leakage (GIDL) [67], [68]. The former
issue is mainly caused by the FG coupling due to parasitic
capacitances between cells, thus it is greatly affected by cell
scaling, and is well known to widen the VT distributions

Fig. 8. Representation of read disturb in a NAND Flash array when reading
cells in the WLi word line. All cells sharing the same strings (marked in
gray) are potentially affected by the read disturb.

by producing read errors. The latter effect is due to the
usage of the self-boosting technique to inhibit unselected cells
during programming [69]. An electron-hole pair generation
mechanism triggered by high electric fields during the program
operation leads to the generation of charge in the region
between the Source Line Selector (SLS) and the WL0 that
can be injected as hot electrons in the floating gate of cells
belonging to WL0 [67]. To avoid this effect, dummy word-
lines need to be integrated in the array.

III. THE IMPACT OF ECC ON SSD PERFORMANCE

As summarized in the previous section, because of en-
durance problems, poor data retention or read disturbs, the
actual threshold voltage read in a cell may be different from
the programmed one [15]. Therefore, when a page is read,
some cells may return a wrong value, thus producing read er-
rors. To overcome these problems, data encoding guaranteeing
a reconstruction of the correct read page data is mandatory in
electronic systems using NAND Flash memories.

The correction capability of the code to be adopted is
strictly related to the error probability. For a given technology
node, since physical degrading mechanisms are the same
independently of the different storage paradigms (SLC, · · · ,
QLC), the error probability increases with the number of bits
stored in a single cell since the smaller the number of electrons
associated to each data pattern, the higher the probability of
having a VT different from the expected one.

In the first SLC memories, thanks to the large VT gap
between the two threshold voltage distributions, the error prob-
ability was very low, so that Bose-Chaudhuri-Hocquengham
(BCH) codes able to correct few tens of bits in a 1 kB or
2kB page were sufficient. With limited number of errors to be
corrected, the correction time was not an issue and the read
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Fig. 9. a): schematic representation of an ECC architecture based on BCH
codes. A high-speed encoder is connected to each SSD channel whereas
a a reconfigurable parallel decoder is shared among the Nc channels. b):
schematic representation of the BCH decoder.

bandwidth and latency were marginally affected by the use of
ECCs [70]. Read bandwidth is the number of read operations
sustained in a given time, whereas latency is the time elapsed
between a read command submission and its completion.
Fig. 9a shows the typical blocks for ECC engines based on
BCH codes: a high-speed encoder is connected to each one
of the Nc SSD channels (that is a bus used to communicate
with an array of Nd memory dies), whereas a reconfigurable
parallel decoder (i.e. a multi-engine decoder) is shared among
the channels [71]. The structure of the decoder is represented
in Fig. 9b, where the Syndrome block determines whether an
error is present, the Berlekamp-Massey block calculates the
coefficients of the error locator polynomial, and the Chien
machine locate the errors [70].

In multilevel architectures the number of errors to be
corrected increases by an order of magnitude for any further
bit stored in a single cell. Although ECC engines based on
BCH codes are still used thanks to their simple hardware
implementation, high numbers of bits to be corrected may
impact significantly on the overall read time. As a conse-
quence, the correction time may become the bottleneck of
the entire read procedure [21]. In addition, because of the
high number of errors, the probability of having uncorrectable
pages (that are pages read with a number of wrong bits higher
than the ECC correction capabilities) increases [72]. When
a page is marked as uncorrectable, the read operation fails
and the page content is irremediably lost. The adoption of
parallel decoding architectures can reduce the bandwidth and
latency degradation (at the expenses, however, of both area
occupation and power consumption) but it cannot solve the
problems caused by uncorrectable pages.

To deal with the presence of uncorrectable pages, two
alternatives exist: i) keep BCH codes and their ease of im-
plementation while defining sophisticated read algorithms in

Fig. 10. Schematic representation of an ECC architecture based on LDPC
codes. The decoding path is composed by two main blocks: the hard decoding,
whose architecture is similar to that designed for BCH engines and the soft-
level decoding.

Fig. 11. NAND Flash read references used in the two levels LDPC sensing
scheme to discriminate between two adjacent threshold voltage distributions.
A memory page is read by setting the read voltage at HD0 and determining,
for each bit, whether VT < HD0 or VT > HD0 (a). If the ECC engine is not
able to correct possible read errors, the soft decision algorithm starts and the
page is read twice by moving the read references around HD0, to SD10 and
SD11 (b). If the page is still marked as uncorrectable, the page is read again
with the SD20 and SD21 references (c). Reprinted with permission from [76].

order to reduce the number of errors [73], [74]; ii) develop
ECC solutions based on different coding concepts, like Low
Density Parity Check (LDPC) codes [75]. In the former
case, the basic idea in the presence of uncorrectable pages
consists in re-read the page with different read reference
voltages, in the attempt of tracking the shift of the threshold
voltage distributions. Such a solution led to the development
of different read algorithms, generally defined as read retry
[73]: they are automatically managed by the ECC engine and
they call for (at least) a page re-reading with the unavoidable
degradation of the read bandwidth. The latter solution adopts
LDPC codes that, differently from BCH codes, present a much
higher correction capability [75]. Fig. 10 shows the typical
blocks for ECC engines based on LDPC codes: the decoding
engine is composed by two main blocks: the Hard Decoding
(HD) and the Soft Decoding (SD).

From an operative point of view, LDPC decoding works
as follows. As shown in Fig. 4, multilvel NAND Flash
memories are read page-wise by using a set of read reference
voltages, hereafter denoted as HD0 (see Fig. 11a showing the
read reference discriminating between two adjacent threshold
voltage distributions). Cells are read as 1 or 0 depending on
their threshold voltage VT with respect to HD0. If during the
ECC decoding phase the page is evaluated as uncorrectable,
the LDPC decoding algorithm can be retried with the SD. To
accomplish this second step, more information about the actual
position of the NAND Flash threshold voltage distributions
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Fig. 12. Voltage threshold partitioning performed during a one Soft Decoding
(SD). Four regions (A1, A2, A3, and A4) are marked by HD0, SD10, and
SD11.

must be collected. Basically, the algorithm moves sequentially
the internal read references to SD10 and SD11 (Fig. 11b) thus
reading the page twice. Data are transferred to the LDPC
decoder and then they are bit-wise combined with those
previously read with HD0. This step is possible because during
the whole SD process the data read with the HD0 reference
are stored in a dedicated buffer inside the SSD controller and
used as a reference.

Thanks to this multiple read operation it is possible to cal-
culate the information needed by the SD: the Log-Likelihood
Ratios (LLRs) [7]. The calculated numbers are used as input
for the soft decoder and are defined as follows:

LLR(yi) = ln
P (x = 0|yi)
P (x = 1|yi)

= ln
P (yi|x = 0)

P (yi|x = 1)
(1)

where P is the probability, whereas x and yi represent the
transmitted (i.e., the programmed value) and the received (i.e.,
the read bit) symbols, respectively [77]. As a matter of fact,
when a set of read reference voltages is used (SD10 and SD11),
Eq. (1) defines that the LLRs can be viewed as the probability
of reading a 0 or a 1 given the value of a specific programmed
bit [7]. In other words, the higher the absolute value of the
LLR is, the higher the confidence that the read bit is correct.
[78].

An example of the result of the SD process is sketched in
Fig. 12. As it can be seen, the bit-wise combination of the
data read from the NAND flash memory defines four different
regions of the threshold voltage distributions. These represent
de facto a probability density function of the programmed
cells: the probability that a bit belongs to one of the areas
(Ai with i = 1, ..., 4 in the example of Fig. 12) identified by
the hard and the soft references is defined as follows:

P (X ∈ Ai) =

∫
Ai

pX(x)dx (2)

where X represents the programmed bit, and pX(x) is the
actual threshold voltage distribution. At this point, it is clear
that to extrapolate the LLRs expressed in Eq. (1) it is sufficient
to calculate a bounded logarithmic ratio between the number
of cells read as 0 and those read as 1.

Once the LLRs are calculated for all the regions, instead
of using the raw bits coming from the NAND flash memory

(a)

(b)

Fig. 13. Difference between the HD and the SD decoding phase. When HD
is considered, raw bits coming from the NAND flash memory are used as
input of the decoder. In this example after the decoding step one bit is still in
error, therefore SD is required. When SD is considered, LLRs computed by
the bit-wise combination of data read with HD0, SD10, and SD11 are used
as input (see Fig. 12).

(HD decoding sketched in Fig. 13a), the SD decoder translates
the bit-wise combination of the data read with HD0, SD10,
and SD11 with the corresponding LLR values, and it starts
the decoding procedure (see Fig. 13b). At this point, a purely
probabilistic decoding process is triggered.

If the decoding process still fails, a second iteration is
performed by moving the read references to SD20 and SD21

(Fig. 11c) and comparing the new read data with those
previously analyzed and stored in the dedicated buffer. In
this case the number of regions defined by the read voltage
references switch from 4 to 6, therefore the LLRs values must
be computed again by the decoder. The algorithm continues
this process until the page is correctly read or the maximum
number of soft-levels is reached and the page is marked
as uncorrectable [22]. Finally, since LDPC codes provide a
probabilistic correction, they are not immune from errors like
false-decoding that occurs when the ECC performs erroneous
correction while declaring successful decoding [79]. The pres-
ence of false-decoding errors is strictly related to the LDPCs
mathematical characteristics and, therefore, it is essential to
identify a priori the algorithm minimizing these errors [70].

LDPC codes, although presenting much higher correction
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TABLE I
LDPC AND BCH FEATURES BENCHMARK (DATA FROM [82]).

BCH LDPC
Decoding Algorithm Algebraic-based Probability-based
Guaranteed correction Yes No
Soft Bit Decoding Hard (Read Retry) Easy
Hard Decoding Performance Code dependent Similar to BCH
Soft Decoding Performance - 2X-3X
Decoding complexity Low High
Power consumption Medium High
Cost Low High

Fig. 14. Correction strength of both HD and SD when a LDPC able to
correct up to 100 Bits in a 4320 Bytes codeword is considered for a 128-Gbits
TLC NAND Flash memory manufactured in a planar 1x-nm technology node.
Points A and B represent the maximum measured percentage of uncorrectable
pages at the end of the memory lifetime, when HD and SD are used,
respectively.

capabilities with respect to BCH, can still fail the correction
process in presence of pages with large numbers of errors. Also
in these cases there exist re-reading algorithms (for instance
the multiple soft decision) that can correct pages initially
marked as uncorrectable at the expense of the overall reading
time [80], [81], [76]. Table I summarizes the features of LDPC
and BCH described in this section.

To evaluate the optimal ECC engine design in terms of HD
and SD implementation, the knowledge of the actual memory
RBER is mandatory. With this respect, it is usual to leverage a
worst-case design methodology where the correction strength
figure of the HD is compared with the maximum percentage
of uncorrectable pages measured at the end of the memory’s
lifetime. Fig. 14 shows this process when a LDPC able to
correct up to 100 bits in a 4320 Bytes codeword is considered
for a TLC NAND Flash memory manufactured in a planar 1x-
nm technology node. Point A marks the maximum percentage
of uncorrectable pages measured at the end of the memory’s
lifetime. As it can be seen, in this case switching from the
HD to a one bit SD is sufficient to correct all the errors (point
B). Other correction strategies like a two bits SD, become an
over-design.

The above considerations are mandatory when it is required
to design the optimum LDPC architecture (both in terms of
correction strength and correction bandwidth) for the target

Fig. 15. Read bandwidth evolution as a function of the number of P/E
cycles in a 2 TB SSD featuring a PCI-Express GEN3x4 host interface
and 16 channels each connected to eight 128-Gb TLC NAND Flash dies
manufactured in a planar 1x-nm technology node with a rated endurance
of 900 P/E cycles. The ECC engine is composed by a variable pool of
HD decoders and a single SD decoder. Each hard decoder has a decoding
bandwidth of about 1.2 GB/s.

SSD. In fact, since the SD directly impacts the drive’s band-
width, once the correction strategy is defined (a one bit SD
rather then a two bits SD) and the decoder’s bandwidth is
fixed, it is important to find the right balance between the
number of HD and SD decoders. Fig. 15 shows the read
bandwidth obtained, for different HD implementations, in a
2 TB SSD featuring 16 channels each one connected to eight
128-Gbits TLC NAND Flash dies manufactured in a planar
1x-nm technology node, as a function of the number of P/E
cycles. The correction strategy used in this example is the same
sketched in Fig. 14, therefore, a 1 Bit SD has been used. All
results have been obtained by using the SSDExplorer simulator
[26]. Since each hard decoder has a bandwidth of 1.2 GB/s and
the SSD host interface is a PCI-Express GEN3x4 [25] with a
maximum bandwidth of 4 GB/s, it is clear that a coarse design
choice (that neglects the actual RBER evolution) requires 4
HD decoders and any higher number would result in a cost
ineffective overdesign.

However, since RBER increases with the number of P/E
cycles (see Fig. 6), the percentage of uncorrectable pages
detected by the HD increases as well. As a consequence SD
is triggered and the read bandwidth rapidly decreases when
the memory rated endurance (P/E = 900) is approached. To
guarantee the expected performance and to extend the SSD
working window, it is necessary to increase the number of
HD decoders (see Fig. 15) as well as that of SD decoders.
Fig. 16a shows the calculated read bandwidth degradation
with respect to the beginning of life at P/E = 1200 and P/E
= 1800 (i.e., at twice the rated endurance) by implementing
8 HD decoders and different numbers of SD decoders. As
it can be seen, to reduce the read bandwidth degradation
at twice the rated endurance, 2 SD decoders can be used,
while any larger number of decoders would result in an
overdesign. Fig. 16b shows the results obtained by using 16
HD decoders and different numbers of SD decoders, showing a
significant performance improvement thanks to a much higher
hardware cost. From a designer point of view, an accurate
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(a) (b)

Fig. 16. Read bandwidth degradation with respect to the beginning of life at
P/E = 1200 and P/E = 1800 (i.e. at twice the rated endurance) considering
different SD levels. 8 and 16 HD decoders have been considered in Fig. a)
and b), respectively.

trade-off evaluation between performance (i.e. read bandwidth
reduction) and hardware cost must be based on the actual
knowledge of the memory RBER evolution.

By summarizing the previous reasonings, in multilevel
Flash memories the use of sophisticated ECC architecture is
mandatory in order to efficiently correct a number of errors
that increases with the memory endurance and with the time
elapsed between two successive read operations of the same
page. These ECC engines, however, strongly impact on the
read bandwidth and latency. This holds true, in particular,
when uncorrectable pages are detected, since advanced read
algorithms are required. Therefore, the choice of the ECC code
to be implemented and of its correction capability, the design
of the ECC engine architecture, and the identification of the
most effective re-reading algorithm depend on the memory
reliability and, in particular, on the BER whose value grows
with the memory wear-out.

The optimal design of the reading path for a delay in-
sensitive SSD must be based on the accurate knowledge of
the performance and reliability of the selected memories and,
therefore, on a careful pre-characterization of the memories
themselves in order to estimate their BER [83].

IV. SSD CONTROLLER DESIGN

The main block diagram of an SSD controller is shown
in Fig. 17. Once the SSD’s specifications have been fixed,
and hence the maximum device bandwidth has been defined,
the SSD controller design follows a simple rule of thumb
to calculate Nc and Nd needed to meet the requirements.
Basically, to calculate the actual controller bandwidth Bcont,
it is sufficient to sum the bandwidth contributions Bch of each
channel:

Bcont =

Nc∑
i=1

Bchi . (3)

The maximum channel bandwitdth Bmax
chi

is obtained under
the assumption that all the memory dies connected to channel
i are addressed at the same time. By defining Bd as the

Fig. 17. Schematic representation of the SSD controller, considering Nc

channels and Nd memory dies connected to each channel.

bandwidth of each memory die, the theoretical controller
bandwidth Bth

cont is given by:

Bth
cont =

Nc∑
i=1

Bmax
chi

=

Nc∑
i=1

Ndi
Bd . (4)

Eq. (4) represents, however, the theoretical condition under
the hypothesis that all single dies can communicate simulta-
neously with the controller and, therefore, it represents the
maximum achievable value. Unfortunately, for several reasons
(e.g., access request to the same die, die’s response time
slowed down by a read retry operation, die busy for a program
operation whose latency is much higher with respect to read
latency, etc.), the probability that all dies can communicate
simultaneously with the controller is generally < 1. Taking
into account that a number n of dies in a channel cannot serve
new requests since they are processing other commands, the
actual controller bandwidth is given by:

Bcont =

Nc∑
i=1

(Ndi − ni)Bd ≤ Bth
cont . (5)

The above equation calculates the controller bandwidth
in a fresh condition (i.e., at the beginning of the drive’s
lifetime). However, as previously shown in Section III, the
actual performance of the SSD is strongly affected by the
reliability phenomena associated with the storage layer. As
a consequence, to take into account these effects, Eq. 5 can
be modified as follows:

Bcont(P/E, T,RD,WAF ) =

=

Nc∑
i=1

(Ndi
− ni(P/E, T,RD,WAF ))Bd ≤ Bth

cont

(6)

where P/E, T , RD and WAF are the current Program/Erase
cycle number of the drive, the working Temperature, the Read
Disturb level of the memories, and the Write Amplification
Factor, respectively. The WAF factor is defined as

WAF =
data written to the NAND flash

data written by the host
≥ 1 ; (7)
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it has been accurately described in [84] and it depends on
several factors ascribed to the FTL implementation including
Wear Leveling, Garbage Collection, and Bad Block man-
agement algorithms. Along with WAF, P/E, T , and RD
introduce hard-to-model effects that complicate the description
of the controller’s bandwidth in a closed form. Therefore, to
help SSD designers to calculate the actual performance and
latency of a target SSD over time and use, the adoption of
sophisticated simulation tools like SSDExplorer is mandatory
[26].

Overall, what ultimately stands out from both Eq. (5) and
Eq. (6) is that, to approach as much as possible the ideal
controller bandwidth, it is necessary to:

• reduce the probability that a command addresses a busy
die (i.e., a die already scheduled by another operation);

• maximize the number of dies that can process a new
command.

This can be accomplished: i) by increasing the number Nd

of dies connected to each channel, which however impacts
on the SSD cost; ii) with an effective command management
performed by the FTL; iii) by using a DRAM as a data buffer.

A. Efficient command management

In nowadays SSDs, to efficiently manage the commands is-
sued by the host, it is possible to leverage the Command Queue
(CQ) concept [85]. This resource is usually implemented as
a software routine shared between the host interface, which
pushes host commands inside the CQ, and the SSD controller
which manages the requested operations and pulls out the
commands from the CQ.

Fig. 18 shows the queuing hierarchy usually implemented in
traditional SSD controllers [86]. Besides the external host CQ,
it is common to have a dedicated small command queue for
each NAND Flash memory die: the Target Command Queue
(TCQ). Basically, thanks to the TCQ, the host can continue
to issue commands even when it tries to read or program a
die which is in the busy state. In fact, when this condition is
verified, the command is simply queued in the TCQ and the
SSD controller can continue to fetch other commands from the
host CQ. This technique allows maximizing Bcont since TCQs
keep always busy all the NAND Flash dies. It is thus clear that
the main parameters controlling Bcont are the parallelism (i.e.,
Nc and Nd) and the queue depth (QD), that is the number of
commands that the host interface can store.

The attempt of approaching the ideal performance in terms
of bandwidth by increasing QD presents an unavoidable
disadvantage: the increase of the service time (i.e. the time
elapsed between the issue and the execution of a command)
and, consequently, of the SSD latency. Therefore QD has a
severe impact on QoS, that basically defines the maximum
acceptable latency of the drive and it is calculated as the 99.99-
th percentile of the SSD latencies cumulative distribution. To
this extent, QoS is used to quantify how the SSD behaves
in the worst-case conditions [9]. By using this metric it is
possible to understand if the target SSD architecture is suitable
for a specific application, such as real-time and safety-critical
systems [87]. Fig. 19 shows an example of how Bcont and

Fig. 18. Queueing hierarchy implemented inside the SSD controller for a
generic channel

QoS scale with the host QD. As expected, both Bcont and QoS
increase with QD. This behavior, however, is in contrast with
the requirements of high performance SSDs, which ask for
achieving the target bandwidth with the lowest QoS. In fact,
state-of-the-art user applications such as financial transactions
or cloud platforms [88], [89] are designed to work with
storage devices which have to serve an I/O operation within
a specific time-frame which is usually upper-bounded by the
QoS requirement.

To deal with this requirement it is possible to use the
Head-of-Line (HoL) blocking concept, whose effect is to limit
the number of outstanding commands inside the SSD, thus
partially solving the latency issue [90]. The HoL blocking
is managed by the controller firmware implementing a FIFO
stack whose dimensions can be dynamically defined. When the
number of commands queued in a TCQ exceeds a predefined
threshold, it is possible to trigger a blocking state inside the
SSD controller which stops the submission of a new command
from the host CQ. In such a way, depending on the HoL
threshold value, it is possible to avoid long command queues
inside the TCQs and, hence, the device QoS can be limited
within a defined window.

Figure 20 shows the effectiveness of the HoL blocking for
the case analyzed in Fig. 19. As soon as the target performance
of 300 kIOPS is reached (QD = 64), the HoL blocking effect
starts keeping the QoS below the target requirements even
when long QDs, such as QD = 128 and QD = 256, are
considered.

The fine-grained QoS calibration made available by the HoL
blocking, however, does not come for free. If, besides Bcont

and QoS, the average SSD latency is taken into account, it is
clear that the HoL blocking effect has to be wisely used (see
Fig. 21). When the HoL blocking is triggered, it trades the QoS
reduction with an increase of the average latency. Moreover,
this behavior becomes more pronounced when high QDs are
used, i.e. when a higher QoS reduction is required.

Summing up, it becomes clear that the performance opti-
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Fig. 19. Bcont and QoS as a function of the host Queue Depth. The full
line and the dashed-dotted line represent the target Bcont and the target QoS,
respectively. Simulations refer to an SSD featuring Nc = 8 and Nd = 8 TLC
NAND Flash manufactured in a planar 1x technology node. Average read
time is 86 µs and workload is 100% 4 kB random read.

Fig. 20. SSD bandwidth and QoS for the same case of Fig 19 as a function
of the host queue depth when HoL blocking is used. The full line and the
dashed-dotted line represent the target Bcont and the target QoS, respectively.

Fig. 21. Average SSD latency evaluated as a function of the host queue depth,
for the same case of Fig 19, with and without the HoL blocking.

mization process that has to be followed by SSD designers
must involve the optimization of the bandwidth, the average
and the maximum latency, the length of the command queue,
the command management policy, the head of line blocking,

TABLE II
NAND/DRAM SIZE RATIO AND SSD PERFORMANCE FOR THE SAME

CONFIGURATION OF FIG. 19 CONSIDERING AN UNIFORMLY DISTRIBUTED
LBA SPACE.

NAND/DRAM size ratio No cache 256 50 15
Cache hit probability [%] 0 0.6 2.7 8.2
Read Bandwidth [kIOPS] 301 312 318 337
Average latency [µs] 206 204 200 189
QoS [ms] 1.07 1.19 1.13 1.03

all considered at the same time.

B. DRAM data caching
To increase the controller bandwidth and to approach as

much as possible the theoretical bandwidth Bth
cont, it is possible

to use a DRAM as data cache buffer [28]. As shown in Fig. 17,
this block is located between the host interface and the channel
controller. Standard data caching algorithms can be adopted,
such as Least Recently Used (LRU) or Least Frequently Used
(LFU) [91], to decrease the number of accesses to the Flash
memories. Since data are addressed in a much faster memory,
the access time can be reduced with respect to a standard
NAND Flash read/program operation. In addition, since part
of the data to be read/written are stored in the DRAM buffer,
the number of accesses to the NAND Flash dies are reduced,
thus limiting the number of busy dies.

These effects positively impact the SSD bandwidth and the
average latency. Moreover, the reduction of the number of
accesses to the NAND Flash dies increases their reliability.
This point is strictly related to the smaller number of write op-
erations, thus limiting endurance effects and, possibly, leading
to a reduced read disturb issue (see Section II-B).

Table II shows the cache hit probability, the read bandwidth,
the average latency, and the QoS calculated for the “no cache”
case (i.e., a case where the DRAM data cache buffer is not
present, assumed as reference) and for different ratios between
the total NAND and the DRAM sizes. The number of cache
hits (i.e. the percentage of memory accesses to the DRAM
buffer with respect to the total number of data accesses)
depends on the probability of addressing any single nonvolatile
memory page. All data have been collected considering a
uniformly distributed Logical Block Address (LBA) space
of the SSD and a LRU eviction policy is used as caching
algorithm.

As it can be seen, the perfomance metrics of the simulated
drive are not significantly influenced by the DRAM size. This
is due to the fact that the LBA space is uniformly distributed
across all the SSD pages, therefore all data locations have the
same probability to be addressed.

An uniformly distributed LBA space, however, represents
the worst-case condition for the assessment of the benefits
materialized by a caching algorithm. In general real user
workloads tend to follow different LBA distributions which
are more similar to a Gaussian or a Log-Normal with a mode
around a specific address. As a consequence, if the I/O address
profile of the target application is known, it is possible to
optimize the DRAM cache size depending on the statistical
parameters presented by the LBA profile itself.
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Fig. 22. Examples of three gaussian distributions of the I/O addressing space.
The median of the distributions is placed at the the 50% of the SSD LBA
addressing space in all cases.

Fig. 22 shows three examples of Gaussian workloads span-
ning across the whole LBA space of the drive. By considering
a ±σ deviation around the average of the total SSD LBA
address space, it is possible to design the proper DRAM size
ratio in two different ways:

• reducing the DRAM capacity while keeping the same
cache hit probability and drive performance;

• increasing the DRAM capacity maximizing the number of
cache hits and, therefore, boosting the drive performance.

Table III shows, for the three cases of Fig. 22, the
NAND/DRAM size ratio, the cache hit probability, the read
bandwidth, the average latency, and the QoS of the target SSD
architecture. As it can be seen, the performance metrics are
almost similar with a significant reduction of the DRAM size
for the tightest workload distribution of Fig. 22.

Table IV shows, for the b) case shown in Fig. 22, the
NAND/DRAM size ratio, the cache hit probability, and the
performance metrics of the target SSD architecture. With
respect to the b) case of Table III the NAND/DRAM size ratio
has been reduced from 50 to 15. As it can be seen, it is possible
to almost triplicate the cache hit probability thus increasing the
read bandwidth while reducing the average latency. It is worth
to highlight that this performance improvement marginally
impacts the QoS, since it is related to the worst case (usually
a read operation performed on a NAND Flash die.)

Summing up, the use of a DRAM cache offers advantages
in terms of bandwidth, latency, and reliability. The design of
an application specific SSD, in addition, can be optimized
if the LBA space distribution is known, in order to reduce
the DRAM size. Therefore, the drive design must be done
concurrently with the application for which it represents the
storage element. This concept, leading to the development of
Software Defined Flash (SDF, [29]), will be extensively treated
in Section VI.

V. CRITERIA FOR OPTIMAL HOST INTERFACE SELECTION

The host interface represents the link between the SSD
controller and the host where the application is running.
Differently from the SSD controller that is fully customized,

TABLE III
NAND/DRAM SIZE RATIO AND SSD PERFORMANCE FOR THE SAME

CONFIGURATION OF FIG. 19 AS A FUNCTION OF THE LBA SPACE
DISTRIBUTIONS OF FIG. 22.

Case a) b) c)
NAND/DRAM size ratio 256 50 15
Cache hit probability [%] 15.3 15.3 15.3
Read Bandwidth [kIOPS] 367 364 365
Average latency [µs] 173 175 175
QoS [ms] 0.98 1.27 1.29

TABLE IV
NAND/DRAM SIZE RATIO AND SSD PERFORMANCE FOR THE SAME

CONFIGURATION OF FIG. 19 AS A FUNCTION OF THE LBA SPACE
DISTRIBUTION OF THE B) CASE OF FIG. 22.

NAND/DRAM size ratio 50 15
Cache hit probability [%] 15.3 42.1
Read Bandwidth [kIOPS] 364 536
Average latency [µs] 175 118
QoS [ms] 1.27 1.19

the physical structure of the communication interface follows
consolidated standards. At the moment, the used interfaces are
SATA [8] (mainly for consumer applications), SAS [24], and
PCIe [25] (for enterprise environments).

The correct choice of the host interface represents a crucial
aspect along the drive design phase since it allows guaran-
teeing that the SSD controller is used in optimal conditions.
In a traditional design approach for general purpose SSDs,
where both controller and host interface are chosen separately
without any knowledge of the final application, the constraint
of selecting a host interface able to guarantee a bandwidth
Bhi ≥ Bcont (where Bhi is the maximum bandwidth of
the host interface) at the lowest cost represents the standard
approach, whereas a host interface whose Bhi < Bcont would
act as a bottleneck limiting the SSD performance. A detailed
analysis of the impact of the host interface on the SSD’s
performance has been presented in [26].

If the application to be run on the host is known, a different
approach can be adopted. It must be taken into account that
the design of a fully customized SSD controller is much
more expensive with respect to that of the host interface,
which follows well defined standards [86]. By considering this
economic aspect, it is convenient to design an SSD controller
with top performance (rather than a family of controllers with
different quality metrics) and to operate at the host interface
level to satisfy the application requirements. As an example, if
the controller has been designed to sustain a certain Bth

cont and
the application requires a lower bandwidth Bapp, an interface
satisfying the condition

Bapp ≤ Bhi ≤ Bth
cont (8)

can be selected, confirming that the ideal host interface must
be chosen on the basis of the application and, therefore, on the
drive use. In such a way, with a single SSD controller design,
different application requirements can be satisfied by using
different host interfaces. Such methodology allows reducing
the controller bandwidth to match that of the application and
lowering the design cost of the SSD controller. In addition,
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it allows also reducing the drive power consumption since,
operating at a lower throughput, a lower number of NAND
Flash dies are activated simultaneously.

An evolution of this design methodology, envisaging a
single controller associated to different interfaces as a function
of the application, considers an unique combination of SSD
controller and host interface. In this case, each block is able to
provide the maximum theoretical performance. The effective
performance, however, can be tuned dynamically at software
level by acting on the SSD’s firmware and especially on
the command queue depths, which can be modified during
the normal execution. An example of this methodology can
be found in [92], [93] where the SSD controller is able to
automatically limit the performance of the drive depending on
the allowed power consumption or on the thermal dissipation
level. Such an approach, that calls for the design of a single
block embedding the SSD controller and the host interface,
however, implies a higher design cost for the development of
a controller whose hardware resources can be programmed by
the user.

VI. RESEARCH SCENARIO OPENED BY
HARDWARE-SOFTWARE CO-DESIGN FOR

HIGH-PERFORMANCE SSDS

In the last 40 years all software applications and Oper-
ating Systems (OS) which make use of persistent storage
architectures have been designed to work with HDDs [1].
However, SSDs are physically and architecturally different
from HDDs so that they need to execute the FTL algorithm
to translate host commands [3], [4], [5]. Basically, the main
role of FTL is to mimic the behavior of a traditional HDD and
to enable the usage of SSDs in any electronic system without
acting on the software stack. Besides this translation operation,
SSD controllers have to run garbage collection, command
scheduling algorithms, data placement schemes, wear-leveling,
and errors correction. All these routines, even if on the one
hand allow a ”plug and play” connection of the SSD with
traditional hardware and software, on the other hand they limit
actual SSD performance. The main drawback of FTL is the
Garbage Collection (GC), that is performed when valid pages
belonging to a block to be erased are read and written in a
different block. Such an operation, that is time and power
consuming, reduces both drive bandwidth and NAND Flash
reliability [84]. In the enterprise market and hyperscale data
centers, performance and reliability losses induced by GC are
not tolerable.

To deal with the above mentioned challenges, software
developers of hyperscale data centers have shown, in the
past few years, a growing interest for Software-Defined Flash
(SDF) [29]. In this kind of environments the driving forces
in the design of computational nodes are reliability and high
performance: therefore, even the I/O management has to be re-
architected. SDF leverages a new SSD design approach called
Host-Based FTL (HB-FTL) which allows the host system to:

• optimize the host payload, i.e., the amount of data
read/written with a single command and hence relieve the
SSD from any host command translation or manipulation;

• remove the GC related to FTL execution;
• execute the FTL directly on top of its computational node

(Open-Channel architecture [94]).

A. HB-FTL operations

HB-FTL considers the migration of all FTL routines from
the SSD to a more powerful processor located outside the
SSD. To this purpose, the processor must be able to issue
commands to be interpreted directly by the NAND Flash dies,
such as read, program and, especially, erase [95]. In this
context, a new protocol called Light NVME (LNVME) [96]
allows a native communication between NAND memories and
the external processor. Thanks to this protocol, the FTL can
be implemented and executed by the external processor such
as the host where the application is running.

A first advantage provided by this approach concerns the
optimization of the host payload. With this respect, since
ECC coding/decoding operate on an entire memory page,
read/write operations on a NAND Flash page must follow the
constrains imposed by the ECC itself. As an example, consider
a NAND Flash memory whose page size is 4 kB and a host
reading/writing data on a 512 B basis.

Write operations are performed on the NAND memories
only when eight 512 B data chunks have been transferred by
the host. However, the host considers as accomplished a write
operation when the SSD has acknowledged the data acquisi-
tion. If a power fail occurs between the data load and the effec-
tive storage in the nonvolatile layer, data are considered as lost.
To avoid this occurrence, dedicated solutions such as super-
capacitors [97] or the introduction of emerging nonvolatile
technologies, such as MRAM [98], replacing DRAM buffers
can be adopted [99], [100]. On the contrary, a NAND memory
page is read every time the host requires even a single chunk.
Therefore, even if only 512 B are requested by the host, the
entire 4 kB page is read and decoded by the ECC. It is clear
that, in this case, the SSD is operating at 1/8 of its theoretical
read bandwidth.

To improve the SSD performance and to better exploit its
internal resources, it is convenient to co-design the application
payload with the ECC engine. The optimal solution is achieved
by data chuncks that are an integer multiple of the actual ECC
codeword.

A more powerful approach takes into account that in HB-
FTL-based SDF both the application and the FTL are pro-
cessed in the same software environment [101]. Therefore,
they can be co-designed in order to optimize the access pattern
to the nonvolatile memory. As an example, the application
can be designed to perform only sequential accesses to the
storage medium, respecting the physical in-order-program of
NAND Flash memories [102]. By following this approach, the
actual access to the NAND Flash dies is block-based rather
than page-based which is typical of random write accesses.
By moving the write granularity from pages to blocks, GC
is no longer necessary. In addition, by serializing the write
traffic to the NAND Flash memories, the write bandwidth is
maximized.



14

TABLE V
HGST SN150 UTRASTAR CONFIGURATION.

Parameter Configuration
Channels 16

Dies per channel 16
SSD Capacity 3.2 TB

NAND Flash die 128 Gb Toshiba A19 eMLC
Host interface PCI-Express GEN3x4

B. The Open-Channel architecture

The Open-Channel architecture [94], [101] allows imple-
menting the management of HB-FTL-based SDF.

Fig. 23 sketches a template architecture that can be modeled
by Open-Channel. Basically, thanks to the PCI-Express inter-
connection and the LNVME protocol, a bunch of NAND Flash
cards can establish a peer-to-peer communication with the host
processor without requesting any specific management to the
SSD controller [103]. In this architecture ”NAND Flash cards”
are not standard SSDs because, besides a simple I/O processor,
a channel controller for NAND addressing and an ECC engine,
they do not embody any complex processor, DRAM or even
FTL (see Fig. 24). As a consequence, data read/write from/to
these cards have to be considered as the raw output/input of
NAND memories without any further manipulation.

Fig. 25 shows the effectiveness of HB-FTL with respect
to a standard FTL in increasing the SSD performance. To
this purpose the HGST SN150 Ultrastar SSD [104], whose
configuration is reported in Table V, has been compared with
a simulated drive feauturing a HB-FTL approach and the same
SSD configuration.

The comparison has been performed for different mixed
workloads, from a 100% 4 kB random read, 0 % random
write to a 0 % random read, 100 % 4kB random write.

All results show that in a standard FTL-based SSD per-

Fig. 23. Reference architecture modeled by the Open-Channel storage layer
when the host processor is used for HB-FTL execution. More than one NAND
Flash card are connected to the PCI-Express bus. Different FTL modules are
executed by the host processor.

Fig. 24. Schematic of a NAND Flash card used in the Open-Channel storage
system.

(a)

(b)

Fig. 25. Throughput (expressed in kIOPS) of HGST SN150 Ultrastar SSD
architecture compared to that of a simulated HB-FTL-based drive with the
same configuration: (a) read intensive and (b) write intensive workloads. A
queue depth of 32 commands is used. Simulations have been performed with
SSDExplorer [26].

formance decreases with the write percentage, whereas in a
HB-FTL-based SSD performance is mostly independent from
the write percentage. This result is due to the absence of the
GC algorithm that strongly affects standard FTL-based SSDs.

Another architecture that can fully exploit the Open-
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Fig. 26. Reference architecture modeled by the Open-Channel storage layer
when a MPPA is used for HB-FTL execution. Besides the NAND Flash cards,
the PCI-Express bus is connected to a MPPA accelerator executing different
FTL modules.

Channel concept and the LNVME protocol relies on the usage
of a dedicated accelerator in the form of a Multi-Purpose
Processing Array (MPPA) [105], [106], as shown in Fig. 26.
This solution allows the reduction of the host I/O command
submission/completion timings.

These delays are strictly related to the host’s processing
capabilities and they represent the time spent by the host
to execute the LNVME driver and the OS file system for
each submitted/completed I/O. It has been demonstrated that
the performance of nowadays SSDs is heavily affected by
the I/O submission/completions timings [107]. Moreover, in
most recent architectures like the one based on the 3D Xpoint
technology [108], these delays can even represent the actual
bottleneck of the whole storage layer, whose IOPS are limited
by the host system itself. As a consequence, reducing these
timings is the key for designing ultra-high performance storage
systems.

A possible solution to this problem is to switch the LNVME
protocol from an interrupt-driven I/O completion mechanism
to a polling-driven approach. Basically, in standard SSDs,
when an I/O is completed, the Flash controller sends an
interrupt to the host notifying that the transaction is ready
to be transferred/processed. After that, the host can submit
another command to the drive because the submission of
an I/O is driven by a completion event. In theory this ap-
proach requires that the host takes action only when I/Os
are submitted/completed, but in practice it introduces long
processing delays because of the OS interrupt service routines
[107]. Polling the I/O completion events, on the contrary,
can minimize the above mentioned processing timings. It
requires, however, that the host system monitors continuously
the I/Os, thus wasting part of its processing capabilities. In
light of all these considerations, moving the whole submis-
sion/completion process to a dedicated MPPA represents a
good solution which can offload the host system and, at the
same time, exploit the full performance of the NAND Flash
cards.

Fig. 27 shows the bandwidth comparison among the HGST

SN150 Ultrastar SSD [104] and two simulated drives with the
same architectural configuration, the former executing the FTL
on the host (HB-FTL), the latter on a dedicated MPPA (HB-
FTL-MPPA). Five different MPPA acceleration levels have
been considered, ranging from a 0% speed-up of the host up
to the 95%. The maximum I/O acceleration was imposed by
the hardware limitations introduced by the PCI-Express bus.

As it can be seen the HB-FTL-MPPA is able to heavily
improve performance in all the tested conditions, but it is
extremely effective when write intensive workloads are con-
sidered. This phenomenon is related to the fact that program
operations on NAND flash cards still follow a Write-Through
(WT) [109] caching policy; therefore, once the data payload
is transferred to the target card, a completion packet goes
immediately back to the MPPA. At this point it is clear
that, since the access time of WT buffers is in the order
of a few µs, the reduction of the I/O submission/completion
timings impacts the overall transfer time of the payload. This
is also true for read operations, but because of the pipelining
and queuing effects of the NAND flash cards, the overall
improvement is not so evident.

These considerations push towards a new SSD design
methodology: a complete virtualization of the storage back-
bone. In fact, both HB-FTL and Open-Channel allow to
virtually separating the internal resources of the SSD (like
channels and targets), providing a clear and straight path to
OS data partitioning.

VII. CONCLUSIONS

An SSD design aimed at optimizing its performance must
follow a Bottom-Up approach, since most of the design con-
straints are strongly related to the performance and reliability
of the nonvolatile storage medium. A detailed knowledge of
the memory performance degradation caused by oxide wear-
out and related to endurance phenomena, data retention and
read disturbs is mandatory to efficiently design the whole
SSD architecture. RBER represents the main figure of merit
driving the designers choices. The knowledge of RBER and,
in particular, of its evolution over stress and time, allows
selecting the most effective methodology and architecture in
order to extend as much as possible the memory working
window. Since RBER increases with aggressive technology
scaling, the use of LDPC codes now represents the preferable
solution for ECC engines. Once the NAND Flash memories
(together with the knowledge of their RBER) and the most
appropriate ECC algorithm (together with either read retry
techniques or LDPC soft decisions) have been selected, the
design of the SSD controller must be based on several aspects:

• the ECC architecture, trading off between performance
(bandwidth, latency, power consumption) and area occu-
pation;

• the number of memory channels, trading off again be-
tween performance and area occupation;

• the number of memory dies per channel, that is generally
a power of 2;

• the appropriate command management, maximizing the
number of active dies and hence the SSD bandwidth,
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Fig. 27. Throughput (expressed in kIOPS) of HGST SN150 Ultrastar SSD compared with the simulated HB-FTL or HB-FTL-MPPA for different percentages
of host I/O submission/completion timings accelerations. Command queue depth is 32. Simulations have been performed with SSDExplorer [26].

whereas limiting as much as possible the maximum
latency (i.e. the QoS) by leveraging the head of line
blocking concept;

• the introduction of a DRAM data cache buffer able to
reduce the number of access operations to the NAND
Flash memories, thus increasing SSD bandwidth while
reducing NAND Flash degradation effects;

• the choice of the most suitable host interface able to guar-
antee the performance requested by the host applications.

To further improve the performance of next generation SSDs to
be used in hyperscaled environments it is possible to leverage
new approaches, like SDF, exploiting hardware/software co-
design of the SSD controller architecture and of the host
applications.
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