
Fundamenta Informaticae XX (2018) 1–29 1

DOI 10.3233/FI-2015-0000

IOS Press

Reasoning on Datalog± Ontologies with Abductive Logic
Programming

Marco Gavanelli∗

Dipartimento di Ingegneria
University of Ferrara

Evelina Lamma
Dipartimento di Ingegneria
University of Ferrara

Fabrizio Riguzzi
Dipartimento di Matematica e Informatica
University of Ferrara

Elena Bellodi
Dipartimento di Ingegneria
University of Ferrara

Riccardo Zese
Dipartimento di Ingegneria
University of Ferrara

Giuseppe Cota
Dipartimento di Ingegneria
University of Ferrara

Abstract. Ontologies form the basis of the Semantic Web. Description Logics (DLs) are often the
languages of choice for modeling ontologies. Integration of DLs with rules and rule-based reason-
ing is crucial in the so-called Semantic Web stack vision - a complete stack of recommendations
and languages each based on and/or exploiting the underlying layers - which adds new features to
the standards used in the Web. The growing importance of the integration between DLs and rules
is proved by the definition of the profile OWL 2 RL1 and the definition of languages such as RIF2

and SWRL3. Datalog± is an extension of Datalog which can be used for representing lightweight
ontologies and expressing some languages of the DL-Lite family, with tractable query answering
under certain language restrictions. In particular, it is able to express the DL-Lite version defined
in OWL. In this work, we show that Abductive Logic Programming (ALP) can be used to repre-
sent Datalog± ontologies, supporting query answering through an abductive proof procedure, and
smoothly achieving the integration of ontologies and rule-based reasoning. Often, reasoning with
DLs means finding explanations for the truth of queries, that are useful when debugging ontologies
and to understand answers given by the reasoning process. We show that reasoning under existential

∗This work was partially supported by GNCS project DECORE.
1https://www.w3.org/TR/owl2-profiles
2https://www.w3.org/standards/techs/rif
3https://www.w3.org/Submission/SWRL/



rules can be expressed by ALP languages and we present a solving system, which is experimentally
proved to be competitive with DL reasoning systems. In particular, we consider an ALP framework
named SCIFF derived from the IFF abductive framework. Forward and backward reasoning is nat-
urally supported in this ALP framework. The SCIFF language smoothly supports the integration of
rules, expressed in a Logic Programming language, with Datalog± ontologies, mapped into SCIFF
(forward) integrity constraints. The main advantage is that this integration is achieved within a single
language, grounded on abduction in computational logic, and able to model existential rules.

1. Introduction

The main goal of the Semantic Web is to disseminate information in a form automatically processable
by machines [1]. Semantic Web technologies allow the reuse and sharing of data together with more
sophisticated queries. Data, in order to be managed by machines, must be represented in a standardized
logic format.

Ontologies are engineering artefacts consisting of a vocabulary describing some domain, and an ex-
plicit specification of the intended meaning of the vocabulary (i.e., how entities should be classified),
possibly together with constraints capturing additional knowledge about the domain. Ontologies there-
fore provide a formal and machine manipulable model for objects, concepts and entities that exist in a
particular domain, and constitute the basis of the Semantic Web.

The W3C, one of the main supporters of the Semantic Web, developed a family of formalisms of
increasing complexity for representing ontologies, called Web Ontology Language (OWL)4. Description
Logics (DLs) form the theoretical foundations of OWL. Of particular interest is the DL-Lite family
[2], that identifies a set of tractable DLs for which answering conjunctive queries is in AC0 in data
complexity.

When reasoning with DLs it is of foremost importance to find explanations for queries, which can
help to understand the results of the queries and, in case of errors, show where information must be
corrected. In this paper we concentrate on this aspect of query answering, i.e. explanation finding. In the
past years, several DL reasoners have been developed, such as Pellet [3], RacerPro [4] and HermiT [5],
and most of them implement the tableau algorithm [6] in a procedural language to compute such expla-
nations. This algorithm builds a graph representing the information about the objects in the knowledge
base, called tableau, and then expands it by applying a set of rules in order to decide whether an axiom is
entailed or not. This decision is done by refutation. Nonetheless, some tableau expansion rules are non-
deterministic, thus requiring the implementation of a search strategy in an or-branching search space.
In [7] the authors proposed an implementation of the tableau algorithm in Prolog, exploiting Prolog’s
backtracking facilities.

In a related research direction, the authors of [8] proposed Datalog±, an extension of Datalog with
existential rules. This formalism can be used for representing lightweight ontologies, and encompasses
the DL-Lite family [9, 10]. By suitably restricting its syntax, also Datalog± achieves tractability [8].
Possible restrictions are given by sticky rules, weakly-acyclic rules and by guardedness [11].

A combination of both these two approaches is given by PAGOdA [12], which combines Datalog
with Hermit [5] for improving the performances when answering queries by resorting to the OWL rea-
soner only where necessary and delegating to Datalog most of the computational load.

4Two major versions of this family of formalisms have been proposed (OWL 1 and OWL 2).



In this work we show how to model Datalog± ontologies in an Abductive Logic Programming (ALP)
language enriched with quantified variables, where query answering is supported by the underlying ALP
proof procedure. In other words, we show that reasoning under existential rules can be expressed by ALP
languages. We do not focus here on complexity results of the overall system, which are, however, not
tractable in general, since ALP is Turing-complete. ALP has been proved a powerful tool for knowledge
representation and reasoning [13], taking advantage of ALP proof procedures. ALP languages are usu-
ally equipped with a declarative (model-theoretic) semantics, and an operational semantics is given in
terms of a proof-procedure. Several abductive proof procedures have been defined (backward, forward,
and a mix of the two), with many different applications (diagnosis, monitoring, verification, etc.). Among
them, the IFF proof-procedure [14] was proposed to deal with forward rules, and with non-ground ab-
ducibles. In [15], SCIFF was proposed, an extension of the IFF proof procedure that can deal with
both existentially and universally quantified variables in rule heads, and Constraint Logic Programming
(CLP) constraints [16]. The resulting system was used for modeling and implementing several knowl-
edge representation frameworks, such as deontic logic [17], normative systems, interaction protocols for
multi-agent systems [18], Web services choreographies [19], as well as to represent and implement the
integration of declarative choreography languages into commitments [20].

Forward and backward reasoning is naturally supported by the ALP proof procedure, and the SCIFF
language smoothly supports the integration of rules, expressed in a Logic Programming language, with
ontologies expressed in Datalog±. In fact, SCIFF allows us to map Datalog± ontologies into forward
integrity constraints. We compare the SCIFF abductive semantics and the Datalog± semantics, and find
that the ALP semantics is more loose, meaning that a SCIFF procedure is not always sound with respect
to the Datalog± semantics and, symmetrically, the Datalog± proof procedure (the chase) is not always
complete with respect to the SCIFF semantics. We also define a property of the input program, that can
be statically checked, that ensures that the two procedures produce the same results.

Experimental results presented in this paper show that the SCIFF proof procedure has competitive
performance to that of existing DL reasoning systems, in particular when all the explanations are required
or when there are tight memory limits.

In the following, Section 2 briefly introduces Datalog±. Section 3 presents Abductive Logic Pro-
gramming and the SCIFF language, with a mention to its abductive proof procedure. Section 4 shows
how the considered Datalog± language can be mapped into SCIFF, and the kind of queries that the
abductive proof procedure can handle. Section 5 illustrates related work. In Section 6 we show ex-
perimentally that the SCIFF proof procedure is able to answer queries in a time comparable to that of
ontological reasoners. Section 7 concludes the paper and outlines future work.

2. Datalog±

Datalog± extends Datalog by allowing existential quantifiers, the equality predicate and the truth constant
false in rule heads. Datalog± can be used for representing lightweight ontologies and is able to express
some members of the DL-Lite family of ontology languages [9]. In particular, it is able to express
the DL-Lite version defined in OWL. By suitably restricting the language syntax, Datalog± achieves
tractability [21].

In order to describe Datalog±, let us assume (i) an infinite set of data constants ∆, (ii) an infinite set
of labeled nulls ∆N (used as “fresh” Skolem terms), and (iii) an infinite set of variables ∆V . Different



constants represent different values (unique name assumption), while different nulls may represent the
same value. We assume a lexicographic order on ∆ ∪ ∆N , with every symbol in ∆N following all
symbols in ∆. We denote by X vectors of variables X1, . . . , Xk with k ≥ 0. A relational schema R is
a finite set of relation names (or predicates). A term t is a constant, null or variable. An atomic formula
(or atom) has the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. A database
D for R is a possibly infinite set of atoms with predicates from R and arguments from ∆ ∪ ∆N . A
Conjunctive Query (CQ) overR has the form q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of
atoms having as arguments variables X and Y and constants (but no nulls). A Boolean CQ (BCQ) over
R is a CQ having head predicate q of arity 0 (i.e., no variables in X).

We often write a BCQ as the set of all its atoms, having constants and variables as arguments,
and omitting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms, which are
mappings µ : ∆ ∪ ∆N ∪ ∆V → ∆ ∪ ∆N ∪ ∆V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N

implies µ(c) ∈ ∆ ∪ ∆N , and (iii) µ is naturally extended to term vectors, atoms, sets of atoms, and
conjunctions of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over a database D, denoted
q(D), is the set of all tuples t over ∆ for which there exists a homomorphism µ : X ∪Y → ∆ ∪∆N

such that µ(Φ(X,Y)) ⊆ D and µ(X) = t. The answer to a BCQ q = ∃YΦ(Y) over a database D,
denoted q(D), is Yes, denoted D |= q, iff there exists a homomorphism µ : Y → ∆ ∪ ∆N such that
µ(Φ(Y)) ⊆ D, i.e., if q(D) 6= ∅.

Given a relational schema R, a tuple-generating dependency (or TGD) F is a first-order formula
of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions of atoms
over R, called the body and the head of F , respectively. Such F is satisfied in a database D for R iff,
whenever there exists a homomorphism h such that h(Φ(X,Y)) ⊆ D, there exists an extension h′ of h
such that h′(Ψ(X,Z)) ⊆ D. We usually omit the universal quantifiers in TGDs.

Query answering under TGDs is defined as follows. For a set of TGDs TT onR, and a databaseD for
R, the set of models of D given TT , denoted mods(D,TT ), is the set of all (possibly infinite) databases
B such that D ⊆ B and every F ∈ TT is satisfied in B. The set of answers to a CQ q on D given
TT , denoted ans(q,D, TT ), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,TT ). The
answer to a BCQ q over D given TT is Yes, denoted D ∪ TT |= q, iff B |= q for all B ∈ mods(D,TT ).

A Datalog± theory may contain also negative constraints (or NC), which are first-order formulas of
the form ∀XΦ(X) → ⊥, where Φ(X) is a conjunction of atoms. The universal quantifiers are usually
left implicit.

Equality-generating dependencies (or EGDs) are the third component of a Datalog± theory. An EGD
F is a first-order formula of the form ∀XΦ(X) → Xi = Xj , where Φ(X), called the body of F , is a
conjunction of atoms, and Xi and Xj are variables from X. We call Xi = Xj the head of F . Such F is
satisfied in a database D forR iff, whenever there exists a homomorphism h such that h(Φ(X)) ⊆ D, it
holds that h(Xi) = h(Xj). We usually omit the universal quantifiers in EGDs.

The chase is a bottom-up procedure for deriving atoms entailed by a database and a Datalog± theory.
The chase works on a database through the so-called TGD and EGD chase rules.

The TGD chase rule is defined as follows. Given a relational database D for a schemaR, and a TGD
F on R of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), F is applicable to D if there is a homomorphism
h that maps the atoms of Φ(X,Y) to atoms of D. Let F be applicable and h1 be a homomorphism that
extends h as follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is
a “fresh” null, i.e., zj ∈ ∆N , zj 6∈ D, and zj lexicographically follows all other labeled nulls already
introduced. The TGD chase rule is applied when a new tuple t is found that satisfies D |= ∃YΦ(t,Y);



the result of the application of the TGD chase rule for F is the addition to D of all the atomic formulas
in h1(Ψ(X,Z)) that are not already in D.

The EGD chase rule is defined as follows [22]. An EGD F on R of the form Φ(X) → Xi = Xj is
applicable to a database D for R iff there exists a homomorphism h : Φ(X) → D such that h(Xi) and
h(Xj) are different and not both constants. If h(Xi) and h(Xj) are different constants in ∆, then there
is a hard violation of F . Otherwise, the result of the application of F to D is the database h(D) obtained
fromD by replacing every occurrence of h(Xi) with h(Xj) if h(Xi) precedes h(Xj) in the lexicographic
order, and every occurrence of h(Xj) with h(Xi) if h(Xj) precedes h(Xi) in the lexicographic order.

The chase algorithm consists of an exhaustive application of the TGD and EGD chase rules that may
lead to an infinite result. The chase rules are applied iteratively: in each iteration (1) a single TGD is
applied once and then (2) the EGDs are applied until a fix point is reached. EGDs are assumed to be
separable [11]. Intuitively, separability holds whenever: (i) if there is a hard violation of an EGD in
the chase, then there is also one on the database w.r.t. the set of EGDs alone (i.e., without considering
the TGDs); and (ii) if there is no hard violation, then the answers to a BCQ w.r.t. the entire set of
dependencies equals those w.r.t. the TGDs alone (i.e., without the EGDs).

Query answering under TGDs is equivalent to query answering under TGDs with only single atoms
in their heads [21]. Henceforth, we assume that every TGD has a single atom in its head. A BCQ q on
a database D, a set TT of TGDs and a set TE of EGDs can be answered by performing the chase and
checking whether the query is entailed by the extended database that is obtained. In this case we write
D ∪ TT ∪ TE |= q.

Example 2.1. Let us consider the following ontology for a real estate information extraction system, a
slight modification of the one presented in Gottlob et al. [22]:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price element.

F3 = priceElem(E), group(E,X)→ forSale(X)
If E is a price element and is grouped with X , then X is for sale.

F4 = forSale(X)→ ∃P price(X,P )
If X is for sale, then there exists a price for X .

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)
If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃L codeLoc(C,L), loc(X,L)
If X has postal code C, then there exists L such that C has location L and so does X .

F7 = loc(X,L1), loc(X,L2)→ L1 = L2
If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)
If X has a location L then X is advertised.

Suppose we are given the database:

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)



The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) evaluate to true, while the
CQ loc(prop1, L) has answer q(L) = {summertown}. In fact, even if loc(prop1, z1) with z1 ∈ ∆N is
entailed by formula F6, formula F7 imposes that summertown = z1. �

Checking whether a set of NCs is satisfied by a database given a set of TGDs corresponds with query
answering [11]. In particular, given a database D, a set TT of TGDs and a set T⊥ of NCs, for each
constraint ∀XΦ(X) → ⊥ we evaluate the BCQ q = ∃XΦ(X) over D ∪ TT . If at least one of such
queries answers positively, then D ∪ TT ∪ T⊥ |= ⊥ (i.e., the theory is inconsistent), and thus for every
BCQ q it holds that D ∪ TT ∪ T⊥ |= q; otherwise, given a BCQ q, we have that D ∪ TT ∪ T⊥ |= q iff
D ∪ TT |= q, i.e, we can answer q by ignoring the constraints.

3. Abductive Logic Programming

Abductive Logic Programming (ALP, for short) is a family of programming languages that integrate
abductive reasoning into logic programming. In the following, we assume some familiarity with logic
programming terminology; a good introduction is given by Lloyd [23]. An ALP program is a logic
program, consisting of a set of clauses

head← body

where the head is an atom. A set of clauses with the same predicate symbol in the head define a
predicate. The body can contain literals built either from defined predicates or from some distinguished
predicates, belonging to a set A and called abducibles. The aim is finding a set of abducible literals
EXP, built from symbols inA that, together with the knowledge baseKB, is an explanation for a given
known effect (also called goal G):

KB ∪EXP |= G. (1)

Also, EXP should satisfy a set of logic formulae, called Integrity Constraints IC:

KB ∪EXP |= IC. (2)

Example 3.1. A knowledge base might contain a set of rules stating that a person is a nature lover

natureLover(X)← hasAnimal(X,Y ),pet(Y ).

natureLover(X)← biologist(X).

From this knowledge base one can infer, e.g., that each person who owns a pet is a nature lover. How-
ever, in some cases we might have the information that kevin is a nature lover, and wish to infer more
information about him. In such a case we might label predicates hasAnimal, pet and biologist as
abducible (in the following, abducible predicates are written in bold) and apply an abductive proof pro-
cedure to the knowledge base. Two explanations are possible: either there exists an animal that is owned
by kevin and that is a pet:

(∃Y ) hasAnimal(kevin, Y ),pet(Y )

or kevin is a biologist:
biologist(kevin)

We see that the computed answers includes abduced atoms, which can contain variables. �



Integrity constraints can help reducing the number of computed explanations, ruling out those that
are not possible.

Example 3.2. Let us consider the knowledge base of Example 3.1. The following integrity constraint
states that to become a biologist one needs to be at least 25 years old:

biologist(X),age(X,A)→ A ≥ 25

We might know that kevin is a child, and have a definition of the predicate child:

child(X)← age(X,A), A < 10.

In this example we see the usefulness of constraints as in Constraint Logic Programming [16]: the
symbols <,≥, ... are handled as constraints, i.e., they are not predicates defined in a knowledge base,
but they associate a numeric domain to the involved variables and restrict it according to constraint
propagation. Now, the goal natureLover(kevin), child(kevin) returns only one possible explanation:

(∃Y )(∃A) hasAnimal(kevin, Y ),pet(Y ),age(kevin,A) A < 10

since the option that kevin is a biologist is ruled out. Note that we do not need to know the exact age of
kevin to rule out the biologist hypothesis. �

3.1. The SCIFF declarative semantics and proof-procedure

SCIFF [15] is a language in the ALP class, originally designed to model and verify interactions in open
societies of agents [18], and it is an extension of the IFF proof-procedure [14]. As in the IFF language,
it considers integrity constraints (ICs, for short in the following) in the form of forward rules

body → head

where the body is a conjunction of literals and the head is a disjunction of conjunctions of literals. While
in the IFF the literals can be built only on defined or abducible predicates, in SCIFF they can also be
Constraint Logic Programming (CLP) constraints, occurring events (only in the body), or positive and
negative expectations.

Definition 3.3. A SCIFF Program is a pair 〈KB, IC〉 where KB is a set of clauses and IC is a set of
Integrity Constraints. �

Variables occurring in SCIFF integrity constraints can be existentially or universally quantified; the
quantification is left implicit in the SCIFF syntax, and the correct quantification is given by the set of
quantification rules reported in [15]. Concerning the cases relevant for this work, the quantification rules
can be simplified as follows:

• all variables occurring in the body are universally quantified;

• all variables occurring only in the head are existentially quantified.



In the following, we will often omit the quantification, and make it explicit only when we wish to high-
light it to the reader.
SCIFF considers a (possibly dynamically growing) set of facts (named event set) denoted HAP, that

contains ground atoms H(Event). This set, also called history, can grow dynamically, during the com-
putation, thus implementing a dynamic acquisition of events. Some distinguished abducibles are called
expectations. A positive expectation, written E(Event), means that a corresponding event H(Event)
is expected to happen, while EN(Event) is a negative expectation, and requires that a matching event
H(Event) does not appear in the event set.

While events in HAP are ground atoms, expectations can contain variables. In positive expectations
all variables are existentially quantified (expressing the idea that a single event is enough to support
them), while negative expectations are universally quantified, so that any event matching with a negative
expectation leads to inconsistency with the current hypothesis. CLP [16] constraints can be imposed on
variables. The computed answer includes in general three elements: a substitution for the variables in
the goal (as usual in Prolog), the constraint store (as in CLP), and the set EXP of abduced literals, also
called abductive explanation.

The declarative semantics of SCIFF includes the classic conditions of abductive logic programming

KB ∪HAP ∪EXP |= G (3)

KB ∪HAP ∪EXP |= IC (4)

(where the |= symbol is interpreted, as in the IFF, as 3-valued completion semantics [24]), plus specific
conditions to support the confirmation of expectations. In this paper, variables in G are considered
existentially quantified, and variables in IC are quantified as previously explained.

Positive expectations are confirmed if

(∀X) KB ∪HAP ∪EXP |= E(X)→ H(X), (5)

while negative expectations are confirmed (or better they are not violated) if

(∀X) KB ∪HAP ∪EXP |= EN(X) ∧H(X)→ false. (6)

The declarative semantics of SCIFF also requires that the same event cannot be expected both to
happen and not to happen

(∀X) KB ∪HAP ∪EXP |= E(X) ∧EN(X)→ false (7)

Definition 3.4. (SCIFF answer)
Given a SCIFF program 〈KB, IC〉 and a history HAP, a goal G is a SCIFF answer if there is a set
EXP such that equations (3), (4), (5), (6) and (7) are satisfied. In this case, we write

〈KB, IC〉 |=HAP G

�

The SCIFF proof-procedure is a rewriting system that defines a tree, whose nodes represent states
of the computation. A set of transitions rewrite a node into one or more child nodes. SCIFF inherits
the transitions of the IFF proof-procedure [14], and extends it in various directions. We recall the basics



of SCIFF; a complete description can be found in [15], with proofs of soundness, completeness, and
termination. An efficient implementation of SCIFF is described in [25].

Each node of the proof is a tuple N ≡ 〈R,CS, PSIC,EXP〉, where R is the resolvent, CS is
the CLP constraint store, PSIC is a set of implications (called Partially Solved Integrity Constraints)
derived from the propagation of integrity constraints, and EXP is the current set of abduced literals.
SCIFF includes a set of transitions inherited from the IFF, the transitions of CLP [16] for constraint
solving, plus some transitions devoted to specific features of the SCIFF language, such as handling of
dynamically happening events and fulfillment/violation of expectations.

The following is the subset of SCIFF transitions that are relevant for this work, in a proof-theory
style notation.

• propagation
H(N) H(N ′), B → H

N = N ′, B → H

• case analysis
(N = N ′, B)→ H

N = N ′ B → H ∨ N 6= N ′

• equality rewriting

[∃E][∀A]A = E

θ = {A/E}
[∃E][∀A]A 6= E

false

[∃E1][∃E2]E1 = E2

θ = {E1/E2}

X = t t does not contain X
θ = {X/t}

X = t t contains X
false

X 6= t t contains X
true

p(t1, . . . , tn) = p(s1, . . . , sn)

t1 = s1, . . . , tn = sn

p(t1, . . . , tn) 6= p(s1, . . . , sn)

t1 6= s1 ∨ · · · ∨ tn 6= sn

p(t1, . . . , tn) = q(s1, . . . , sm) where p 6= q ∨ n 6= m

false

p(t1, . . . , tn) 6= q(s1, . . . , sm) where p 6= q ∨ n 6= m

true

where θ is the resulting substitution. In case two variables with different quantifiers are unified,
the new variable is existentially quantified.



• logical simplifications

true→ A

A

false→ A

true

true ∧A
A

false ∧A
false

true ∨A
true

false ∨A
A

In this paper we consider the generative version of SCIFF, called g-SCIFF [26], in which also the
H events are considered as abducibles, and can be assumed like the other abducible predicates, beside
being provided as input in the history HAP; they are then collected in a set HAP′ ⊇ HAP.

Definition 3.5. (g-SCIFF answer)
Given a SCIFF program 〈KB, IC〉 and a history HAP, we say that a goal G is a g-SCIFF answer if
there exist a set EXP and a set HAP′ ⊇ HAP such that equations (3)-(7) are satisfied5. In this case,
we write

〈KB, IC〉 |=g
HAP HAP′

G

or simply
〈KB, IC〉 |=g

HAP G

�

The g-SCIFF proof procedure also includes transition regimentation, that produces an event from
each positive expectation that is not already fulfilled:

E(N)

H(N)
.

4. Mapping Datalog± into ALP programs

In this section, we show that a Datalog± program can be represented as a set of SCIFF integrity con-
straints and an event set. SCIFF abductive declarative semantics provides the model-theoretic coun-
terpart to Datalog± semantics. Operationally, query answering is achieved bottom-up via the chase in
Datalog±, while in the ALP framework it is supported by the SCIFF proof procedure. SCIFF is able
to integrate a knowledge base KB, expressed in terms of Logic Programming clauses, possibly with
abducibles in their body, and to deal with integrity constraints.

To our purposes, we consider only SCIFF programs with an empty KB, ICs with only conjunctions
of positive expectations and CLP constraints (or false) in their heads. We show that this subset of the
language suffices to represent Datalog± ontologies.

We map the finite set of relation names of a Datalog± relational schema R into the set of predicates
of the corresponding SCIFF program.

5In the equations (3)-(7) the set HAP should be substituted with HAP′.



Definition 4.1. The τ mapping is recursively defined as follows, where A is an atom, M can be either
H or E, and F1, F2, . . . are formulae (τM stands for both τH and τE, depending on what one wants to
map) :

τ(body → head) = τH(body)→ τE(head)

τH(A) = H(A)

τE(A) = E(A)

τM(F1 ∧ F2) = τM(F1) ∧ τM(F2)

τM(false) = false

τM(Yi = Yj) = Yi = Yj

τE(∃X A) = τE(A)

�

The last rule means that in SCIFF syntax it is not necessary to add explicitly the quantification of a
variable. Note, however, that the existential quantification is correctly retained (see quantification rules
in Section 3.1).

A Datalog± database D for R corresponds to the (possibly infinite) SCIFF event set HAP, since
there is a one-to-one correspondence between each tuple in D and each (ground) fact in HAP. This
mapping is denoted as HAP = τH(D).

A Datalog TGD F of the kind body → head is mapped into the SCIFF integrity constraint IC =
τ(F ), where the body is mapped into conjunctions of SCIFF atoms, and head into conjunctions of
SCIFF abducible atoms. Existential quantifications of variables occurring in the head of the TGD are
maintained in the head of the SCIFF IC while the rest of the variables are universally quantified with
scope the entire IC.

Given a set of TGDs TT , let us denote the mapping of TT into the corresponding set IC of SCIFF
integrity constraints, as IC = τ(TT ).

Recall that for a set of TGDs TT on R, and a database D for R, the set of models of D given TT ,
denotedmods(D,TT ), is the set of all (possibly infinite) databasesB such thatD ⊆ B and everyF ∈ TT
is satisfied in B. For any such database B, we can prove that there exists an abductive explanation6

EXP = τE(B), HAP′ = τH(B) such that:

HAP′ ∪EXP |= IC

where HAP′ ⊇ HAP = τH(D), and IC = τ(TT ).
Finally, Datalog± negative constraints NCs are mapped into SCIFF ICs with head false , and equality-

generating dependencies EGDs into SCIFF ICs, each one with an equality CLP constraint in its head.
A Datalog± CQ q(X) = ∃YΦ(X,Y) over R is mapped into a SCIFF goal G = τE(Φ(X,Y)),

where τE(Φ(X,Y)) is a conjunction of SCIFF atoms. Notice that in the SCIFF framework we have
therefore a goal with existential variables only, and among them, we are interested in computed answer
substitutions for the original (tuple of) variables X (and therefore Y variables can be made anonymous).

A Datalog± BCQ q = Φ(Y) is mapped similarly: G = τE(Φ(Y)).

6With an abuse of notation, when S is a set we denote with τ(S) = {τ(s)|s ∈ S}.



Recall that in Datalog± the set of answers to a CQ q on D given TT , denoted ans(q,D, TT ), is the
set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,TT ). With abuse of notation, we will write
q(t) to mean answer t for q on D given TT .

We can hence state the following theorems for (model-theoretic) completeness of query answering.

Theorem 4.2. (Completeness of query answering)
Let T a set of implications (consisting of Tuple-Generating Dependencies (TGDs), Equality Generat-
ing Dependencies (EGDs) and/or Negative Constraints (NCs)). For each answer q(t) of a CQ q(X) =
∃YΦ(X,Y) on D given T , in the corresponding SCIFF program 〈∅, IC〉 there exists an answer substi-
tution θ and an abductive explanation EXP ∪HAP′ for goal G = τE(Φ(X, )) such that:

〈∅, IC〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T ), and Gθ = τE(Φ(t, )). �

Proof:
Consider an answer q(t) of a CQ q(X) = ∃YΦ(X,Y) onD given T , and a database B ∈ mods(D,T ).
By definition, every F ∈ T is satisfied in B.

Consider now the sets HAP′ = τH(B) and EXP = τE(B).
Let F be a TGD, a NC or an EGD in T ; in general, let F ≡ (Body(X,Y) → Head(Y,Z)). F is

satisfied in B; i.e., for each homomorphism h such that h(Body(X,Y)) ⊆ B there exists an extension
h′ such that h′(Head(Y,Z)) ⊆ B. Consider

h′(τ(Body(X,Y)→ Head(Y,Z)))

=τH(h′(Body(X,Y)))→ τE(h′(Head(Y,Z)))

Since h′(Body(X,Y)) ⊆ B,

τH(h′(Body(X,Y))) ⊆ τH(B) = HAP′

Analogously, since h′(Head(Y,Z)) ⊆ B,

τE(h′(Head(Y,Z))) ⊆ τE(B) = EXP

showing that τ(F ) is satisfied. Since for every F ∈ T there is one integrity constraint τ(F ) ∈ IC, we
have that

HAP′ ∪EXP |= IC. (8)

Since q(t) is an answer of the CQ q(X) = Φ(X,Y), there exists a homomorphism µ : X ∪Y →
∆ ∪∆N such that µ(Φ(X,Y)) ⊆ B and µ(X) = t.

Consider the substitution θ = {X/t,Y/µ(Y)}.

µ(Φ(X,Y)) ⊆ B

implies that
τE(µ(Φ(X,Y))) ⊆ τE(B) = EXP



from which we have
EXP |= τE(µ(Φ(X,Y)))

and from the definition of θ
EXP |= τE(Φ(X,Y)θ)

and obviously
HAP ∪EXP |= τE(Φ(X,Y)θ).

By construction of HAP′ and EXP we immediately have that

HAP′ ∪EXP |= E(X)→ H(X);

moreover since EXP does not contain EN literals, we also have that

HAP′ ∪EXP |= EN(X) ∧H(X)→ false

and
(HAP′∪) EXP |= E(X) ∧EN(X)→ false

ut

Corollary 4.3. (Completeness of boolean query answering)
If the answer to a BCQ q = ∃YΦ(Y) over D given T is Yes, denoted D ∪ T |= q, then in the corre-
sponding SCIFF program there exists an abductive explanation EXP ∪HAP′ such that:

〈∅, IC〉 |=g
HAP G

where HAP = τH(D), IC = τ(T ), and G = τE(Φ( )). �

The soundness of the translation must face the fact that the semantics of abductive logic programming
and of Datalog± are different. Declaratively, Datalog± considers all the models B ∈ mods(D,TT ), and
a Boolean Conjunctive Query (BCQ) is true iff it is true in all B, while in ALP a goal is true if there is
(at least) an abductive answer.

Example 4.4. Consider the set TT consisting of the rules

p(X,Y )→ q(A, Y ).

p(X,Y ), q(Y,Z)→ r(X,Y, Z).

and a database D = {p(1, 2)}.
Amongst the models, we have B1 = {p(1, 2), q(2, 2), r(1, 2, 2)} and B2 = {p(1, 2), q(7, 2)}; the

BCQs p(1, 2) and ∃X q(X, 2) are true, while q(2, 2) and ∃A,B,C r(A,B,C) are false.
In ALP, instead (assuming that predicates q and r are abducible), there are various ground abductive

answers that can be summarized into two cases: either Y = 2 or Y 6= 2, and in the first case r(1, 2, 2)
must be true. �

It makes sense to study the set of programs for which both ALP and Datalog provide the same
semantics; we give the following definition:



Definition 4.5. (propagation-safe programs)
Let D be a database and T a set of implications (consisting of TGDs, EGDs and/or NCs).

For each predicate symbol p, we have ap positions, if ap is the arity of the predicate. We write
positions with the syntax p[i], to indicate the i-th argument of predicate symbol p.

Consider the following marking procedure.

1. (Preliminary step): for each variable X occurring more than once in the body of a rule, mark all
the positions in which X occurs in that rule;

2. if in a rule a variable occurs in a position that is marked, mark all the positions in which the variable
occurs.

Repeat step 2 until a fixed point is reached.
If

• for each atom p(t) in the database, for each marked position p[i], t[i] ∈ ∆ (i.e., the term in position
p[i] is not null)

• for each atom p(X) in the head of a TGD, for each marked position p[i], X[i] is not an existentially
quantified variable

then we say that T and D are propagation-safe.

Note that the program in Example 4.4 is not propagation-safe because the position q[1] is marked,
but variable A, in the head of the first rule, is existentially quantified, violating the second condition for
propagation-safeness. In a propagation-safe program, for all databases obtained by applying the chase to
D, in the marked positions there cannot be null values, i.e., in the marked positions only constants can
occur. In particular, in join positions only constant (and no nulls, nor existential variables) can occur.

Theorem 4.6. (Soundness of propagation-safe programs)
Given a database D, let HAP = τH(D). Let 〈∅, τ(T )〉 be the corresponding SCIFF program of a set of
propagation-safe rules T .

Let q = ∃XΦ(X) be a BCQ.
If

〈∅, IC〉 `g
HAP HAP′

true

and
HAP′ |= τ(q)

then the BCQ q over D given T is true.

Proof:
The proof is based on the fact that in propagation-safe programs, the atoms generated by the chase
contain only constants in the the join positions. For such programs, the SCIFF proof-procedure executes
the same steps as the chase, that is sound.

Let
b1(X1), b2(X2), . . . bn(Xn)→ ∃Yh(X′,Y) (9)



be a TGD, where without loss of generality we consider a single atom in the head, and in which X′ ⊆
∪iXi.

In this case, the corresponding IC through the τ -mapping is

H(b1(X1)),H(b2(X2)), . . .H(bn(Xn))→ [∃Y]E(h(X′,Y)) (10)

The TGD generates h(X′,Y) iff the body is true, i.e., if there exists a set of atoms

b1(a1), . . . , bn(an) (11)

matching the body. The SCIFF proof-procedure will trigger IC (10) iff the body is true, i.e., if there
exists a set of atoms

H(b1(a1)), . . . ,H(bn(an)) = τ(b1(a1), . . . , bn(an)) (12)

matching the body.
In fact, let us assume there exist atoms (11) in D and (12) in HAP. Let us assume w.l.o.g., that the

SCIFF proof procedure selects the atoms in the order 1 to n. From (12) and H(b1(a1)), propagation can
be applied obtaining

X1 = a1,H(b2(X2)), . . .H(bn(Xn))→ [∃Y]E(h(X′,Y))

from which case analysis is applied obtaining two disjuncts:

• X1 = a1 and H(b2(X2)), . . .H(bn(Xn))→ [∃Y]E(h(X′,Y))

• X1 6= a1.

As X1 is universally quantified, the latter is rewritten to false, while in the first X1 is unified with a1
and the implication is rewritten into

H(b2(X2)), . . .H(bn(Xn))→ [∃Y]E(h(X′,Y)) [X1/a1]

If the set of atoms (11) does not contain any null, since we assumed that the set of atoms (11) unifies
with the body of (9), clearly the same sequence (propagation, case analysis and equality rewriting) is
applicable for all atoms in the body of (10).

From the previous observation, the set of atoms cannot contain any null in the join positions, meaning
that either the shared constant is the same (and in this case the SCIFF proof procedure can take only the
first branch, while the second immediately fails, and the chase would fire as well) or the constants are
different (and in this case the SCIFF proof procedure can take only the second branch, while the first
immediately fails - the implication does not fire in the chase as well).

After n applications of propagation, case analysis and equality rewriting, we obtain

true→ [∃Y]E(h(X′,Y)) [θ]

for some substitution θ; logical equivalence can be applied obtaining

[∃Y]E(h(X′,Y)) [θ].



Transition regimentation can now be applied, generating

H(h(X′,Y)) [θ]

that is equivalent (through the τ -mapping) to the atom ∃Y h(X′,Y) obtained by the chase.
ut

Example 4.7. (Real estate information extraction system in ALP)
Let us conclude this section by re-considering the Datalog± ontology for the real estate information
extraction system of Example 2.1. TGDs F1-F8 are one-to-one mapped into the following SCIFF ICs:

H(ann(X, label)),H(ann(X, price)),H(visible(X))→ E(priceElem(X)) (IC1)

H(ann(X, label)),H(ann(X, priceRange)),H(visible(X))→ E(priceElem(X)) (IC2)

H(priceElem(E)),H(group(E,X))→ E(forSale(X)) (IC3)

H(forSale(X))→ (∃P ) E(price(X,P )) (IC4)

H(hasCode(X,C)),H(codeLoc(C,L))→ E(loc(X,L)) (IC5)

H(hasCode(X,C))→ (∃L) E(codeLoc(C,L)),E(loc(X,L)) (IC6)

H(loc(X,L1)),H(loc(X,L2))→ L1 = L2 (IC7)

H(loc(X,L))→ E(advertised(X)) (IC8)

The database is then simply mapped into the following event set HAP:

{H(codeLoc(ox1, central)),H(codeLoc(ox1, south)),

H(codeLoc(ox2, summertown)),H(hasCode(prop1, ox2)),H(ann(e1, price)),

H(ann(e1, label)),H(visible(e1)),H(group(e1, prop1))}

Note that the program is propagation-safe.
The SCIFF proof procedure applies ICs in a forward manner, and it infers the following set of

abducibles from the program above:

EXP = {E(priceElem(e1)),E(forSale(prop1)), ∃P E(price(prop1, P )),

E(loc(prop1, summertown)),E(advertised(prop1))}

plus the corresponding H atoms, that are not reported for the sake of brevity.
By focusing on a single IC, say IC6, it can be inferred from the event set HAP the set of abducibles

{(∃L)E(codeLoc(ox2, L)),E(loc(prop1, L))}, by exploiting propagation, case analysis, equality rewrit-
ing and logical equivalence.

Each of the (ground) atomic queries of Example 2.1 is entailed in the SCIFF program above, since
there exist sets EXP and HAP′ such that:

HAP′ ∪EXP |= E(priceElem(e1)),E(forSale(prop1)),E(advertised(prop1))

The query ∃L E(loc(prop1, L)) is entailed as well, considering the unification L = summertown
since:

HAP′ ∪EXP |= E(loc(prop1, summertown)).



Note that, if there was no IC7, SCIFF would provide

EXP′ = {∃L E(codeLoc(ox2, L))} ∪EXP

i.e., there would be a further possible code for ox2. In the same situation, Datalog± would provide to the
CQ loc(prop1, L) the answers summertown and a new NULL, call it z1. �

It is worth noting that the SCIFF framework is much more expressive than the restricted version used
in this paper; in fact, in the mapping we used an empty KB, but in general the Knowledge Base can be
a logic program, that can include expectations, abducible literals, as well as CLP constraints. Beside the
forward propagation of Integrity Constraints, SCIFF supports also backward reasoning.

5. Related Work

Various approaches have been followed to reason upon ontologies. Usually, DL reasoners implement a
tableau algorithm using a procedural language. Since some tableau expansion rules are non-deterministic,
the developers have to implement a search strategy from scratch.

Pellet [3] is, until version 2, a free open-source Java-based reasoner. It is able to reason upon
SROIQ(D) with simple datatypes (i.e., for OWL 1.1). Pellet can compute the set of all the expla-
nations for given queries by exploiting the tableau algorithm. An explanation here is roughly a subset of
the knowledge base (KB) that is sufficient for entailing the query. The tableau algorithm starts with a so
called tableau, which is a graph representing the assertional information contained in the KB. The tableau
is expanded by applying a set of expansion rules in order to check if there is a model for the given query.
However, the tableau algorithm can build a single explanation, therefore Pellet applies Reiter’s hitting
set algorithm [27] to find all the explanations. This is a black box method: Pellet repeatedly removes an
axiom from the KB and then computes again a new explanation exploiting the tableau algorithm on the
new KB, recording all the different explanations so found.

Differently from Pellet, reasoners written in Prolog can exploit Prolog’s backtracking facilities for
performing the search. This has been observed in various works. In [28, 29] the authors proposed a
tableau reasoner in Prolog for First Order Logic (FOL) based on free-variable semantic tableaux. How-
ever, the reasoner is not tailored to DLs.

Hustadt, Motik and Sattler [30] presented the KAON2 algorithm that exploits basic superposition,
a refutational theorem proving method for FOL with equality, and a new inference rule, called decom-
position, to reduce a SHIQ KB into a disjunctive Datalog program, while DLog [31, 32] is an ABox
reasoning algorithm for the SHIQ language that allows to store the content of the ABox externally in
a database and to answer instance checking and instance retrieval queries by transforming the KB into a
Prolog program.

Meissner presented the implementation of a reasoner for the DLALCN written in Prolog [33], which
was then extended and reimplemented in the Oz language [34]. Starting from [33], Herchenröder [35]
implemented heuristic search techniques in order to reduce the inference time for the DL ALC. Faizi
[36] added to [35] the possibility of returning information about the steps executed during the inference
process for queries, but still handled only ALC.

A different approach is the one by Ricca et al. [37], that presented OntoDLV, a system for reasoning
on a logic-based ontology representation language called OntoDLP. This is an extension of (disjunctive)



ASP and can interoperate with OWL. OntoDLV rewrites the OWL KB into the OntoDLP language,
also by retrieving information directly from external OWL Ontologies, and answers queries by using
ASP. Inside the DLV project there is also a system, called DLV∃, able to answer conjunctive queries
over a fragment of Datalog∃ called “Shy”, which allows existential quantifiers in rule heads. In [38],
after defining Shy, the authors describe a bottom-up evaluation strategy for it which performs well even
in dynamic scenarios, where data changes frequently. This strategy, implemented in DLV∃, exploits a
modified version of the chase, called parsimonius-chase.

A different system for conjunctive query answering is PAGOdA [12]. It is tailored to OWL 2 and
combines the well-known Hermit reasoner [5] with the Datalog reasoner RDFox [39]. The system pro-
vides scalable “pay-as-you-go” performance for the query computation by resorting on the Datalog rea-
soner for the major part of the inference process, and delegating to the usually slower OWL reasoner
only when strictly necessary. Trivially, PAGOdA computes lower and upper bound answers for the given
conjunctive queries using the Datalog reasoner. In case these bounds do not coincide, the Datalog rea-
soner is also used to create a subset of the KB sufficient to test the correctness of the tuples in the gap of
the two bounds. The resulting KB is usually small and is given as input to the DL reasoner to compute
the final answers.

However, both DLV∃ and PAGOdA are implemented for conjunctive query answering, thus they are
not directly comparable with SCIFF, which is focused on returning explanations for queries.

TRILL [7, 40] adopts a Prolog-based implementation for the tableau expansion rules for ALC de-
scription logics. Differently from previous reasoners, TRILL is also able to return explanations for the
given queries. Moreover, TRILL differs in particular from DLog for the possibility of answering general
queries instead of instance check and instance retrieval only.

The combination of DLs and LPs was also studied by Motik and Rosati, in [41]. They applied
Minimal Knowledge with Negation as Failure, one of the most effective approaches presented in such
field, to define hybrid knowledge bases. These KBs are defined as the combination of logic programs
and DL ontologies. In this way, both open and closed world assumption can be exploited in the same
KB, in a framework that can preserve the semantics of both formalisms when one is absent and exhibits
good properties such as decidability. They also defined an extension of the SLG proof procedure, called
SLG(O), making use of an oracle to manage the DL part. However, no implementation has been de-
veloped. Based on this approach, in [42] and more recently in [43] we presented probabilistic hybrid
knowledge bases, were we extend the work of Motik and Rosati in order to cope with probability theory.

A similar idea was followed in [44], where the authors present a framework where they add on top
of a DL KB a set of rules, called dl-rules. Such rules are similar to classical logic programming rules
with negation as failure, but they may contain in their body queries to the DL part, possibly under default
negation. A generalization of the Herbrand model semantics has been then defined for such rules. The
objective is to compute answer sets for the KB with dl-rules working under the closed world assumption.
Finally, an algorithm combining a DL reasoner with DLV is presented, in order to find answer sets by
using both the DL part and dl-rules.

As reported in Section 2, reasoning upon Datalog± ontologies is achieved, instead, via the chase
bottom-up procedure, which is exploited for deriving atoms entailed by a database and a Datalog± theory.

In this work, we apply an ALP proof-procedure to reason upon ontologic data. It is worth noticing
that in a previous work [45] the SCIFF proof-procedure was interfaced with Pellet to perform ontological
reasoning; in the current work, instead, SCIFF is directly used to perform reasoning by mapping atoms
in the ontology to SCIFF concepts (like events and expectations).



6. Experimental evaluation

In order to assess the practical usability of SCIFF as an ontological reasoner, we devised a set of exper-
iments, including both crafted and real instances. In the formers we wanted to stress the algorithms out
by forcing them to perform an increasing number of backtracking on contructs commonly used when
defining KBs, while in the latters we tested the algorithm on real world domains to test its applicability
in concrete problems.

We compare SCIFF with Pellet [3], a popular DL reasoner implemented in an object oriented lan-
guage, and with TRILL and TRILLP [46], two recent reasoners implemented in Prolog. We concentrated
on these systems because, like SCIFF, they are able to return a set containing all of the explanations for
the query. Other systems, such as PAGOdA and DLV∃ cannot be directly compared with SCIFF.

SCIFF can run on top of SWI [47] or SICStus [48] Prolog. Usually, the SICStus version is faster;
however, since TRILL and TRILLP cannot be executed on SICStus, we decided to run all the experi-
ments with SWI.

Translation from SCIFF to DL and viceversa was performed by applying the standard definition as
shown in [49]. All the experiments were performed on a Linux machine with a 3.10 GHz Intel Xeon
E5-2687W.

6.1. Crafted instances

A first set of experiments was devoted to stress the non-determinism associated with the choice of which
rule to apply. We artificially created a set of knowledge bases of increasing size, containing the following
axioms:

C1,1(X)→ C1,2(X)→ ...→ C1,n(X)

C1,1(X)→ C2,2(X)→ ...→ C2,n(X)

C1,1(X)→ C3,2(X)→ ...→ C3,n(X)

...

C1,1(X)→ Cm,2(X)→ ...→ Cm,n(X)

(13)

An instance a is added to C1,1, i.e., C1,1(a), and the goal is to check whether Cm,n(a). The goal is
clearly true, but it stresses the ontological reasoner as there are a number of paths that must be explored
in order to find the one satisfying the query.

Figure 1 shows the time necessary to compute all the explanations whenm = 40 and n varies from 5
to 40. We also did experiments to find one solution; the graphs are qualitatively similar, and the ranking
of the systems was the same. Each instance was run 50 times and the average time was taken.

The running time of SCIFF is higher than that of Pellet; however it is of the same order of magnitude
and is competitive with TRILL and TRILLP .

Figure 2 shows analogous results when varying m and keeping constant n=40.



5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

n

T
im

e
 (

s
)

 

 

Pellet

TRILL

TRILL
P

SCIFF

Figure 1. Running time for computing all explanations in the knowledge base in equation 13 with m = 40 and n
varying from 5 to 40.

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

m

T
im

e
 (

s
)

 

 

Pellet

TRILL

TRILL
P

SCIFF

Figure 2. Running time for computing all explanations in the knowledge base in equation 13 with n = 40 and m
varying from 5 to 40.



1 2 3 4 5 6 7
0

10

20

30

40

50

60

n

T
im

e
 (

s
)

 

 

Pellet

TRILL

TRILL
P

SCIFF

Figure 3. Running time for computing all explanations in the knowledge base in equation 14 with m = 7 and n
varying from 1 to 7.

We also developed a variation of the previous experiment, in which the axioms are defined as follows:

C1,1(X)→ C1,2(X)→ ...→ C1,n(X)→ Cn+1(X)

C1,1(X)→ C2,2(X)→ ...→ C2,n(X)→ Cn+1(X)

C1,1(X)→ C3,2(X)→ ...→ C3,n(X)→ Cn+1(X)

...

C1,1(X)→ Cm,2(X)→ ...→ Cm,n(X)→ Cn+1(X)

(14)

i.e., we have a further class Cn+1 which subsumes all classes. The query, in this case, was to check if a
belongs to Cn+1, i.e., Cn+1(a). The results are shown in Figure 3 for a fixed m = 7 varying n, and in
Figure 4 for a fixed n and varying m.

In both cases, when the size of the KB grows large, the runtime of Pellet exceeded the allowed
timeout (that was fixed for all experiments to 600s) because of the algorithm used for the exploration
of the search space. This algorithm, based on Reiter’s hitting set algorithm [27], repeatedly removes
axioms from the KB in order to try to find new explanations. SCIFF takes more time than TRILL and
TRILLP , but it remains within reasonable running times.

6.2. Real instances

We also experimented on real instances; we considered some benchmarks taken from [46], in which we
do not consider the probabilistic axioms.

The considered benchmarks are real examples from DL knowledge bases:



1 2 3 4 5 6 7
0

10

20

30

40

50

60

m

T
im

e
 (

s
)

 

 

Pellet

TRILL

TRILL
P

SCIFF

Figure 4. Running time for computing all explanations in the knowledge base in equation 14 with n = 7 and m
varying from 1 to 7.

• an extract of the DBpedia ontology obtained from Wikipedia;

• BioPAX level 3, which models metabolic pathways;

• VICODI, which contains information on European history.

DBpedia [50] contains structured information defined in the sideboxes in the pages of Wikipedia. It has
expressiveness EL and contains 267 axioms and 118 classes.

BioPAX [51] represents molecular and genetic interactions together with pathways including molec-
ular states. It is part of the BioPAX project, which standardizes data definition of analysis of biological
pathways and defines 3 different levels modeling different interactions. The version of BioPAX used was
level 3, with expressiveness SHIN (D), has 925 axioms, 69 classes, 55 object properties and 41 data
properties.

Finally, VICODI [52] is an extract of the VICODI knowledge base that contains information on
historical events and important personalities of European history. VICODI’s expressiveness isALH(D),
it contains 209 axioms, 168 classes, 6 object properties and 2 data properties.

However, the expressivity of Datalog± cannot be directly compared with those of DLs, which can be
in some cases undecidable. Therefore, we concentrated on fragments of such KBs which are translatable
to Datalog±. It is worth noting that all the obtained KBs are propagation-safe. Among the resulting
knowledge bases, DBpedia and VICODI do not have existentially quantified variables in rules head,
conversely, BioPAX contains axioms corresponding to existential rules.

For the DBpedia and BioPAX datasets, we created 100 subclass-of queries, while for VICODI we
created 80 subclass-of and 20 instance-of queries. To ensure that each query had at least one explanation,



BioPax DBPedia Vicodi

Dataset

0

20

40

60

80

100
T

im
e
 (

s
) Pellet

TRILL

SCIFF

Figure 5. Running time for computing the first explanation in the real benchmarks.

we generated them by computing the hierarchy of classes. After that, for subclass-of queries we randomly
selected two classes that are connected in the hierarchy, while for the instance-of queries we randomly
selected an individual a and a class to which a belongs by following the hierarchy, starting from the
classes to which a explicitly belongs in the KB.

Figure 5 shows the mean running time necessary to compute the first explanation on the three bench-
marks computed on all the created queries. Pellet is the best, SCIFF is slower but always within rea-
sonable bounds, while the performance of TRILL depends significantly on the considered benchmark:
in VICODI and BioPAX it is the fastest, while on DBpedia it is by far the slowest. In this test we did
not use TRILLP since it computes a Boolean formula representing the set of all explanations, it cannot
return just a single explanation.

Similar considerations can be done when considering the problem of finding all explanations in the
three benchmarks (see Figure 6). In this second test we ran also TRILLP . Note that in DBpedia SCIFF
is the best performing one.

Finally, the required memory is plotted for all experiments in Figures 7 (for finding one solution)
and 8 (for finding all solutions). Here we can note how the memory requirements for Pellet (that is
Java-based) are much higher, as expected, than for the other systems, that are all Prolog-based.

7. Conclusions and Future Work

In this paper, we addressed representation and reasoning for Datalog± ontologies in an Abductive Logic
Programming framework, with existential (and universal) variables, and Constraint Logic Programming
constraints in rule heads. The underlying proof procedure, named SCIFF, is inspired by the IFF proof
procedure, and had been implemented in Constraint Handling Rules [53]. The SCIFF system has already



BioPax DBPedia Vicodi

Dataset

0

20

40

60

80

100

120

T
im

e
 (

s
) Pellet

TRILL

TRILL
P

SCIFF

Figure 6. Running time for computing all explanations in the real benchmarks.

BioPax DBPedia Vicodi

Dataset

0

50

100

150

200

250

M
e

m
o

ry
 (

M
B

)

Pellet

TRILL

SCIFF

Figure 7. Memory requirements for computing the first explanation in the real benchmarks (Maximum resident
set size of the process during its lifetime, in MBytes).



BioPax DBPedia Vicodi

Dataset

0

50

100

150

200

250

300
M

e
m

o
ry

 (
M

B
)

Pellet

TRILL

TRILL
P

SCIFF

Figure 8. Memory requirements for computing all explanations in the real benchmarks (Maximum resident set
size of the process during its lifetime, in MBytes).

been used for modeling and implementing several knowledge representation frameworks, also providing
an effective reasoning system.

Here we have considered Datalog± ontologies, and shown how the SCIFF language can be a useful
knowledge representation and reasoning framework for them. In fact, the underlying abductive proof
procedure can be directly exploited as an ontological reasoner for query answering and consistency
checking. To the best of our knowledge, this is the first application of ALP to model and reason upon
ontologies.

Moreover, the considered SCIFF language smoothly supports the integration of rules, expressed in
a Logic Programming language, with ontologies expressed in Datalog±, since a logic program can be
added as (non-empty) KB to the set of ICs, therefore considering deductive rules besides the forward
rules themselves. Furthermore, SCIFF allows the expression of existential quantifiers in rules head. The
integration with rules has gained increasing attention in the last years, as evidenced by all the proposals
to combine rules and ontologies, such as OWL2 RL, RIF and SWRL. SCIFF fits in with this objective.

Syntactic conditions over Datalog± programs for guaranteeing decidability and nice computational
complexity results, such as tractability, have been extensively studied; a good overview can be found in
[54]. As shown in this paper, the fragment of the Datalog± language in which such syntactic conditions
are met can be mapped to a SCIFF program, thus the same properties hold also for the same fragment
of SCIFF programs. This does not mean that the SCIFF proof-procedure will have nice tractability
properties on such a fragment. However, we showed experimentally that the SCIFF approach is a viable
one for reasoning on semantic web data, and in particular SCIFF has comparable performances to those
of existing DL reasoners based on the tableau algorithm. This has been shown by testing it over real
datasets downloaded from DL repositories.

Note that the SCIFF language is richer than the subset here used to represent Datalog± ontologies. It



can support, in fact, negative expectations in rule heads, with universally quantified variables too, which
basically represent the fact that something ought not to happen, and the proof procedure can identify
violations of them.

Therefore, the richness of the language, and the potential of its abductive proof procedure pave the
way to add further features to Datalog± ontologies.

Future work includes possibly extending the proof procedure to probabilistic reasoning in order to
compute the probability of the truth value of the queries, along the line shown in [55].

Moreover, we can use machine learning to learn SCIFF programs and possibly the parameters from
real data. A possible way to learn is to exploit Limited-memory BFGS (L-BFGS) [56] for tuning the pa-
rameters and constraint refinements for finding good structures. L-BFGS is an optimization algorithm in
the family of quasi-Newton methods that approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm using a limited amount of computer memory.

References
[1] Hitzler P, Krötzsch M, Rudolph S. Foundations of Semantic Web Technologies. CRCPress; 2009.

[2] Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R. Tractable Reasoning and Efficient Query
Answering in Description Logics: The DL-Lite Family. J Autom Reasoning. 2007;39(3):385–429.

[3] Sirin E, Parsia B, Cuenca-Grau B, Kalyanpur A, Katz Y. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics. 2007;5(2):51–53.

[4] Haarslev V, Hidde K, Möller R, Wessel M. The RacerPro knowledge representation and reasoning system.
Semantic Web. 2012;3(3):267–277.

[5] Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z. HermiT: An OWL 2 Reasoner. J Autom Rea-
soning. 2014;53(3):245–269. Available from: http://dx.doi.org/10.1007/s10817-014-9305-1.
doi:10.1007/s10817-014-9305-1.

[6] Schmidt-Schauß M, Smolka G. Attributive Concept Descriptions with Complements. Artificial Intelligence.
1991;48(1):1–26.

[7] Zese R, Bellodi E, Lamma E, Riguzzi F. A Description Logics Tableau Reasoner in Prolog. In: Cantone D,
Nicolosi Asmundo M, editors. CILC. vol. 1068 of CEUR Workshop Proceedings. CEUR-WS.org; 2013. p.
33–47.

[8] Calı̀ A, Gottlob G, Kifer M. Taming the Infinite Chase: Query Answering under Expressive Relational
Constraints. Journal of Artificial Intelligence Research. 2013;48:115–174.

[9] Calı̀ A, Gottlob G, Lukasiewicz T. A general datalog-based framework for tractable query answering over
ontologies. In: Symposium on Principles of Database Systems. ACM; 2009. p. 77–86.

[10] Calı̀ A, Gottlob G, Lukasiewicz T. A general Datalog-based framework for tractable query answering over
ontologies. Journal of Web Semantics. 2012;14:57–83. Available from: http://dx.doi.org/10.1016/
j.websem.2012.03.001. doi:10.1016/j.websem.2012.03.001.

[11] Calı̀ A, Gottlob G, Lukasiewicz T, Marnette B, Pieris A. Datalog±: A Family of Logical Knowledge Repre-
sentation and Query Languages for New Applications. In: IEEE Symposium on Logic in Computer Science.
IEEE Computer Society; 2010. p. 228–242.

[12] Zhou Y, Grau BC, Nenov Y, Kaminski M, Horrocks I. PAGOdA: Pay-As-You-Go Ontology Query Answering
Using a Datalog Reasoner. Journal of Artificial Intelligence Research. 2015;54:309–367.



[13] Kakas AC, Kowalski RA, Toni F. Abductive Logic Programming. Journal of Logic and Computation.
1993;2(6):719–770.

[14] Fung TH, Kowalski RA. The IFF proof procedure for abductive logic programming. Journal of Logic
Programming. 1997 Nov;33(2):151–165.

[15] Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P. Verifiable Agent Interaction in Abductive
Logic Programming: the SCIFF framework. ACM Transactions on Computational Logic. 2008;9(4).

[16] Jaffar J, Maher MJ. Constraint Logic Programming: a Survey. Journal of Logic Programming. 1994;19-
20:503–582.

[17] Alberti M, Gavanelli M, Lamma E, Mello P, Sartor G, Torroni P. Mapping Deontic Operators to Abduc-
tive Expectations. Computational and Mathematical Organization Theory. 2006 Oct;12(2–3):205 – 225.
doi:10.1007/s10588-006-9544-8.

[18] Alberti M, Gavanelli M, Lamma E, Mello P, Torroni P. Specification and Verification of Agent Interactions
using Social Integrity Constraints. Electronic Notes in Theoretical Computer Science. 2003;85(2).

[19] Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Montali M. An Abductive Framework for A-Priori
Verification of Web Services. In: Maher M, editor. Proceedings of the Eighth Symposium on Principles and
Practice of Declarative Programming. New York, USA: ACM Press; 2006. p. 39–50.

[20] Chesani F, Mello P, Montali M, Storari S, Torroni P. On the integration of declarative choreographies
and Commitment-based agent societies into the SCIFF logic programming framework. Multiagent and
Grid Systems. 2010;6(2):165–190. Available from: http://dx.doi.org/10.3233/MGS-2010-0147.
doi:10.3233/MGS-2010-0147.

[21] Calı̀ A, Gottlob G, Kifer M. Taming the Infinite Chase: Query Answering under Expressive Relational
Constraints. In: International Conference on Principles of Knowledge Representation and Reasoning. AAAI
Press; 2008. p. 70–80.

[22] Gottlob G, Lukasiewicz T, Simari GI. Conjunctive Query Answering in Probabilistic Datalog+/- Ontologies.
In: International Conference on Web Reasoning and Rule Systems. vol. 6902 of LNCS. Springer; 2011. p.
77–92.

[23] Lloyd JW. Foundations of Logic Programming. 2nd ed. Springer-Verlag; 1987.

[24] Kunen K. Negation in logic programming. In: Journal of Logic Programming. vol. 4; 1987. p. 289–308.

[25] Alberti M, Gavanelli M, Lamma E. The CHR-based Implementation of the SCIFF Abductive System. Fun-
damenta Informaticae. 2013;124(4):365–381. doi:10.3233/FI-2013-839.

[26] Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P. Security protocols verification in Ab-
ductive Logic Programming: a case study. In: Dikenelli O, Gleizes MP, Ricci A, editors. ESAW 2005
Post-proceedings. No. 3963 in LNAI. Kusadasi, Aydin, Turkey: Springer-Verlag; 2006. p. 106–124.

[27] Reiter R. A Theory of Diagnosis from First Principles. Artif Intell. 1987;32(1):57–95.

[28] Beckert B, Posegga J. leanTAP: Lean Tableau-based Deduction. J Autom Reasoning. 1995;15(3):339–358.

[29] Posegga J, Schmitt P. Implementing Semantic Tableaux. In: D’Agostino M, Gabbay D, Hähnle R, Posegga
J, editors. Handbook of Tableau Methods. Springer Netherlands; 1999. p. 581–629. Available from: http:
//dx.doi.org/10.1007/978-94-017-1754-0_10. doi:10.1007/978-94-017-1754-0 10.

[30] Hustadt U, Motik B, Sattler U. Deciding expressive description logics in the framework of resolution. Inf
Comput. 2008;206(5):579–601.



[31] Lukácsy G, Szeredi P. Efficient description logic reasoning in Prolog: The DLog system. TPLP.
2009;9(3):343–414.

[32] Straccia U, Lopes N, Lukacsy G, Polleres A. A General Framework for Representing and Reasoning with
Annotated Semantic Web Data. In: Fox M, Poole D, editors. Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press;
2010. p. 1437–1442. Available from: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/

view/1590.

[33] Meissner A. An automated deduction system for description logic with ALCN language. Studia z Automatyki
i Informatyki. 2004;28-29:91–110.

[34] Meissner A. A simple distributed reasoning system for the connection calculus. Vietnam Journal of Computer
Science. 2014;1(4):231–239. Available from: http://dx.doi.org/10.1007/s40595-014-0023-8.
doi:10.1007/s40595-014-0023-8.

[35] Herchenröder T. Lightweight Semantic Web Oriented Reasoning in Prolog: Tableaux Inference for Descrip-
tion Logics; 2006.

[36] Faizi I. A Description Logic Prover in Prolog; 2011. Bachelor’s thesis, Informatics Mathematical Modelling,
Technical University of Denmark.

[37] Ricca F, Gallucci L, Schindlauer R, Dell’Armi T, Grasso G, Leone N. OntoDLV: An ASP-based System for
Enterprise Ontologies. J Log Comput. 2009;19(4):643–670.

[38] Leone N, Manna M, Terracina G, Veltri P. Efficiently Computable Datalog∃ Programs. In: Brewka G,
Eiter T, McIlraith SA, editors. Principles of Knowledge Representation and Reasoning: Proceedings of the
Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press; 2012. .

[39] Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J. RDFox: A Highly-Scalable RDF Store. In:
Arenas M, Corcho Ó, Simperl E, Strohmaier M, d’Aquin M, Srinivas K, et al., editors. The Semantic Web
- ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part II. vol. 9367 of Lecture Notes in Computer Science. Springer; 2015. p. 3–20.

[40] Zese R, Bellodi E, Lamma E, Riguzzi F, Aguiari F. Semantics and Inference for Probabilistic Description
Logics. In: Bobillo F, Carvalho RN, da Costa PCG, d’Amato C, Fanizzi N, Laskey KB, et al., editors. Un-
certainty Reasoning for the Semantic Web III - ISWC International Workshops, URSW 2011-2013, Revised
Selected Papers. vol. 8816 of Lecture Notes in Computer Science. Springer; 2014. p. 79–99. doi:10.1007/978-
3-319-13413-0 5.

[41] Motik B, Rosati R. Reconciling Description Logics and Rules. Journal of the ACM. 2010 Jun;57(5):30:1–
30:62. doi:10.1145/1754399.1754403.

[42] Alberti M, Lamma E, Riguzzi F, Zese R. Probabilistic Hybrid Knowledge Bases under the Distribution Se-
mantics. In: Adorni G, Cagnoni S, Gori M, Maratea M, editors. Proceedings of the 15th Conference of the
Italian Association for Artificial Intelligence (AI*IA2016), Genova, Italy, 28 November - 1 December 2016.
vol. 10037 of Lecture Notes in Computer Science. Heidelberg, Germany: Springer International Publish-
ing; 2016. p. 364–376. The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-49130-1_27.

[43] Alberti M, Lamma E, Riguzzi F, Zese R. A Distribution Semantics for non-DL-Safe Probabilistic Hybrid
Knowledge Bases. In: Theil Have C, Zese R, editors. 4th International Workshop on Probabilistic logic
programming, PLP 2017. vol. 1916 of CEUR Workshop Proceedings. Aachen, Germany: Sun SITE Central
Europe; 2017. p. 40–50.



[44] Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H. Combining answer set programming with
description logics for the Semantic Web. Artif Intell. 2008;172(12-13):1495–1539. Available from:
https://doi.org/10.1016/j.artint.2008.04.002.

[45] Alberti M, Cattafi M, Chesani F, Gavanelli M, Lamma E, Mello P, et al. A Computational Logic Appli-
cation Framework for Service Discovery and Contracting. International Journal of Web Services Research.
2011;8(3):1–25.

[46] Zese R, Bellodi E, Lamma E, Riguzzi F. Logic Programming Techniques for Reasoning with Probabilistic
Ontologies. In: Papini O, Benferhat S, Garcia L, Mugnier M, Fermé EL, Meyer T, et al., editors. Proceedings
of the Joint Ontology Workshops 2015 Episode 1: The Argentine Winter of Ontology co-located with the
24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July
25-27, 2015.. vol. 1517 of CEUR Workshop Proceedings. CEUR-WS.org; 2015. Available from: http:

//ceur-ws.org/Vol-1517/JOWO-15_ontolp_paper_3.pdf.

[47] Wielemaker J, Schrijvers T, Triska M, Lager T. SWI-Prolog. Theory and Practice of Logic Programming.
2011;http://arxiv.org/abs/1011.5332.

[48] Carlsson M, Mildner P. SICStus Prolog - The first 25 years. Theory and Practice of Logic Pro-
gramming. 2012;12(1-2):35–66. Available from: http://dx.doi.org/10.1017/S1471068411000482.
doi:10.1017/S1471068411000482.

[49] Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University Press; 2003.

[50] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives ZG. DBpedia: A Nucleus for a Web of Open
Data. In: Aberer K, Choi K, Noy NF, Allemang D, Lee K, Nixon LJB, et al., editors. The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
Busan, Korea, November 11-15, 2007.. vol. 4825 of Lecture Notes in Computer Science. Springer; 2007. p.
722–735. Available from: http://dx.doi.org/10.1007/978-3-540-76298-0\_52. doi:10.1007/978-
3-540-76298-0 52.

[51] Demir E, et al. The BioPAX community standard for pathway data sharing. Nature Biotech. 2010
Sep;28(9):935–942. Available from: http://dx.doi.org/10.1038/nbt.1666. doi:10.1038/nbt.1666.

[52] Nagypál G, Deswarte R, Oosthoek J. Applying the Semantic Web: The VICODI Experience in Creating
Visual Contextualization for History. Literary and Linguistic Computing. 2005;20(3):327–349. Available
from: http://llc.oxfordjournals.org/content/20/3/327.abstract. doi:10.1093/llc/fqi037.

[53] Frühwirth T. Theory and Practice of Constraint Handling Rules. Journal of Logic Programming. 1998
Oct;37(1-3):95–138.

[54] Gottlob G, Lukasiewicz T, Pieris A. Datalog+/-: Questions and answers. In: Fourteenth International Con-
ference on the Principles of Knowledge Representation and Reasoning; 2014. .

[55] Alberti M, Bellodi E, Cota G, Lamma E, Riguzzi F, Zese R. Probabilistic Constraint Logic Theories. In:
Hommersom A, Abdallah SA, editors. Proceedings of the 3rd International Workshop on Probabilistic Logic
Programming co-located with 26th International Conference on Inductive Logic Programming (ILP 2016),
London, UK, September 3, 2016.. vol. 1661 of CEUR Workshop Proceedings. CEUR-WS.org; 2016. p.
15–28.

[56] Nocedal J. Updating quasi-Newton matrices with limited storage. Mathematics of Computation.
1980;35(151):773–782.


