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Numerical modelling of open channel junctions using the Riemann problem
approach

Abstract
The solution of an extended Riemann problem is used to provide the in-

ternal boundary conditions at a junction when simulating one-dimensional
flow through an open channel network. The proposed approach, compared to
classic junction models, does not require the tuning of semi-empirical coef-
ficients and it is theoretically well-founded. The Riemann problem approach
is validated using experimental data, two-dimensional model results and an-
alytical solutions. In particular, a set of experimental data is used to test
each model under subcritical steady flow conditions, and different channel
junctions are considered, with both continuous and discontinuous bottom el-
evation. Moreover, the numerical results are compared with analytical solu-
tions in a star network to test unsteady conditions. Satisfactory results are
obtained for all the simulations, and particularly for Y-shaped networks and
for cases involving variations in channels’ bottom and width. By contrast,
classic models suffer when geometrical channel effects are involved.

Keywords: Channel networks; internal boundary conditions; open channel flow;
Riemann problem; shallow water equations

1 Introduction

Channel junctions are found in natural rivers, irrigation and drainage canals, and
urban wastewater networks. Therefore, understanding such systems is an essential
issue in Hydraulics, where the computation of the water surface profiles is nec-
essary for both steady and unsteady flows. When the water depth is sufficiently
small compared to the typical horizontal scale, as in river and channel networks,
one-dimensional (1D) St. Venant equations (in which cross-sectional area and to-
tal discharge are the main variables) are widely used to describe the flow (Chow,
1959); under the assumption of rectangular cross-section, the St. Venant model
matches the one-dimensional shallow water equations (SWEs).

The 1D SWEs are solved by means of different numerical methods, such as the
finite difference method (FDM), finite element method (FEM), and finite volume
method (FVM); see (Aral, Zhang, & Jin, 1998; Bellamoli, Müller, & Toro, 2018;
Borsche, 2016; Briani, Piccoli, & Qiu, 2016; Ghostine, Mose, Vazquez, Ghenaim,
& Grégoire, 2010; Ghostine, Vazquez, Terfous, Mose, & Ghenaim, 2012; Kesser-
wani, Ghostine, Vazquez, Mosé, et al., 2008; Neupane & Dawson, 2015; Unami &
Alam, 2012) and the references therein.



Independently from the specific adopted numerical scheme, using the 1D ap-
proach to numerically solve open channel networks faces mathematical difficulties
at the intersection of the channels (i.e., junctions). Indeed, whilst in a 2D frame-
work the numerical simulation of a junction doesn’t require particular precautions,
in a 1D framework the junction is a singular point, where the numerical scheme
cannot be directly applied and therefore internal boundary conditions must be pre-
scribed. The system of governing equations used to supply the internal bound-
ary conditions must have a solution and this solution must be unique (Elshobaki,
Valiani, & Caleffi, 2018). Moreover, a proper numerical treatment of these bound-
ary conditions is required to ensure the well-posedness of the numerical scheme
(Colombo & Garavello, 2006).

Considering only subcritical flows, which are the most common in nature, the
well-established methods to construct the internal boundary conditions are based
on four classic approaches. The first approach is reported by Akan and Yen (1981),
which prescribes that the total energy is preserved at junctions, being approximated
by the water depth, while kinetic head is neglected. The second approach is intro-
duced by Gurram, Karki, and Hager (1997) and considers the momentum balance
together with the mass conservation applied at the junction. The third approach
(Hsu, Lee, & Chang, 1998a) extends the principles given in Gurram et al. (1997)
introducing energy and momentum coefficients to include the energy losses at the
junction. The reader is addressed to (Leite Ribeiro, Blanckaert, Roy, & Schleiss,
2012; Pinto Coelho, 2015) for a thorough discussion on the physics behind this
approach. Finally, Shabayek, Steffler, and Hicks (2002) use a general nonlinear
formulation of the momentum principle and the conservation of mass, which re-
move the restriction of equality of channel depths and channel widths at the junc-
tion. The equations associated to these approaches are coupled to the continuity
equation (Chow, 1959) and the characteristic equations (Abbott, 1966; Chaudhry,
1993) to form the six-equation, nonlinear system governing the junction (Elshobaki
et al., 2018). We refer to the formulations associated to these four approaches as
the Equality model (Akan & Yen, 1981), Gurram model (Gurram et al., 1997), Hsu
model (Hsu et al., 1998a), and Shabayek model (Shabayek et al., 2002), respec-
tively. Note that the Shabayek model implies the use of two empirical coefficients
that require further characterization, as stated in Pinto Coelho (2015), and it is
therefore excluded from the present analysis.

A study by Kesserwani, Ghostine, Vazquez, Mosé, et al. (2008), comparing
Hsu, Gurram, Equality and Shabayek models for subcritical junction flow, shows
that the Equality model leads to poor momentum conservation when the Froude
number is greater than 0.35. The study also finds that the influence on the flow
of the angle between the main and lateral channels is much less important than
the Froude number downstream of the junction. However, the results are only



presented for a specific type of asymmetric confluence (Best, 1985), under the
assumption of a flat bottom throughout the junction. Other works on the topic are
carried out considering further comparison with 2D results (Ghostine et al., 2009),
or supercritical and transcritical flows (Kesserwani, Ghostine, Vazquez, Ghenaim,
& Mosé, 2008; Kesserwani et al., 2010).

The classic methods are not tested in symmetric confluences (i.e., Y-shaped)
because such methods, and particularly the Gurram and Hsu models, are not de-
rived for this type of confluence. The flow field at confluences is also affected by
bottom discordance (i.e., a bottom discontinuity at the confluence) between the lat-
eral and mainstream channels (Best, 1988; Biron, Best, & Roy, 1996; Bradbrook,
Lane, Richards, Biron, & Roy, 2001; Leite Ribeiro et al., 2012; Wang, Yan, &
Guo, 2007). To extend the Gurram and Hsu models to Y-shaped confluences, the
fundamental governing equations are re-derived in this work, taking into account
the differences in geometry and bottom elevation.

As an alternative to the classic methods, a recent formulation of the internal
boundary conditions is proposed by Briani et al. (2016), based upon the work by
Goudiaby and Kreiss (2013). This formulation is obtained by solving a well-posed
Riemann problem (RP) at the junction assuming a continuous bottom and symmet-
ric configurations. We refers to this formulation as the Riemann problem approach
(RP approach). A rigorous study about the existence and uniqueness of the problem
solution is also provided for the symmetric case without bottom steps (Goudiaby &
Kreiss, 2013). The RP approach is theoretically analyzed in more general configu-
rations by Elshobaki et al. (2018), where asymmetric networks and discontinuous
bottom are taken into account.

The purpose of this work is to compare the RP approach with the classic ap-
proaches. In particular, we are interested in the application aspects. With this
aim, the classic junction models and the RP approach are implemented in a FVM
Dumbser-Osher-Toro (DOT) scheme (Dumbser & Toro, 2011). The models are
tested against experimental data provided in literature (Biron et al., 1996; Brad-
brook et al., 2001; Briani et al., 2016; Hsu et al., 1998a; Hsu, Wu, & Lee, 1998b;
Wang et al., 2007) for steady flows in both asymmetric and symmetric confluences.
In particular, only discordant bottoms are considered in the experimental data of
Biron et al. (1996); Bradbrook et al. (2001); Wang et al. (2007). To complete the
current study, the models are tested against the analytical solutions provided by
Goudiaby and Kreiss (2013) for unsteady flows.

The rest of this paper is structured as follows. First, the mathematical model
and its numerical treatment are given. Then, the Riemann, Equality, Gurram, and
Hsu junction models are briefly described. Next, the models are tested for both
steady and unsteady open channel flows, and numerical results are presented. The
numerical solutions are compared with the experimental results and analytical so-



lutions. Finally, conclusions are given.

2 Mathematical model and numerical scheme

In this section, the shallow water equations are described. Then, the FVM-DOT
numerical scheme (Dumbser & Toro, 2011), used to discretize the SWEs in each
channel, is briefly outlined.

2.1 The one-dimensional shallow water equations

The SWEs are a particular case of the Navier-Stokes equations and are obtained by
integrating the mass and momentum equations for an incompressible fluid over the
depth. They are written in conservative form as:

∂U

∂t
+
∂F

∂x
= S, in [0, L] (1)

with

U =

[
h
hu

]
, F =

[
hu

hu2 + gh2

2

]
, S =

[
0

gh(S0x − Sf )

]
,

where u(x, t) and h(x, t) are the flow velocity and the flow depth, respectively. L
is the channel length; g is the gravity acceleration; S0x = −∂z/∂x is the bottom
slope; z(x) is the bottom elevation; Sf is the friction slope (Chow, 1959); and x
and t are space and time, respectively. For the purpose of this study, the forces
due to friction are much smaller than pressure forces and momentum fluxes, so the
SWEs are solved as in the frictionless bottom case (i.e., Sf = 0). Eq. (1) can
therefore be cast in a quasi-linear form as follows:

∂W

∂t
+ A(W )

∂W

∂x
= 0, in [0, L] (2)

with

W =

 hhu
z

 , A(W ) =

 0 1 0
gh− u2 2u gh

0 0 0

 .
The form of the SWEs in Eq. (2) is preferable when bottom discontinuities

have to be included in the mathematical model (Caleffi & Valiani, 2017; LeFloch
& Thanh, 2007; Valiani & Caleffi, 2017). This aspect is fundamental because a
discontinuity in bottom elevation is a recurring feature at junctions (Leite Ribeiro
et al., 2012).



2.2 Dumbser-Osher-Toro Riemann solver

The integration of Eq. (2) over a control volume gives the following path-conservative
formulation (Dumbser & Toro, 2011; Parés, 2006):

W n+1
i = W n

i −
∆t

∆x
(D−

i+ 1
2

+ D+
i− 1

2

), (3)

where the fluctuations D±
i± 1

2

must satisfy the following compatibility condition:

D−
i+ 1

2

+ D+
i+ 1

2

=

∫ 1

0
A(ψ(Wi+1,Wi, s))

∂ψ

∂s
ds. (4)

W n
i denotes the cell average of the conservative variables at time tn. The uniform

spatial step is ∆x = xi+ 1
2
− xi− 1

2
and the time step ∆t = tn+1 − tn. Choosing a

linear integration path ψ(s) (Dumbser & Toro, 2011) in the parameter s ∈ [0, 1]:

ψ(s) = ψ(W−,W+, s) = W− + s(W+ −W−) (5)

the Osher fluctuation term becomes:

D±
i+ 1

2

=
1

2

(∫ 1

0
A(ψ(s))± |A(ψ(s))|ds

)
(Wi+1 −Wi). (6)

Eq. (6) is replaced by

D±
i+ 1

2

=
1

2

( G∑
j=1

ωj [A(ψ(sj))± |A(ψ(sj))|]
)

(Wi+1 −Wi), (7)

using a G-point Gauss-Legendre quadrature in the interval [0, 1] with nodes sj and
weights ωj (Stroud, 1971). For the stability of the scheme, the time step must
satisfy the relationship:

∆t = CFL
∆x

max(|u± c|)
, (8)

where CFL < 1 is the Courant-Fredrich-Lewy coefficient, and c =
√
gh is the

wave celerity.
Finally, the scheme has to be completed with boundary conditions. Two types

of boundary conditions are needed: external and internal. The external boundary
conditions are posed at the inflow-outflow sections of the network. They are de-
fined by taking into account the subcritical flow state considered in this work. A
discharge hydrograph is imposed at the inflow sections and a given water depth is



imposed at the outflow sections. The external boundary conditions are numerically
treated as described by Chaudhry (1993).

The internal boundary conditions are imposed at the interfaces between the
channels at the junction node. At the extremity of each channel adjoining the node,
a depth and a discharge must be prescribed. Therefore, for a network of three
channels, the unknowns are three water depths and three water discharges. To
compute these unknowns, a junction model which takes shape of a system of six
equations must be given. In Section 3, the junction models considered in this work
are briefly summarized.

3 Junction models

This section presents a short description of the nonlinear junction models used here
to provide the internal boundary conditions. Note that the classic Gurram and Hsu
models are modified to include the effect of the lateral bottom discordance. In
addition, these models are generalized to the case of a non-straight main channel
in the Y-shaped confluence (see appendices A and B).

3.1 Riemann problem approach model

The Riemann problem at the junction is defined by analogy as the classic Riemann
problem in a single open channel. The classic Riemann solution has been described
in Toro (2009) for continuous bottom and in (Alcrudo & Benkhaldoun, 2001; Ber-
netti, Titarev, & Toro, 2008; LeFloch & Thanh, 2007) for discontinuous bottom.
Here, the Riemann problem consists of Eq. (2) and the following initial conditions
(depth, velocity and bottom elevation are assumed uniform in each channel):

h(x, 0) = h0k

u(x, 0) = u0k

z(x, 0) = zk

k = 1, 2, 3 (9)

where k = 1, k = 2, and k = 3 refer to the main upstream channel, the lateral
channel, and the main downstream channel, respectively. The unknowns at the
junction node can be predicted using the Riemann solution, as reported in (Goudi-
aby & Kreiss, 2013). The structure of the solution of the Riemann problem gives
the following system:

3∑
k=1

ηkbkhkuk = 0 (10a)



u21
2g

+ h1 + z1 =
u2k
2g

+ hk + zk, k = 2, 3 (10b)

uk − u0k + ηkf(h0k, hk) = 0, k = 1, 2, 3, (10c)

where

f(h0k, hk) =

{
2(
√
gh0k −

√
ghk), hk < h0k

(h0k − hk)
√

g
2( 1

h0k
+ 1

hk
), hk ≥ h0k.

(11)

(h0k, u0k) are the initial data and b is the channel width. In the current work, z1 =
z3 = 0 and z2 6= 0 to represent a bottom step between the second (lateral) channel
and the main channels, as shown in Fig. 1. The RP approach can be generalized
for different bottom and junction configurations; the interest is here focused just
on this case because it is the most frequent in natural streams (Leite Ribeiro et al.,
2012). The quantity

ηk =

{
1, if xk = Lk, k = 1, 2, 3

−1, if xk = 0, k = 1, 2, 3

refers to the inner boundary edge at the junction. Eq. (10c) represents the classic
SWE wave relationships for shocks and rarefactions in each channel. In facts,
Eq. (10c) is the Rankine-Hugoniot condition or the constancy of the Riemann
invariants (Toro, 2009) written in a convenient form. The continuity equation (10a)
must be satisfied together with the equality of the total head at the junction Eq.
(10b). The hypothesis of total head and flow discharge preservation in the 1D
single channel over a bottom step, as part of the solution of the Riemann problem,
is discussed in Valiani and Caleffi (2017) and for the junction network of three
non-identical channels in Elshobaki et al. (2018).

3.2 Equality model

The equality model is the simplest junction model, and it is written in the following
form:

3∑
k=1

ηkbkhkuk = 0 (12a)

h1 = h2 + z2 (12b)

h2 + z2 = h3 (12c)

ukhk = Akhk + Ck, k = 1, 2, 3, (12d)

where Ak = u0k ±
√
gh0k and Ck = ∓h0k

√
gh0k. The sign depends on the char-

acteristic direction at the junction. Indeed, Eq. (12a) represents mass conservation.



Eqs. (12b) and (12c) represent the equal water elevation condition at the junction,
which was recognized by Akan and Yen (1981) as a simplification of the equal en-
ergy condition at the junction, where the kinetic head is considered to be small for
subcritical flows. Eq. (12d) represents the characteristic equations, in which three
relationships are produced by using the characteristic curves for subcritical flows
at the junction (Abbott, 1966; Chaudhry, 1993).

3.3 Gurram model

The Gurram model is based on the momentum conservation principle used by Gur-
ram et al. (1997) to predict the depth ratio (h1/h3) at the junction. The equality of
water depths and channel widths upstream from the junction is assumed. Here, the
Gurram model is generalized to consider the discordant bottom effect and a general
channel network configuration. More details about the modified Gurram formula
are given in Appendix A. Therefore, the unknowns at the junction can be obtained
by solving the following system:

3∑
k=1

ηkbkhkuk = 0 (13a)

h1 = h2 + z2 (13b)

(
h1
h3

)3

cos(Ω)−
(
b3h1
b1h3

)[
1 + 2F2 −

(
2b2
b3

)(
hs
h23

)
z2 cos(δ)

]

+2F2

[(
h1u1
h3u3

)2

cos(Ω) +

(
b23h1

b1b2(h1 − z2)

)(
1− b1h1u1

b3h3u3

)
cos(

8δ

9
)

]
= 0

(13c)

ukhk = Akhk + Ck, k = 1, 2, 3, (13d)

where F is the Froude number in the main downstream channel, Ω is the angle
between the main upstream channel and the main downstream channel, and δ is
the junction angle (the angle between the main and lateral channels); see Fig. 1.
The depth over the lateral bottom step, found using the analytical procedure by
Valiani and Caleffi (2008) is denoted hs. Equation (13a) represents mass conser-
vation, Eq. (13b) is obtained by assuming equal water elevation upstream from the
junction, Eq. (13c) is the modified Gurram formula, and Eq. (13d) represents the
characteristic equations according to Abbott (1966) and Chaudhry (1993).



3.4 Hsu model

The Hsu model is derived by Hsu et al. (1998a), similarly to the Gurram model,
but energy and momentum coefficients are taken into account. The unknowns at
the junction are obtained by solving the following system:

3∑
k=1

ηkbkhkuk = 0 (14a)

h1 = h2 + z2 (14b)

(
h1
h3

)3

cos(Ω)−
(
b3h1
b1h3

)[
1 +

2βF2

γ
−
(

2b2
b3

)(
hs
h23

)
z2 cos(δ)

]

+
2βF2

γ

[(
h1u1
h3u3

)2

cos(Ω) +

(
b23h1

b1b2(h1 − z2)

)(
1− b1h1u1

b3h3u3

)
cos(δ)

]
= 0

(14c)

ukhk = Akhk + Ck, k = 1, 2, 3, (14d)

where β is the momentum coefficient and γ is the energy coefficient. Equation
(14a) is the mass conservation, Eq. (14b) is obtained by assuming equal water
elevation upstream from the junction, Eq. (14c) is the modified Hsu formula given
in Appendix B, and Eq. (14d) represents the characteristic equations according to
Abbott (1966) and Chaudhry (1993).

The nonlinear systems (10), (12), (13), or (14) are solved using a hybrid itera-
tive method (Powell, 1970).

4 Results for steady flows

To validate the junction models, five steady flow experiments (Biron et al., 1996;
Hsu et al., 1998a, 1998b; Pinto Coelho, 2015; Wang et al., 2007) are numerically
reproduced. Different network configurations (asymmetric and symmetric con-
fluences) are considered, and the lateral bottom step is present at the junction in
specific cases.

4.1 Steady flow in asymmetric confluence with concordant bottom

Hsu et al. (1998a) conducted experiments in a rectangular flume (Fig. 1) with
Ω = 0 and z1 = z2 = z3 = 0. The lateral and the main channels were 1.5
and 6 m long, respectively. The channel width was 0.155 m for both the lateral



and the main channels, with junction angles δ of 30◦, 45◦, and 60◦. In Hsu et al.
(1998b), the lateral and the main channels were 4 and 12 m long, respectively. The
channel width was 0.155 m in both channels, with a junction angle δ of 90◦. In
Pinto Coelho (2015), both channels were 0.30 m wide and 0.50 m deep. The main
channel was 10 m long, with a bottom slope of 0.14 % and junction angles of 30◦

and 60◦. In this and next subsections, the values of β and γ are taken as 1.12 and
1.27, respectively. These values have been selected according to the suggestions by
Hsu et al. (1998a). For a quantitative comparison, the percentages of the relative
error (E) between the predicted depth ratio (Y = h1/h3) and the corresponding
experimental values are calculated using the following formula:

E =
|Yexp − Ynum|

Yexp
× 100, (15)

where Yexp refers to the experimental depth ratio (main upstream to downstream)
in Hsu et al. (1998a, 1998b) and Pinto Coelho (2015), Ynum refers to the depth ratio
computed using the RP approach, Equality model, Gurram model, or Hsu model.
In Fig. 2, the performance of the four junction models are compared with the data
of Hsu et al. (1998a, 1998b). The depth ratio h1/h3 is plotted against the discharge
ratio Q1/Q3 (Q = bhu) with junction angles δ of 30◦, 45◦, 60◦, and 90◦. Figure
3 shows the performance of the different junction models against the Pinto Coelho
(2015) experimental data, with junction angles of 30◦ and 60◦. Good agreement
with respect to the experiments using the RP approach, Gurram model, and Hsu
model is shown. By contrast, the Equality model gives the worst behaviour, which
is not surprising because such model has bad performance for F greater than 0.35
(Kesserwani, Ghostine, Vazquez, Mosé, et al., 2008), and F ranges between 0.52
and 0.7 in these experiments. The percentage errors are listed in Tables 1 and 2,
related to Fig. 2 and Fig. 3, respectively. The effect of the junction angle on
the solution is clear from these Tables. Among the results, the Equality model
gives the maximum error (19.91%) while the Hsu model gives the minimum error
(0.61%), followed by the Gurram model (2.37%) and RP approach (2.68%). In
general, the error of the RP approach is close to the errors of the Gurram and Hsu
models for junction angles 30◦, 45◦, and 60◦, but the difference increases for the
90◦ junction angle. The junction angle has a notable impact on the performance of
the RP approach compared to that of the Gurram and Hsu models. Given that the
RP approach does not take into account the junction angle, a reasonable motiva-
tion of this behavior can be found in the nature of the governing equations, that is,
the pure shallow water equations. Neither the momentum coefficients nor energy
coefficients are used, so the larger the junction angle is, the worse the agreement
between the model and the real phenomenon. Clearly, the recirculation pattern
becomes more important as the junction angle increases, so the performance of



the RP approach can be expected to worsen as the junction angle increases. The
Gurram and Hsu models, which use empirical adjustments that take into account
(more or less directly) the recirculation pattern, are less sensitive to changes in the
junction angle. A possible solution to recover the junction angle influence with-
out empirical parameters is proposed by Bellamoli et al. (2018). In the proposed
approach the junction is represented as a single two-dimensional cell connecting
one-dimensional branches.

According to this investigation, not only can the momentum-based junction
models be used with acceptable error (less than 8%, according to Kesserwani,
Ghostine, Vazquez, Mosé, et al., 2008) but the RP approach gives tolerable er-
rors for practical purposes. However, the use of momentum-based junction models
(Gurram and Hsu models) is not trivial in many situations due to the involved
empirical coefficients, such as energy and momentum coefficients, which require
proper calibration based on the geometry of the junction and the characteristics of
the flow dynamics.

4.2 Steady flow in asymmetric confluence with lateral discordant bot-
tom

According to Biron et al. (1996), the bottom discordance has a noticeable effect on
the flow in a river channel confluence, even with a small Froude number (less than
0.35). Therefore, further investigation to illustrate the behaviour of the junction
models in presence of a lateral discordant bottom is presented in this subsection.
Biron et al. (1996) performed experiments in an asymmetric channel confluence
with Ω = 0 and δ = 30◦ (Fig. 1) to investigate the effects of bottom discordance
on such confluence. They describe the four flow dynamics regions at the junc-
tion, namely, the flow deflection, separation, maximum velocity, and mixing layer
zones. Following the work of Biron et al. (1996), we consider a numerical experi-
ment characterized by a main upstream, a lateral, and a main downstream channel,
0.12, 0.08, and 0.137 m wide and 3.5, 3.5, and 10 m long, respectively. The lateral
bottom height is 0.03 m. F is less than 0.20. The discharges are 2.688 × 10−3,
2.808 × 10−3, and 5.496 × 10−3 m3s−1 in the main upstream channel, the lat-
eral channel, and the main downstream channel, respectively. The corresponding
depths are 0.16, 0.13, and 0.16 m. The discharge ratio Qr between the main up-
stream channel and the lateral channel is 1.04. The experimental data from Biron et
al. (1996) are not available. To produce cross-section averaged quantities to use as
a reference solution for 1D models, TELEMAC-2D software (Hervouet, Ata, Au-
douin, Pavan, & Tassi, 2015) is employed. Therefore, the experiments by Biron et
al. (1996) are reproduced and the corresponding 2D numerical results are averaged
on a cross section located 8 m downstream from the junction.



The behaviour of the Riemann and Equality models, which satisfactorily match
the corresponding reference solution (Fig. 4), is different from that of the Gurram
model, which slightly overestimates the downstream discharge, and from that of
Hsu model, that slightly underestimates the same quantity. This difference may be
due to the specific values selected for the energy and momentum coefficients. It
is worth noting that the Froude number (less than 0.35) is in the proper range of
applicability of both the Gurram and Hsu models, so their complete reliability is de-
batable even at low Froude number. This slightly poorer performance might be due
to the fact that introducing a bottom discontinuity in such methods requires a com-
plete retuning of the empirical coefficients appearing in their formulation; these are
a momentum and an energy coefficients due to the flow recirculation downstream
from the junction and are tuned on the basis of flat bottom experiments: this aspect
is out of the scope of the present work.

The bottom discordance divides the four models into two categories: empirical
(Gurram, Hsu) and non-empirical (Riemann, Equality) models. As reported in
Table 3, the maximum error (7.05%) is obtained by the Gurram model, followed
by the Hsu model (5.95%). The minimum error (0.60%) is obtained by the RP
approach, followed by the Equality model (1.78%).

The present computations show that even with a downstream Froude number
less than 0.35, the momentum-based junction models (Gurram and Hsu) are hardly
extendible to more general cases without specific studies of the role of bottom
discontinuities in their physical framework. The high error of the Gurram model
is very close to the 8% limit of acceptability considered by Kesserwani, Ghos-
tine, Vazquez, Mosé, et al. (2008), and a certain weakness of the momentum-based
methods, also for F < 0.35, is shown. This is in contrast with the findings of
Kesserwani, Ghostine, Vazquez, Mosé, et al. (2008). Therefore, the RP approach
attains the best agreement with the corresponding experimental layout of Biron et
al. (1996).

4.3 Steady flow in Y-shaped confluence with lateral concordant and
discordant bottoms

The experiments performed by Wang et al. (2007) to test the effect of the bottom
discordance on the flow at the Y-shaped confluence with Ω = δ = 45◦ in Fig. 1 are
used to compare the junction models. The Wang et al. (2007) experimental data
are organized in 3D form. To use the data in a 1D framework, TELEMAC-2D soft-
ware is used to reproduce the Wang et al. (2007) experimental data, and the average
cross-section values of the discharge at 4 m downstream from the junction are com-
puted. Here, the lateral channel is 0.3 m wide and 2.4 m long; the main upstream
and downstream channels are 0.45 m wide and 2.4 and 4.8 m long, respectively.



Two cases are considered, where the bottom is either concordant or discordant.
For the concordant bottom case (i.e., z2 = 0), the discharges are 3.12 × 10−2,
1.68 × 10−2, and 4.8× 10−2 m3s−1 in the main upstream channel, the lateral
channel, and the main downstream channel, respectively. The corresponding water
depths are 0.25 m in all channels, and the discharge ratio Qr between the lateral
channel and the main downstream channel is 0.35. For the discordant case (i.e.,
z2 = 0.05 m), the discharges are 1.8× 10−2, 3.0× 10−2, and 4.8× 10−2 m3s−1.
The corresponding water depths are 0.30, 0.25, and 0.30 m, with Qr = 0.6.
Figures 5 and 6 compare the different junction models and the Wang et al. (2007)
reference solution at the Y-shaped confluence with concordant and discordant bot-
tom, respectively. F was less than 0.27 in both cases. However, some differences
between the numerical solutions and the Wang et al. (2007) reference solution are
noted. In particular, the Gurram and Equality models slightly overestimate the
downstream discharge, the RP approach behaves correctly, and the Hsu model
slightly underestimates the downstream discharge. The influence of the bottom
on the solution can be seen in Table 4. The error increase by approximately 1%
when comparing the concordant and discordant bottom for the Equality model. By
contrast, the error decreases by approximately 1% for the Gurram model. The error
increases by 9% for the Hsu model and remains approximately constant for the RP
approach.

As a conclusion of these comparisons, in the Y-shaped confluence case, the RP
approach appears to outperform the momentum-based models for both concordant
and discordant bottom. Indeed, some reasonable doubt arises in terms of the extent
to which such momentum-based models are generalizable, especially to cases that
are not strictly similar to those of the original experiments. By contrast, the RP
approach, which is based on general mechanical bases, performs well, mainly with
respect to case-independence.

5 Results for unsteady flows

The validation of the junction models under unsteady flow conditions is not fully
covered in literature. Only few studies have been performed (Briani et al., 2016;
Chang, Chang, & Chiang, 2015; Kesserwani, Ghostine, Vazquez, Mosé, et al.,
2008). Here, the analytical Riemann solution (Elshobaki et al., 2018; Goudiaby
& Kreiss, 2013) for unsteady flow at a junction is used to validate the four junction
models. Considering the network layout shown in Fig. 1, with Ω = δ = 45◦,
three channels with equal widths (i.e., b1 = b2 = b3) and equal lengths (i.e.,
L1 = L2 = L3) are connected to a single point and form a network. The dis-
charge (and the corresponding velocity) is considered to be positive in the first and



second channels (main upstream and lateral channel) if the channel feeds the node
and in the third channel (main downstream channel) if the node feeds the channel.
In Fig. 1, positive discharges correspond to arrows from left to right. The initial
conditions are: h1 = 0.5 m;h2 = 0.5 m;h3 = 1.0 m;Q1 = 0.1 m3s−1;Q2 =
0.1 m3s−1;Q3 = 0 m3s−1. These conditions are chosen to obtain similar flow
configurations to those of previous experimental works (Pinto Coelho, 2015). This
problem is the counterpart of the dam break problem in a single channel. A shock
wave travelling backward into the upstream/lateral branches and a rarefaction wave
travelling forward in the downstream branch are expected. The initial state of the
system (particularly, the bottom discontinuity at the junction) has important ef-
fects on the existence and uniqueness of the solution, as shown by Elshobaki et
al. (2018). A limited range of initial conditions allows the existence of a physi-
cally based solution. Such conditions, which are not trivial, have been derived in
Elshobaki et al. (2018). The current test case refers to a symmetric confluence with
a continuous bottom; the bottom elevation is zero everywhere. Figure 7 shows the
numerical results for the four junction models. The l1 errors for the depth and the
discharge are listed in Tables 5 and 6 and are computed according to the following
formulas:

ehk = ∆x

N∑
i=1

|h∗k(xi, t)− hk(xi, t)|, k = 1, 2, 3

eQk = ∆x

N∑
i=1

|Q∗
k(xi, t)−Qk(xi, t)|, k = 1, 2, 3,

(16a)

(16b)

where h∗ and Q∗ are the depth and the discharge obtained using the analytical
solution. h and Q are the depth and discharge computed by the FVM-DOT model
including the junction models at the final time (t = 0.2 s). N is the number of
mesh cells. It is clear that the numerical solution based on the RP approach has
the best performance in this case because the only difference between that solution
and the analytical one is just the numerical error. Therefore, this test is mainly
devoted to understanding the performance of the classic models. The results for the
shock backward propagation in the main and lateral branches are quite good for all
models, with slightly worse behavior for the Equality model. In the downstream
main channel, the behavior of Equality model is again the worst, followed by the
Gurram model, whilst the Hsu model performs well for both depth and discharge.



6 Conclusions

In this research, the use of a suitable RP approach to set up the internal boundary
conditions at the junctions in the numerical simulation of channel network flows
is evaluated. Generally, the RP approach matches the experimental data, despite
of the geometric characteristics of the junction. Moreover, this study confirms the
poor performance of the Equality model. The junction angle has a notable impact
on the performance of the RP approach compared to the Gurram and Hsu models
when fitting experimental data concerning the asymmetric confluence of channels
with equal widths and concordant bottoms (F ranges from 0.5 to 0.7). By con-
trast, for the asymmetric confluence of channels with non-equal widths and with
lateral discordant bottoms and for Y-shaped confluence, the Gurram and Hsu mod-
els differ substantially from the reference experimental data, even for F smaller
than 0.35, and the RP approach performs better. For unsteady flows, the presented
results show that the RP approach has the best agreement with the analytical so-
lutions. Therefore, the RP approach proves to be generally a good choice and has
the following benefits: the approach is based on a theoretical background that is
generalizable and does not rely on empirical coefficients; the overall behavior is
generally satisfactory, both for steady and unsteady flows.

There are also limitations to the applicability of the RP approach. The RP
approach is not validated for junctions in meandering rivers and curved channels.
Moreover, recirculation and turbulence phenomena (detachment of vortexes and
three-dimensional effects) are not taken into account, but this is not considered to
be a severe drawback when studying problems at longitudinal scales much larger
than the channel width.
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A The modified Gurram formulas

In this appendix, we introduce the modified Gurram formula. We consider the
junction in Fig. 1. Following the assumptions made by Gurram et al. (1997), the
flow is assumed to be steady with small bottom slope, such that the friction slope is



nearly compensated; the flow is one-dimensional in the main upstream and down-
stream channels with momentum and energy coefficients (β1 at AB, β3 at CD, and
γ at CD) assumed to be unity. Towards the junction, the lateral channel flow is ac-
celerated due to the flow contraction at the separation zone (Gurram et al., 1997).
Therefore, the lateral channel momentum M2 at EH in Fig. 1 can be written as

M2 = β2ρb2h2u
2
2 cos(δ), (17)

where ρ is the density of water and β2 is the lateral momentum coefficient. Gurram
et al. (1997) showed that β2 can be computed with the following relation

β2 =
b3h3u3
b2h2u2

cos(α)

cos(δ)
,

where α as the angle between the representative lateral velocity vector at EH and
the main channel direction. The relation between α and δ is (Hager, 1987)

α =
8

9
δ.

Because of the presence of the bottom step in the lateral channel, the flow mixing
between the upstream and the lateral channel is expected to be increased; there-
fore, the relationship between δ and α must be recalibrated. However, this process
is beyond the scope of this work, so the suggestion of Hager (1987) is maintained.
Assuming a hydrostatic pressure distribution, the force exerted by the lateral bot-
tom step is computed according to Elshobaki et al. (2018), and the equality of the
water level between the upstream main channel and the lateral channel is assumed
rather than the equality of water depth. Taking into account the angle Ω, the mo-
mentum balance in the main downstream channel direction over a control volume
ABCDEH in Fig. 1 gives

ρb1h1u
2
1 cos(Ω) +

ρg

2
b1h

2
1 cos(Ω) + ρb3h3u3u2 cos(α) + ρgb2hsz2 cos(δ) =

ρb3h3u
2
3 +

ρg

2
b3h

2
3,

(18)

where hs refers to the depth over the lateral bottom step, which is computed by
applying the conservation of the total head over the step (Valiani & Caleffi, 2008)
by considering only the subcritical solution

hs =
1

3

(
h3 +

u23
2g
− z2

)[
1− 2 cos

(
2π + θ

3

)]
(19)



where

θ = arccos

1− 27

 −h3 −
u2
3

2g + z2(
h1u1
h3u3

)2 (h2
3u

2
3

g

) 1
3


 .

For more details, see (Elshobaki et al., 2018). Multiplying Eq. (18) by 2/b3h
2
3

gives[
2b1h1u

2
1

gb3h23
+

(
b1
b3

)(
h1
h3

)2
]

cos(Ω)+
2u2u3
gh3

cos(α)+

(
2b2
b3

)(
hs
h23

)
z2 cos(δ) =

2u23
gh3

+1.

(20)

The continuity equation implies

b1h1u1 + b2h2u2 = b3h3u3. (21)

By using the equality of the water level upstream from the junction and substituting
Eq. (21) into Eq. (20), with a little arrangement we obtain

(
h1
h3

)3

cos(Ω)−
(
b3h1
b1h3

)[
1+2F2−

(
2b2
b3

)(
hs
h23

)
z2 cos(δ)

]
+2F2

[(
h1u1
h3u3

)2

cos(Ω)+

(
b23h1

b1b2(h1 − z2)

)(
1− b1h1u1

b3h3u3

)
cos(

8δ

9
)

]
= 0, (22)

where

F =

√
γu23
gh3

;

therefore, Eq. (22) represents the final Gurram formula that is used in the model
(13).

B The modified Hsu formulas

This appendix shows the derivation of the modified Hsu formula in the channel
network of Fig. 1. According to Hsu et al. (1998b), the flow is accelerated due to
the flow contraction at the separation zone as long as we move towards the junction.
Therefore, momentum coefficients are introduced (β1 at AB, β2 at FG, β3 at CD,
and βEH at EH). Assuming steady flow and a hydrostatic pressure distribution,
neglecting the friction force, taking into account the angle Ω, the acting force due to



the presence of the lateral step, and further assuming β1 = β2 = β3 = βEH = β,
the momentum balance in the main downstream channel direction over the area
ABCDEH gives

βρb1h1u
2
1 cos(Ω) +

ρg

2
b1h

2
1 cos(Ω) + βρb2h2u2uEH cos(α) + ρgb2hsz2 cos(δ) =

βρb3h3u
2
3 +

ρg

2
b3h

2
3,

(23)

where uEH is the representative velocity at EH. According to Hsu et al. (1998b),
the representative velocity uEH is related to the angle α by

uEH =
b2h2u2

bEHhEH sin(α)
. (24)

bEH and hEH are the channel width and the water depth at section EH in the lateral
channel, respectively. Substituting Eq. (24) into Eq. (23) gives

βρb1h1u
2
1 cos(Ω) +

ρg

2
b1h

2
1 cos(Ω) +

βρ(b2h2u2)
2

bEHhEH
cot(α) + b2hsz2 cos(δ) =

βρb3h3u
2
3 +

ρg

2
b3h

2
3.

(25)

Applying the momentum balance in the lateral channel direction over the area
EFGH gives

βρb2h2u
2
2 +

ρg

2
b2h

2
2 =

ρg

2
b2h

2
EH +

βρ(b2h2u2)
2

bEHhEH

cos(δ − α)

sin(α)
. (26)

Taking into account the equality of the water level upstream from the junction,
letting bEH = b2/ sin(δ), further assuming hEH = h2 based on experimental ob-
servation by Hsu et al. (1998b), taking into account the effect of the lateral bottom
step hs (Valiani & Caleffi, 2017), using the mass continuity equation, and substi-
tuting Eq. (26) into Eq. (25), it possible to obtain(

h1
h3

)3

cos(Ω)−
(
b3h1
b1h3

)[
1+

2βF2

γ
−
(

2b2
b3

)(
hs
h23

)
z2 cos(δ)

]
+

2βF2

γ

[(
h1u1
h3u3

)2

cos(Ω)+

(
b23h1

b1b2(h1 − z2)

)(
1− b1h1u1

b3h3u3

)
cos(δ)

]
= 0. (27)

Therefore, Eq. (27) represents the modified Hsu formula (14c).



Notation
A = Jacobian matrix of the flux function (–)
bk = channel width of the kth channel (m)
CFL = the Courant-Fredrich-Lewy coefficient (–)
c = wave celerity (ms−1)
D = fluctuation term (–)
E = relative percent error (–)
ehk = error in the depth of the kth channel (–)
eQk = error in the discharge of the kth channel (–)
F = downstream Froude number (–)
F = flux function (–)
g = gravity acceleration (ms−2)
hk = water depth in the kth channel (m)
h∗k = depth (analytical solution) in the kth channel (m)
hs = depth over the lateral bottom step (m)
k = channel index, k = 1 refers to the main upstream channel,

k = 2 refers to the lateral channel, k = 3 refers to the main
downstream channel (–)

Lk = channel length of the kth channel (m)
Mk = momentum in the kth channel (N)
N = number of mesh cells (–)
n = time step index (–)
Qk = water discharge in the kth channel (m3s−1)
Qr = discharge ratio (–)
Q∗

k = discharge (analytical solution) in the kth channel (m3s−1)
S = vector of source term (–)
S0x = bottom slope (–)
Sf = friction slope (–)
s = parameter, s ∈ [0, 1] (–)
t = time (s)
U = vector of conservative variables (–)
uk = water velocity in the kth channel (ms−1)
W = extended vector of conservative variables (–)
W n

i = space average of W over the ith cell at time tn (–)
xk = space in the kth channel (m)
Yexp = experimental depth ratio (main upstream to downstream) (–)
Ynum = computed depth ratio (main upstream to downstream) (–)
zk = bottom elevation in the kth channel (m)
α = angle between the lateral velocity vector at EH

and the main channel direction (–)
β = momentum coefficient, β = 1.27 (–)
γ = energy coefficient, γ = 1.12 (–)
δ = junction angle (–)
ηk = parameter number in the kth channel, η = −1, 1 (–)
ρ = water density (kgm−3)
ψ = integral path (–)
Ω = main channel angle (–)
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dimensional simulation of supercritical flow at a confluence by means of a
nonlinear junction model applied with the RKDG2 method. International
journal for numerical methods in fluids, 57(12), 1695–1708.

Kesserwani, G., Ghostine, R., Vazquez, J., Mosé, R., Abdallah, M., & Ghenaim, A.
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Table 1: The error percentage in the computed depth ratio h1/h3 at the junction,
compared to the experimental data of Hsu et al. (1998a, 1998b).

Junction angle δ Riemann Equality Gurram Hsu

30◦ 2.68 10.59 3.02 0.72
45◦ 2.87 11.64 2.37 0.61
60◦ 2.88 13.02 2.48 1.27
90◦ 5.84 19.91 3.78 2.21



Table 2: The error percentage in the computed depth ratio h1/h3 at the junction,
compared to the experimental data of Pinto Coelho (2015).

Junction angle δ Riemann Equality Gurram Hsu

30◦ 2.83 17.84 1.54 1.64
60◦ 5.62 20.63 0.70 1.49



Table 3: The error percentage in the computed downstream dischargeQ3 relative to
the reference solution obtained using TELEMAC-2D software on the experimental
layout of Biron et al. (1996).

Junction model Discordant bottom

Riemann 0.59
Equality 1.77
Gurram 7.05
Hsu 5.95



Table 4: The error percentage in the computed downstream dischargeQ3 relative to
the reference solution obtained using TELEMAC-2D software on the experimental
layout of Wang et al. (2007).

Junction model Concordant bottom Discordant bottom

Riemann 1.079 1.25
Equality 6.667 8.27
Gurram 3.858 2.53
Hsu 7.223 16.21



Table 5: The l1 error in the computed depth. Analytical solution by Goudiaby and
Kreiss (2013).
Junction model Upstream main channel Lateral channel Downstream main channel

Riemann 1.6997×10−3 1.6997×10−3 4.2037×10−3

Equality 1.1143×10−2 1.1143×10−2 2.8994×10−2

Gurram 4.3977×10−3 4.3977×10−3 1.2914×10−2

Hsu 2.1425×10−3 2.1425×10−3 5.9129×10−3



Table 6: The l1 error in the computed discharge. Analytical solution by Goudiaby
and Kreiss (2013).
Junction model Upstream main channel Lateral channel Downstream main channel

Riemann 4.2644×10−3 4.2644×10−3 8.8333×10−3

Equality 3.5669×10−2 3.5669×10−2 3.8996×10−2

Gurram 1.1279×10−2 1.1279×10−2 1.7570×10−2

Hsu 6.4912×10−3 6.4912×10−3 1.0272×10−2
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Figure 1: Star network of three channels.
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Figure 2: Different numerical solutions vs. the experimental data of Hsu et al.
(1998a) with junction angles (a) 30◦ (b) 45◦ (c) 60◦; and vs. the experimental
data of Hsu et al. (1998b) with 90◦ junction angle (d). The experimental data
are shown as filled stars; circles, squares, triangles, and diamonds indicate the RP
approach, Equality model, Gurram model, and Hsu model, respectively. Note that
the symbols represent the same quantities in the all following figures.
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Figure 3: Different numerical solutions vs. the experimental data of Pinto Coelho
(2015) with junction angles (a) 30◦ and (b) 60◦.
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Figure 4: Four different numerical solutions for downstream discharge vs. time for
a discharge ratio Qr=1.04. Reference solution is obtained using TELEMAC-2D
software on the experimental layout of Biron et al. (1996).
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Figure 5: Different numerical solutions for downstream discharge vs. time for
a discharge ratio Qr=0.35. Reference solution is obtained using TELEMAC-2D
software on the experimental layout of Wang et al. (2007).
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Figure 6: Four different numerical solutions for downstream discharge vs. time
for a discharge ratio Qr= 0.6. Reference solution is obtained using TELEMAC-2D
software on the experimental layout of Wang et al. (2007).



0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

Figure 7: Water depth h and discharge Q evolution at time 0.2 s. The analytical
solution is shown as thick solid lines; the RP approach, Equality model, Gurram
model, and Hsu model are shown as dashed-dot lines, dashed lines, thin solid lines,
and dots, respectively.
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