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Abstract: We analyzed the complex dynamics that are involved the groundwater level variations due
to the episodic rainfall supply in the Ionian coastal plain surficial aquifer located in Southern Italy.
In this aquifer, as a consequence of the particular hydrogeological framework, both direct and lateral
recharge mechanisms coexist. Hence, the dynamics of groundwater level variations are quite complex
and strongly non-linear. Our focus was essentially on the short-term behavior of groundwater levels,
with a specific analysis on episodic rainfall events. To model these dynamics, due to the presence of
the preferential pathways in the infiltration processes, a kinematic dispersion wave model was used.
Specifically, a one-dimensional and non-linear particle-based numerical model was developed. It uses
ideal particles with constant water volume travel, according to celerity and hydraulic dispersion,
to simulate the infiltration rate wave through the vadose zone. The infiltration rate that reaches the
water table represents the input function to evaluate the aquifer groundwater level fluctuations. As a
consequence of the special lithological and storage capacity characteristics of the surficial layers,
groundwater flow conditions change from unconfined to confined. The developed model analyzes
the direct groundwater supply under natural conditions, including episodic rainfall, and it has been
validated using a high-resolution time series of rainfall data and groundwater level obtained from
the monitoring station Terra Montonata.

Keywords: episodic rainfall; surficial aquifer; unsaturated flow; preferential flow; kinematic dispersion
wave model; random walk; confined-unconfined flow conversion

1. Introduction

To understand and model the relation between groundwater level fluctuations and rainfall events
is fundamental to realizing the groundwater supply mechanisms, in order to achieve sustainable
management of groundwater resources. In shallow aquifers, where the water table responds quite
quickly to rainfall inputs, recharge events may be isolated and associated with individual precipitation
events [1,2]. This paper concerns the groundwater-level dynamics in the Ionian coastal plain surficial
aquifer in Southern Italy [3,4], where in consequence of the particular hydrogeological framework,
both direct and lateral recharge mechanisms coexist. Therefore, the aquifer is characterized by a
complex response of groundwater level rises due to episodic rainfall events. It is strongly non-linear
and severely dependent by the groundwater level antecedent to the rainfall event. The focus is
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essentially on the short-term behavior of groundwater level, with a specific analysis on episodic rainfall
events framing it in the general hydrogeological context of the area.

On the basis of groundwater level and precipitation time series of sufficient duration and temporal
resolution, it is possible to evaluate the influences of rainfall characteristics on episodic groundwater
recharge in different hydrogeological conditions and in consequence of different hydro-meteorological
events. It is also possible to estimate aquifer parameters, evapotranspiration and effective infiltration
from precipitation [5,6].

Short lags between precipitation and groundwater level variations are representative of preferential
flow pathways conditioning the supply mechanism in shallow aquifers. Preferential flow in natural
soils and rocks under saturated [7–9] and unsaturated [10–12] conditions is ubiquitous. From the
textural point of view, the macropores governing preferential flow dynamics [13–16] normally have
three physically distinct processes: macropore flow, finger flow and funnel flow [17].

The kinematic diffusion wave theory is a useful approach with which to model the vertical
movement of infiltrated water under uniform and/or preferential flow [18]. Some authors derived a
kinematic diffusion form of the Richards’ equation, mathematically equivalent to the advection diffusion
equation [19,20]. Alternative approaches based on Newton’s law found a power law relationship
between the infiltration rate and mobile water content [21]. The combination of this functional
relationship and the continuity equation gives rise to the kinematic wave model [22]. The latter model
assumes that mobile water moves as a film along the preferential pathways in unsaturated porous
media, under atmospheric pressure. When that happens, unsaturated flow is only gravity driven
and counter balanced by the dissipative friction due to the viscous force, whereas the capillary force
is neglected. Experimental evidence [23,24] shows a dispersion effect that attenuates the kinematic
wave. Water dispersion phenomena are due to several factors linked to the contributions of mesopores,
wherein capillary force may be significant and intricate pore paths are present. Water infiltrates with
velocities both greater and less than the mean vertical downward velocity. The introduction of the
dispersion component give rise to the kinematic dispersion wave model [25]. The implementation of
preferential flow into the numerical model and the evaluation of the model parameters remain the
subject of discussion [26].

The modeling of the infiltration processes through the vadose zone and the quantification of
the aquifer supply hydrograph are strictly related to the basic hydrogeological characteristics of
unsaturated and saturated zones and the surface–subsurface interaction [27].

The assessment of groundwater recharge requires a numerical model able to represent the
whole process controlling the infiltration dynamics with a small computational cost. Several authors
developed an efficient numerical solution to solve the Richards’ equation for simulating unsaturated
flow in layered and heterogeneous porous media [28–30].

In this paper a modeling framework with the relative numerical approach is proposed to
describe the complex dynamics of infiltration processes during episodic rainfall events and the relative
groundwater level variations. The infiltration processes are modelled like a one-dimensional flow
along vertical direction using the kinematic dispersion wave model. The governing equations are
generally numerically solved by means of Eulerian methods [25]. They normally suffer from numerical
problems, such as numerical dispersion and computational complexity, especially as a consequence of
severe variations of boundary conditions. During intense rainfall events, the infiltration rate, the water
content and the water table fluctuation change rapidly, giving rise to numerical instabilities in the
Eulerian numerical model. In order to overcome these difficulties a non-linear particle-based model
has been developed to numerically solve the kinematic dispersion wave equation. Particles move
according to convection and dispersion terms which are functions of the particle density linked to
the mobile water content. Through this particle-based model, the infiltration rate hydrograph of the
water table is obtained and it is used to simulate the groundwater fluctuations according to the storage
coefficient of the surficial aquifer. The length of the vadose zone changes on the basis of the water
table depth.
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The developed method was applied to the case study of the surficial level of the Ionian coastal
plain aquifer. Previous studies carried out on the same aquifer, on the basis of monthly average
precipitation and groundwater levels, show that recharge takes place mainly laterally from the upward
aquifer, whereas direct recharge is essentially interdicted by the presence of a surficial silty and clay
layer [3,4]. The analysis of precipitation and groundwater records at higher resolution scale evidences
a quick response to intense rainfall events that are not coherent only with lateral or upward recharge
supply. This implies the presence of direct recharge due to the presence of preferential groundwater
supply flow-paths crossing the surficial silt and clay layer [31]. In this area, these preferential flow
path supplies have been recognized mainly in the several reclamation channels crossing the coastal
plain which cut the surficial impervious layer. Moreover, the medium groundwater level is quite
close to the stratigraphic transition between the surficial thin silty clayey layer and the sands hosting
groundwater. Thus, according to the lithological features of the aquifer, unconfined–confined flow
conversion may occur as a consequence of the groundwater level variations, giving rise to a change in
the aquifer storage. Hydrogeological parameters have been estimated by comparing modeled results
and observed data.

The specific goals of this paper are:

1. Improving the understanding of the hydrogeological behavior of the Ionian coastal plain aquifer,
highlighting how the geological and lithological features are interrelated with hydrogeologic processes.

2. Demonstrating the presence of unconfined–confined flow conditions in the study area.
3. Testing whether the kinematic dispersion wave model can adequately represent the infiltration

processes due to episodic recharge events in the study area.

2. Materials

2.1. Geological, Lithological and Hydrogeological Setting

The study site is located in a wide and flat area called the Ionian (Metaponto) coastal plain [32].
Its highest elevation is 15 m, facing the Ionian Sea in the southern part of Basilicata region (Southern Italy).
In particular, the studied site is within the interfluvial area between Cavone and Basento rivers (Figure 1).
Geologically, it is located in the southern part of the Bradanic Trough [33], which is a tectonic trough
filled up by a thick sequence of Pliocene to Pleistocene marine sequences, mainly of sub-Apennines
clays [30], passing upwards to coarse-grained coastal and continental deposits known as regressive
terraced deposits of the Bradanic Through [34]. Immediately upward from the study area are the
terraced deposits of the lower order outcropping.
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Figure 2. (a) Geological cross-section in interfluve area. (1) Coastal plain deposits; (2) terrace deposits;
(3) sub-Apennines clays; (b) detail of stratigraphy detected close to Terra Montonata monitoring station
(not to scale).

Metaponto plain is characterized by a thick stratigraphic sequence of alluvial, transitional,
coastal and marine deposits—described in detail by several authors in [32–35]. The complex sequence
can be simplified as:

(a) A substratum of middle-late Pleistocene and silty clays of the sub-Apenine type (Argille Subappennine);
a formation with an irregular upper boundary at a depth of about 15–30 m, deepening locally in
correspondence of the paleovalley.

(b) Upper unit (late Pleistocene and Holocene) of fluvial and/or deltaic sandy-gravelly deposits
with clayey intercalations with a thickness of 15–30 m, deepening locally in accordance with the
paleovalley. The plain is covered by a thin layer (4–5 m) of alluvial silty clayey deposits.

The lithological features of the area gave rise to the presence of two main aquifers: the former
is hosted in the marine terraces where groundwater flows generally in unconfined conditions in
the coarse grained deposits of the terraces; the latter is a coastal aquifer hosted in the sandy coastal
plain deposits where the shallowest permeable layer is characterized by free piezometric oscillations.
Figure 2a shows the schematic geological cross -section of the area. Figure 2b shows the strata
sequence detected in a borehole close to Terra Montonata groundwater monitoring station in the
coastal aquifer. The shallowest permeable layer does not outcrop due to the widespread presence
of the upper almost impervious stratum, 2 up to 5 m thick constituted by silty clays. Test analyses
conducted in the whole Metaponto coastal plain show saturated hydraulic conductivity values in
the range 3.47 × 10−6–5.69 × 10−3 ms−1 [3]. Specifically, in the interfluvial area between Cavone and
Basento rivers corresponding to the Terra Montonata monitoring station, the hydraulic conductivity
has the average value of 2.28 × 10−4 ms−1.

2.2. General Hydrodynamic Observations

Groundwater dynamics in the present work are analyzed on the basis of time series data collected
by Protezione Civile Basilicata—Centro Funzionale Decentrato (http://centrofunzionalebasilicata.it/it/),
which has a network of climatic and hydrodynamic stations in the whole Basilicata Region. The data
of the monitoring station of Terra Montonata (N = 40◦18′17”; E = 16◦45′10”; Z = 10 m AMSL) have
been considered representative of the hydrological and hydrogeological conditions of the interfluvial
area between Basento and Cavone rivers of the coastal plain. Continuous time series of groundwater
level and precipitation for a period of ten years (2002–2012) with a time resolution of 20 min have
been considered.

http://centrofunzionalebasilicata.it/it/
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Monthly trends in the period 2002–2012 of the rainfall P (mm) and averaged groundwater level
Zw (m AMSL) have been investigated (Figure 3). P presents Mediterranean characteristics with a peak
in December and the minimum in August with the average annual precipitation (in 2002–2012 period)
equal to 530 mm.

Water 2020, 12, x FOR PEER REVIEW 5 of 21 

 

in December and the minimum in August with the average annual precipitation (in 2002–2012 
period) equal to 530 mm. 

Zw shows a seasonal behavior characterized by a constant increase in the water level during the 
autumn and winter period with a peak at the beginning of the spring and a recession period during 
the spring/summer period. 

 
Figure 3. Monthly trends in the period 2002–2012 of rainfall P (mm) and groundwater level ZW (m 
AMSL) determined on the basis of the time series with time resolution of 20 min derived from the 
monitoring station of Terra Montonata. 

2.2.1. Lateral/Upward Groundwater Supply 

An estimation of groundwater wave propagation from the terraced deposits to the monitoring 
station is used to demonstrate the presence of the lateral/upward groundwater supply. Saturated 
groundwater flow in the surficial aquifer can be represented as a one-dimensional flow along the 
horizontal direction: 𝑆 𝜕𝐻𝜕𝑡 = −𝑇 𝜕 𝐻𝜕𝑥 , (1)

where T (LT−2) is the transmissivity of aquifer, x is the horizontal direction and S (-) is the storage 
coefficient. The terraced deposits present a minimum distance from the monitoring station equal to 
x0 = 1200 m. The surficial aquifer is characterized by an average hydraulic conductivity value of K = 
2.2 × 10−4 ms−1 with an average thickness of 20 m (Figure 2). Then the transmissivity will be equal to 
T = 4.4 × 10−3 m2s−1. Assuming that the surficial aquifer is subject to an instantaneous unit rise pulse 
in correspondence with the terraced deposits (x = 0), groundwater level wave will be propagated 
according to the following analytical solution for the one-dimensional diffusion equation along semi-
infinite boundary [36]: 𝐻(𝑥 , 𝑡) = 1√4𝜋𝐷𝑡 𝑥 𝑒𝑥𝑝 − 𝑥4𝐷𝑡 , (2)

where 𝐷 = 𝑇/𝑆 (LT−2) is the hydraulic diffusivity. Equation (2) reaches its peak at time tp equal to: 𝑡 = 𝑥6𝐷. (3)

This time can be viewed as the time necessary so that a groundwater rise at x = 0 (terraces 
deposits) leads to the maximum rise at the distance x0 where the monitoring station of Terra 
Montonata is located. tp assumes a value of 121.83 d for S = 0.2, which is a value of S in good agreement 

Figure 3. Monthly trends in the period 2002–2012 of rainfall P (mm) and groundwater level ZW

(m AMSL) determined on the basis of the time series with time resolution of 20 min derived from the
monitoring station of Terra Montonata.

Zw shows a seasonal behavior characterized by a constant increase in the water level during the
autumn and winter period with a peak at the beginning of the spring and a recession period during
the spring/summer period.

2.2.1. Lateral/Upward Groundwater Supply

An estimation of groundwater wave propagation from the terraced deposits to the
monitoring station is used to demonstrate the presence of the lateral/upward groundwater supply.
Saturated groundwater flow in the surficial aquifer can be represented as a one-dimensional flow along
the horizontal direction:

S
∂H
∂t

= −T
∂2H
∂x2 (1)

where T (LT−2) is the transmissivity of aquifer, x is the horizontal direction and S (-) is the storage
coefficient. The terraced deposits present a minimum distance from the monitoring station equal
to x0 = 1200 m. The surficial aquifer is characterized by an average hydraulic conductivity value
of K = 2.2 × 10−4 ms−1 with an average thickness of 20 m (Figure 2). Then the transmissivity will
be equal to T = 4.4 × 10−3 m2s−1. Assuming that the surficial aquifer is subject to an instantaneous
unit rise pulse in correspondence with the terraced deposits (x = 0), groundwater level wave will be
propagated according to the following analytical solution for the one-dimensional diffusion equation
along semi-infinite boundary [36]:

H(x0, t) =
1

√

4πDt3
x0exp

− x2
0

4Dt

 (2)
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where D = T/S (LT−2) is the hydraulic diffusivity. Equation (2) reaches its peak at time tp equal to:

tp =
x2

0

6D
(3)

This time can be viewed as the time necessary so that a groundwater rise at x = 0 (terraces deposits)
leads to the maximum rise at the distance x0 where the monitoring station of Terra Montonata is
located. tp assumes a value of 121.83 d for S = 0.2, which is a value of S in good agreement with the
sandy lithology of the aquifer. This time is coherent with the time lag from the comparison between
the average monthly rainfall regime P and the average monthly groundwater level Zw, which shows
3–4 months as the lag.

2.2.2. Evidence of Direct Groundwater Supply

Even if the main groundwater supply of the aquifer is related to water coming from the terraced
deposits, there is also evidence of a quick response of groundwater level to rainfall. Figure 4 shows
the comparison between the daily average groundwater level, monthly average groundwater level
and daily precipitation for four daily time series during the wet season (1th October–30th April).
The analysis of precipitation and groundwater level on a daily time scale evidences the presence of an
impulsive response to intense rainfall characterized by an average time lag of 2–3 days. The water
table responds immediately to intense rainfall events. This implies there are quite short paths of
direct recharge along the vadose zone that contribute to groundwater supply. This behavior is evident
from the autumn to spring period, wherein the most significant rainfall events in terms of intensity,
magnitude and amount of precipitation occur.
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is indicated, as is the respective value the groundwater level will attain if no episodic recharge occurs
Z0

w (m). The grey bar indicates the depth of the bed of the silty and clay unit.
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Long term lateral recharge combines with direct recharge that takes place along the vadose zone.
As shown in Figure 4, the daily groundwater level falling after rising due to significant rainfall events
decreases exponentially according to the following recursive expression [37]:

Zi + 1
w = Z0

w +
(
Zi

w −Z0
w

)
exp

(
ti
− ti + 1

τ

)
(4)

where Z0
w (L) is the groundwater level that would be attained if no direct recharge occurred, Zi + 1

w (L) is
the groundwater level at time ti + 1, Zi

w (L) is the groundwater level at time ti and τ (T) is the recession
time. Recession time assumes a value of 18 days, whereas Z0

w changes significantly depending on
lateral/upward groundwater recharge mechanism.

Moreover, as shown in Figure 4, the surficial aquifer presents a different hydraulic behavior
during the rainfall event depending on the initial value of the groundwater level antecedent to the
episodic rainfall events. This behavior seems to be interrelated to the depth of the bed of the surficial
silty and clay unit (gray bar on Figure 4). If groundwater level is below the bottom of the silty clay
stratum, the unconfined condition eventuates; otherwise, the aquifer becomes confined and the storage
property of surficial aquifer decreases. Then groundwater level increases.

3. Methods

3.1. Rainfall Infiltration Dynamics

The key observations described in the previous sections led us to establish the conceptual model
of the infiltration processes in the vadose zone and groundwater recharge highlighted in Figure 5.
The studied area of the coastal plain is largely covered by arable crops with topsoil more or less 0.30 m
deep. Given that the investigated period regards only the cold season, the evapotranspiration processes
are negligible. Thus, they have not been taken into account. Below the topsoil, the thin silty and clay
layer is present. The permeability characteristics of this layer are not consistent with the observed
quick responses of the groundwater levels due to the episodic rainfall events. Thus, they have to be
attributed to a preferential flow infiltration mechanism in the vadose zone.
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depth, H(t) is the height of groundwater level above the base level Z0

w, q(0, t) is the infiltration rate for
the topsoil, q(L, t) is the infiltration rate for the water table, qc is the infiltration capacity of the topsoil,
qcrit is the critical value of the infiltration rate.
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Preferential flow occurs under various conditions at different spatial and temporal scales. In the
study area there are several reclamation channels that represent local surface depressions dug up
to 2–3 m and more from the soil surface, where surficial flow may concentrate and transmit to the
underlying the surficial aquifer. Moreover, hydromechanic processes at larger scale are the consequence
also of macropore dynamics related to shrinkage cracks formed by drying of swelling phenomena
and by earthworm biopores. Earthworms present a diameter of 1–3 mm and can extend up to 6 m in
vertical length. Shrinkage cracks give rise to a rapid movement of depth of around 1 m and more [38].
As a consequence, water accumulates, backfilling the void space.

In the Darcian scale preferential flow mechanisms can be due to unstable flow. Under certain
conditions, the wetting front moving downwards breaks into fingers. They represent preferential
pathways that facilitate recharge flow. Compression of air below the wetting front causes instability [39]
and the wetting front breakup into fingers.

When the precipitation p(t) (LT−1) exceeds the infiltration capacity of the topsoil qc (LT−1), runoff surficial
flow is generated, increasing the infiltration rate in the top soil q(0, t) (LT−1) along the preferential flow
paths. Moreover, the infiltration rate of topsoil is limited according to the following expression:

q(0, t) = min(qcrit, p(t)) (5)

where qcrit (LT−1) represents the critical value of the infiltration rate. The precipitation in excess does
not feed the preferential flow paths [40]. The infiltration travels along the vadose zone, reaching the
water table, giving rise to the infiltration rate hydrograph at water table q(L, t) (LT−1). L (L) is the water
table depth from topsoil.

3.2. Groundwater-Level Variation Analysis

The raising of the groundwater level is governed by q(L, t) and the storage coefficient S (-).
The total rate of the ground water level fluctuation during the episodic recharge is the sum of the
recession and accretion rate:

dH
dt

=
q(L, t)
S(L)

−
H(t)
τ

(6)

where H (L) is the height of the groundwater level above the base level Z0
w, dH/dt (LT−1) is the total

change rate of the groundwater level, q(L, t)/S(L) is the accretion rate and H(t)/τ is the recession rate.
Due to the expected groundwater flow conversion mechanism, S is represented as function of the
water table depth L.

In order to investigate the groundwater level fluctuation processes, starting from the time series
on an hourly time scale, several rainfall events have been isolated. Each event has been analyzed
individually, determining an estimation of the average storage coefficient S and the time lag ∆tm

between the infiltration rate in the topsoil and the accretion rate. They represent two key parameters
that characterize the groundwater fluctuation dynamics during the episodic recharge events.

First, for each isolated episodic rainfall event, the cumulative accretion rate function can be
determined using the follow recursive equation derived by Equation (6):

j∑
i = 1

(
q(L, t)
S(L)

)
i
=

j∑
i = 1

(Hi
τ

+
Hi −Hi−1

∆t

)
i ≤ j = 1 . . . ., n (7)

Then, the average value of storage coefficient S can be determined as the ratio between the total
infiltration in the topsoil and the total accretion:

S =

∑n
i = 1 q(0, t)i∑n
i = 1

(
q(L,t)
S(L)

)
i

(8)
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The infiltration rate for the topsoil q(0, t) is a function of the precipitation p(t) and the parameters
qc and qcrit. According to the permeability of the surficial thin clayey matrix of the topsoil, qc has been
assumed to be equal to 0.5 mmh−1.

The parameter qcrit governs the susceptibility of the preferential flow in the study area. It represents
the maximum infiltration rate which can travel along the preferential flow paths in the vadose zone.
According to Equations (5) and (8) the average storage coefficient S increases as qcrit increases. Besides,
the values of S must be consistent with the value of the storage coefficient equal to 0.2, which is coherent
with a time lag of 3–4 months between the average monthly rainfall regime and the average monthly
groundwater level, as discussed in the previous section. Then, qcrit has been estimated to be equal to
6 mmh−1, which allows one to have the value for the average storage coefficients S (determined for
each rainfall event) closest to 0.2.

Successively, for each event, the time lag between the cumulative infiltration rate at the water table
and the cumulative accretion rate, as the difference between the respective residence times, has been
estimated:

∆tm =
n∑

j = 1

1−

∑ j
i = 1(q/S)i∑n
i = 1(q/S)i

− n∑
j = 1

1−

∑ j
i = 1 q(0, t)i∑n
i = 1 q(0, t)i

 (9)

Table 1 illustrates, for each isolated episodic rainfall event, characterized by the value of the
total precipitation, the estimated value of the total infiltration rate, the total accretion, the average
groundwater level (GWL), the average storage and the time lag.

Table 1. Analysis of significant episodic rainfall events.

N Date Interval
(month/day/year)

Total
Precipitation

(mm)

Total
Infiltration

(mm)

Total
Accretion

(m)

Average
GWL (m)

Average
Storage (-)

Time Lag
(day)

1 11/01/02–01/04/03 277.80 222.60 1.43 5.48 0.16 9.11
2 01/04/03–02/28/03 127.60 91.00 1.33 5.28 0.07 2.97
3 12/01/03–12/20/03 163.60 97.20 0.68 4.97 0.14 2.19
4 12/20/03–01/18/04 52.20 38.30 0.50 5.24 0.08 3.84
5 11/01/04–11/25/04 216.80 114.40 0.83 4.88 0.14 2.79
6 11/26/04–01/12/05 87.60 68.60 1.06 5.17 0.06 2.69
7 12/01/05–12/26/05 102.40 76.80 0.51 4.65 0.15 2.83
8 02/15/06–03/06/06 83.20 63.10 0.58 4.69 0.11 2.56

Figure 6 shows the comparison between the cumulative precipitation and the cumulative accretion
for event #1 and event #2. The cumulative precipitation in event #1 increases more smoothly. Event #2
is characterized by a time lag higher than event #1. Moreover, Figure 6 highlights a fundamental aspect
of the episodic recharge behavior in the study area. The cumulative accretion increases systematically
when the groundwater level exceeds the bottom of the silty clay unit (≈5.0 m AMSL). As shown
in Table 1, S decreases, reaching a value of 0.07 for the event #2, 0.08 for event #4 and 0.06 for the
event #6. For events characterized by a groundwater peak below the bottom of the impervious layer,
the storage parameter reaches a value in the range 0.11–0.16. Figure 7 shows S as a function of the
average groundwater level. S is systematically lower than 0.10 when the average groundwater level is
above ≈ 5.0 m AMSL.
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The calculated lag times confirm the presence of a direct recharge mechanism in the study area
through preferential pathways. They vary in the range between 2.19 and 9.11 day.

3.3. Kinematic Dispersion Wave Model

The kinematic dispersion wave model is used to represent the preferential infiltration processes
along the vadose zone and to determine the infiltration rate hydrograph at water table. Details on the
kinematic dispersion wave model can be found in [25]. For convenience, a brief introduction for this
approach has been reported. Fluid flow through the one-dimensional variably unsaturated medium
occurs through preferential pathways; no exchange exists between the impervious stratum and the
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preferential pathway. Assuming water density as constant and neglecting the inertial terms in the
momentum equation, the conservation laws can be written as:

∂θ(z, t)
∂t

+
∂q(z, t)
∂z

= 0 (10)

q(z, t) = b[θ(z, t)]a + αw
∂θ(z, t)
∂t

(11)

where θ (L3L−3) is the mobile volumetric water content within a volume V (L3) of soil profile flowing
along preferential pathways, b (LT−1) is the conductance term, a is the preferential flow distribution
index, αw (L) is the water dispersivity coefficient. Starting from the conservation laws, [25] derived a
non-linear kinematic dispersion wave equation to describe infiltration processes with the infiltration
rate q as the state variable:

∂q(z, t)
∂t

+ cw(θ(z, t))
∂q(z, t)
∂z

= Dw(θ(z, t))
∂2q(z, t)
∂z2 (12)

where Dw (L2T−1) is the hydraulic dispersion and cw (LT−1) is the celerity.
The infiltration rate wave propagates through convection and dispersion processes governed by

the changes of the mobile volumetric water content along the preferential pathways. According to [25],
celerity is defined as the derivative of the infiltration rate respect to the mobile volumetric water
content under ∂θ/∂t constant:

cw =
∂q
∂θ

∣∣∣∣∣ ∂θ
∂t = const

(13)

whereas hydraulic dispersion depends on the celerity and the water dispersivity coefficient:

Dw = αwcw (14)

Celerity can be written as:

cw =
∂q
∂θ

∣∣∣∣∣ ∂θ
∂t = const

⇒ cw = abθa−1 (15)

By combining Equation (15) with Equation (11), the following expression of celerity as a function
of the infiltration rate is obtained:

cw = ab
1
a q

a−1
a (16)

The infiltration processes depend on three parameters a, b and αw. The following initial and
boundary conditions have been imposed:

q(z, t) = q0 z > 0, t = 0 (17)

q(z, t) = q(0, t) z = 0, t > 0 (18)

Equation (12) has been solved numerically using non-linear random walk method. The numerical
scheme is described in the following section. The program was written in Matlab.

3.4. Numerical Model

The random-walk method uses particle tracking to solve kinematic process, whereas dispersion
processes are simulated by adding random displacement to each particle in addition to advective
displacement. It is known that the space-time distribution of particles can be represented by the
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Fokker–Planck equation, which is not identical to Equation (12). In analogy to the solute transport
problem, the celerity term cw is replaced by:

cw
′ = cw +

∂Dw

∂z
(19)

For each time step ∆t, the specific volume of water which enters the subsoil at z = 0 is
win = q(0, t) × ∆t (L). The accumulated specific water volume W (L) will be updated as Wt + ∆t = Wt + win.
At z = 0 the flux is strictly convective, so the volumetric water content θ(0, t) will be equal to:

θ(0, t) =

(
q(0, t)

b

) 1
a

(20)

N particles each having a specific water volume θ(0, t)/N are released at z = 0. The depth zi of
each i-th particle at time t + ∆t is updated as:

zi(t + ∆t) = zi(t) + cw,i
′∆t + Z

√
2Dw,i∆t (21)

where Z is a normally distributed random number; cw,i’ and Dw,i represent the celerity and the hydraulic
dispersion associated with the i-th particle. They are functions of the infiltration rate which changes
throughout the depth.

The one-dimensional domain along the depth between the topsoil and the water table of length L
is discretized with n cells. The infiltration rate and the volumetric water content are assumed constant
in space within each cell.

For each cell j (j = 1, . . . , n) the specific volumetric water content is determined as:

θt + ∆t
j =

npt + ∆t
j∑n

j = 1 npt + ∆t
j

Wt + ∆t

∆z
(22)

where npj is the number of particles within the j-th cell and ∆z (L) is the cell size. Once one knows
θj

t+∆t, the value of the infiltration rate for each cell is determined as:

qt + ∆t
j = b

(
θt + ∆t

j

)a
+ αw

θt + ∆t
j − θt

j

∆t
(23)

For each particle i, celerity cw,i and hydraulic dispersion Dw,i are updated according to the value
of the infiltration rate determined in correspondence with the depth zi.

The specific water volume that reaches the water table is determined on the basis of the number
of particles npout outside the domain (zi(t + ∆t) > L(t)):

wout =
npout∑n

j = 1 npt + ∆t
j

Wt + ∆t (24)

The infiltration rate that reaches the water table q(t + ∆t, L) is determined as:

q(t + ∆t, L(t)) =
wout

∆t
(25)

The groundwater level fluctuation is determined using the recursive form of Equation (6):

Ht + ∆t = Htexp
(
−

∆t
τ

)
+

q(t + ∆t, L(t))
S(L(t))

τ
(
1− exp

(
−

∆t
τ

))
(26)
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Finally, the domain length L is updated:

L(t + ∆t) = L(0) −Ht + ∆t (27)

The storage coefficient S changes according to the water table depth L. In particular, having as
reference the bottom of the surficial silty clay unit (L0 = 5 m), two depths have been defined: L1 = L0 + d1

and L2 = L0 − d2. Then S will be equal to: S1 if the water table depth is higher than L1; S2 if the water
table depth is lower than L2; S0 if the water table depth is between L1 and L2.

4. Results

4.1. Simulation Results

The kinematic dispersion model has been used to predict groundwater level fluctuation starting
from the hourly precipitation time series. Simulation results have been compared with the observed
groundwater level time series. The kinematic dispersion equation has been solved using the developed
particle-based model in order to determine the infiltration rate hydrograph at the water table q(L,t).
Then groundwater level fluctuation H(t) has been obtained. Finally, the simulated groundwater level
was determined as the sum of H(t) and the value of groundwater level in absence of direct groundwater
recharge Z0

w. Note that due to the presence of a long-term lateral groundwater recharge mechanism
Z0

w varies over time, as shown in Figure 4, whereas the recession time τ is constant and equal to 18 day.
Simulations began after summer. Thus, the initial mobile water content and the infiltration rate were
set to zero.

In order to control the efficiency and performance of the simulation, the time step ∆t and the
grid cell size ∆z for the evaluation of the particle density were chosen so as to satisfy a small Courant
number Co < 0.1. For each time step, a number of particles equal to 105

× [q(0, t + ∆t)/b]1/a were released
in the top soil. The time of the simulation was equal to 212 d, corresponding to a period between
October 1st and April 30th. According to kinematic theory [21] the parameter a assumes a value equal
to either 2 or 3. αw and b have been estimated by means of the comparison between the observed
groundwater levels and the simulated ones.

The parameters involved in the proposed infiltration model have been estimated by the
minimization of the root mean square error (RMSE) between the observed groundwater level time
series and simulated ones:

RMSE =

√
(Z∗w(t) −Zw(t))

2 (28)

where Z∗w(t) and Zw(t) are the observed and simulated groundwater levels, respectively.
The Levenberg–Marquardt algorithm has been used to minimize Equation (28). The optimized
values are b = 3.6 × 104 mmh−1 for a = 3 and 3.6 × 103 mmh−1 for a = 2 and αw = 200 mm.

Figure 8 shows the estimated step function of the storage coefficient. It decreases as the
groundwater level increases, reaching a value lower than 0.1 when the groundwater level is higher
than ≈5 m AMSL.

To highlight the strong linear behavior of the groundwater level variations due to the episodic
rainfall events, a parametric analysis of the storage coefficient has been done. Further simulations
have been conducted using the optimized values of a, b and αw, while imposing a constant value of the
storage coefficient instead of the step function shown in Figure 8.

The fitting results are shown in Figure 9. Moreover, the figure highlights the simulated groundwater
level that would be attained with a constant value of the storage coefficient.
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Figure 9. Comparison between the observed daily groundwater level and simulated groundwater
level with the optimized values of the kinematic dispersion wave model parameters of a = 3,
b = 3.6 × 104 mmh−1 and αw = 200 mm. A red curve indicates the simulated groundwater level obtained
using the step function shown in Figure 8 to represent the variation of storage coefficient as a function of
the groundwater level. Dashed curves indicate the simulated groundwater level obtained by imposing
constant storage coefficients equal to 0.1, 0.2 and 0.3 instead of the step function shown in Figure 8.

The infiltration model shows a satisfactory fitting predicting the trend of the groundwater level
fluctuation with relative accuracy for both rising and falling periods.
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The storage coefficient plays an important role in the amplitude of the groundwater level’s rise.
When the storage coefficient is assumed as constant, the simulations fail to reproduce the observed
groundwater level variations in terms of amplitude. This feature is very evident on the time period
2002–2003. When the groundwater level is lower than≈5 m AMSL, the model with S = 0.1 overestimates
the groundwater level’s rise. Besides, the model with S = 0.2 fits adequately the observed groundwater
level rise until it becomes lower than≈5 m AMSL. The model results are consistent with the stratigraphy
detected close to the Terra Montonata monitoring station. The surficial silty and clay unit works as an
aquitard, confining locally the surficial aquifer when the groundwater level exceeds the bottom of the
surficial silty and clay unit.

The amplitude of the groundwater level rise is governed by the critical infiltration rate also.
As shown in the time periods November–December 2003 and October–November 2004, in order to fit
the observed data, the critical infiltration rate must limit the precipitation according to Equation (5).

4.2. Analysis of Infiltration Processes

In order to investigate the effects of the characteristics of the episodic rainfall events on the
infiltration processes along the preferential pathways, a comparative analysis between the daily
precipitation, the infiltration rates at the topsoil q(0, t) determined according to the Equation (5) and the
infiltration rate that reaches the water table q(L, t) according to the Equation (25) has been carried out.
First, starting from q(0, t) and q(L, t) the cumulative curves of the infiltration at the topsoil Q(0, t) (L) and
the cumulative curves of the infiltration at the water table Q(L, t) (L) have been built. They indicate the
amount of the infiltrated water that crossed a certain surface (topsoil or water table) at a specific time.
In other words, they indicate the time required to reach a determined amount of the infiltrated water.

Given a generic value of the cumulative infiltration, the time lag between Q(L, t) and Q(0, t) can
be determined. It represents the travel time of the infiltrated water needed to reach the water table
from the topsoil. Then, the average velocity of the wetting front (average celerity) can be determined
as the ratio between the depth of the water table from the topsoil L and the determined time lag.

Figure 10a shows the cumulative infiltration at the topsoil and the water table for the time period
2002–2003. Moreover, the daily precipitation is reported. As shown in Figure 10a, for a generic value
of the daily precipitation, the time lag between Q(L, t) and Q(0, t) can be measured. Then, at each time
lag corresponds to a value of the cumulative infiltration.
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Figure 10. (a) Daily precipitation (mm), cumulative infiltration at topsoil Q(0, t) (mm) and cumulative
infiltration at water table Q(L, t) (mm); (b) time lag (d) and average celerity (mmd−1) as functions of the
cumulative infiltration. The two graphs permit us to highlight the relationship between each episodic
rainfall event and the infiltration processes characterized by the time lag and the average celerity.
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The relationship between the time lag and the cumulative infiltration is shown in Figure 10b.
Furthermore, the average celerity as function of the cumulative infiltration is reported.

In this way, each episodic rainfall event is related to the time lag and the average celerity,
which represent the key parameters of the infiltration processes and the groundwater supply mechanism.

In correspondence to a significative rainfall event, the average celerity increases rapidly according
to rainfall intensity. When a rainfall event passes, the average celerity decreases in a potential way,
reaching a minimum value of 0.25 md−1. The maximum values reached by the average celerity
are strictly dependent on rainfall intensity. For all periods, average celerity is more or less equal to
500 mmd−1 for lower intensity rainfall events and equal to 1800 md−1 for higher intensity rainfall events.

The results of the proposed infiltration model have been compared with the outputs of numerical
simulations using the Brooks and Corey based Richards’ equation for a one-dimensional domain [41].
Infiltration occurs though the silty clay layer (5 m thick). Constant saturated hydraulic conductivity Ks

(LT−1), saturated volumetric water content θs (L3L−3), residual water content θr (L3L−3) and Brooks
and Corey parameters such as the air entry pressure head hd (L−1) and the coefficient n (-) represent the
hydraulic soil parameters of the implemented numerical model [42]. Steady state initial pressure head
has been assumed to represent the most favorable condition for the infiltration dynamics. Groundwater
level has been considered a constant overlapping the bed of the silty clay unit (5 m AMSL). The flux
boundary condition has been applied at the topsoil equal to the hourly precipitation hydrograph.
The silty clay unit has been assumed homogeneous and isotropic. Different configurations of the
hydraulic parameters have been set. Figure 11 shows the relative cumulative infiltration at the water
table obtained though the (1) kinematic dispersion wave model and the Brooks and Corey-based
Richards’ model with the hydraulic parameters corresponding to (2) silty clay soil, (3) silty soil and (4)
sandy soil.

Water 2020, 12, x FOR PEER REVIEW 16 of 21 

 

precipitation hydrograph. The silty clay unit has been assumed homogeneous and isotropic. Different 
configurations of the hydraulic parameters have been set. Figure 11 shows the relative cumulative 
infiltration at the water table obtained though the (1) kinematic dispersion wave model and the 
Brooks and Corey-based Richards’ model with the hydraulic parameters corresponding to (2) silty 
clay soil, (3) silty soil and (4) sandy soil. 

 

Figure 11. Relative infiltration at water table Q(L,t)/Qmax(L,t). (1) Kinematic dispersion wave model 
solution with a = 3, b = 3.6 × 104 mmh−1 and αw = 200 mm. Brooks and Corey-based Richards’ solution 
for: (2) silty clay soil with Ks = 2.500 × 10−7 ms−1, θs = 0.479 m3/m3, θr = 0.056 m3/m3, hd = 0.342 m, n = 
0.127; (3) silty soil with Ks = 1.889 × 10−6 ms−1, θs = 0.501 m3/m3, θr = 0.015 m3/m3, hd = 0.207 m, n = 0.211; 
(4) sandy soil with Ks = 1.157 × 10−3 ms−1, θs = 0.437 m3/m3, θr = 0.020 m3/m3, hd = 0.146 m, n = 0.520. 

The model results coming from the single domain homogeneous and isotropic one-dimensional 
Richards’ equation model were inconsistent with the observed hydraulic response, showing a time 
lag higher than the kinematic dispersion wave model did. Richards’ model closes in on the kinematic 
dispersion model only for the sandy soil configuration with a high value of the saturated hydraulic 
conductivity of 1.157 × 10−3 ms−1—incoherent with the detected units. This supports the fact that the 
observed quick response of the aquifer was due to preferential flow mechanisms occurring in the 
vadose zone. A more complex heterogeneous and multi-porosity model based on Richards’ equation 
can improve the simulated response depicting the preferential flow paths mechanisms. However, the 
additional complexity required significantly greater data collection to estimate the model parameters. 

5. Discussion 

The present study has implemented an improved modeling framework for the analysis of the 
complex groundwater-level dynamics of an aquifer characterized by several singularities in its supply 
mechanism. The analysis of time series at the monthly scale (precipitation and groundwater level) 
followed the expected patterns, in which the terraced deposits fed the surficial aquifer through a long-
term lateral recharge mechanism. Nevertheless, the analysis at the daily scale or less showed a behavior 
not explainable by this recharge mechanism alone. Long term lateral recharge combines with direct 
recharge through the vadose zone, giving rise to a quick response of the groundwater level. 

The study area is susceptible to preferential flow due to different physical mechanisms involving 
the infiltration processes in the vadose zone at different spatial and temporal scales. The kinematic 
dispersion model captures the impact of the preferential flow mechanism at the field scale of the site. 
The model’s response is governed by three parameters. According to kinematic theory, the 

Figure 11. Relative infiltration at water table Q(L,t)/Qmax(L,t). (1) Kinematic dispersion wave model
solution with a = 3, b = 3.6 × 104 mmh−1 and αw = 200 mm. Brooks and Corey-based Richards’ solution
for: (2) silty clay soil with Ks = 2.500 × 10−7 ms−1, θs = 0.479 m3/m3, θr = 0.056 m3/m3, hd = 0.342 m,
n = 0.127; (3) silty soil with Ks = 1.889 × 10−6 ms−1, θs = 0.501 m3/m3, θr = 0.015 m3/m3, hd = 0.207 m,
n = 0.211; (4) sandy soil with Ks = 1.157 × 10−3 ms−1, θs = 0.437 m3/m3, θr = 0.020 m3/m3, hd = 0.146 m,
n = 0.520.
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The model results coming from the single domain homogeneous and isotropic one-dimensional
Richards’ equation model were inconsistent with the observed hydraulic response, showing a time lag
higher than the kinematic dispersion wave model did. Richards’ model closes in on the kinematic
dispersion model only for the sandy soil configuration with a high value of the saturated hydraulic
conductivity of 1.157 × 10−3 ms−1—incoherent with the detected units. This supports the fact that
the observed quick response of the aquifer was due to preferential flow mechanisms occurring in
the vadose zone. A more complex heterogeneous and multi-porosity model based on Richards’
equation can improve the simulated response depicting the preferential flow paths mechanisms.
However, the additional complexity required significantly greater data collection to estimate the
model parameters.

5. Discussion

The present study has implemented an improved modeling framework for the analysis of the
complex groundwater-level dynamics of an aquifer characterized by several singularities in its supply
mechanism. The analysis of time series at the monthly scale (precipitation and groundwater level)
followed the expected patterns, in which the terraced deposits fed the surficial aquifer through a
long-term lateral recharge mechanism. Nevertheless, the analysis at the daily scale or less showed a
behavior not explainable by this recharge mechanism alone. Long term lateral recharge combines with
direct recharge through the vadose zone, giving rise to a quick response of the groundwater level.

The study area is susceptible to preferential flow due to different physical mechanisms involving
the infiltration processes in the vadose zone at different spatial and temporal scales. The kinematic
dispersion model captures the impact of the preferential flow mechanism at the field scale of the site.
The model’s response is governed by three parameters. According to kinematic theory, the preferential
diffusion index a should vary between 2 and 3. According to these two limits the conductance term b
varies in the range between 3.6 × 103 and 3.6 × 104 mmh−1.

The parameters a and b govern the celerity representing the velocity of the wetting front. As a
decreases, b should increase in order to maintain the same order of magnitude of the celerity. A value
of water dispersivity αw equal to 200 mm was found. This parameter attenuates the infiltration wave,
leading both to an infiltration rate hydrograph at the water table and the rising limb of groundwater
level being more distributed in time.

The values found for the conductance term and water dispersivity are consistent with those
found by [25,43] at laboratory scale. In the present study the maximum infiltration rate was equal
to 6 mmh−1—lower than those used by the authors presenting a minimum value of 30.35 mmh−1.
As a result, the conductance term is lower in this study according to the expected theoretic value.
Anyway, the water dispersivity is higher. This is due to several factors linked to the scale dependence
of dispersion phenomena. In an analogous manner to solute dispersion theory, water dispersion results
are scale dependent. As the depth of the vadose zone increases, the probability that the wetting front
moving downwards breaks up into more and more fingers increases. On the other hand, the capillary
contribution to the wetting front movement can further attenuate the infiltration rate propagation.
Moreover, as the depth increases, the conductance of the preferential flow pathways can be reduced.
As a result, the infiltration rate hydrograph at water table is more attenuated.

The parameter qcrit indicates how much rain, occurring at high intensity, becomes recharged.
The critical rate is 6 mmh−1—mainly, the significant rainfall events occurred between 2003–2004 and
2004–2005. According to the source responsive theory [40], qcrit is equal to the product between a
constant parameter that assumes a value of 2.1 × 10−6 m2h−1 at temperature of water equal to 20 ◦C,
and the smallest value of the facial area density Mmin (L−1) which characterizes the preferential flow
path. Then in the present study a value of Mmin equal to 2857 m−1 was found. It represents the
minimum fraction of the total specific surface area of the vadose zone on which preferential flow takes
place. This parameter measures the susceptibility of a field site to preferential flow. Cuthbert et al.
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2013 found a value of Mmin between 250 and 750 m−1 at field site in Shropshire (UK) [44]. Nimmo 2010
found a value of Mmin equal to 4000 m−1 for Masser site in Pennsylvania [40].

Local surface depressions due to the presence of several reclamation channels in the study area
play an important role in the preferential flow mechanism at the areal scale [38]. During rainfall events,
water accumulates in the reclamation channels, increasing the opportunity for preferential flow.

The velocity of the wetting front (average celerity) is strictly correlated with the rainfall intensity.
Its maximum value is in the range between 1500 and 2000 mmd−1, which is consistent with the value
reported for preferential flow in [38]. The comparison between the observed groundwater levels and
simulated ones highlighted a delay in the rising period of the simulated groundwater level with respect
to the observed one that systematically occurred at the first rainfall event of each investigated time
series. This can be ascribed to the fact that the value of mobile water content is assumed equal to zero
at the beginning of simulation, underestimating the speed of the infiltration wave. Anyway, since the
time series begin just after the dry season, the imposed initial condition should not be very different
from the real case. Another explanation can be attributed to the fact that the velocity of the wetting
front is greater when the soil is dry, in contrast with the theory that higher antecedent soil moisture
condition hydraulically activates the preferential pathways [45,46]. However, several authors support
the theory that when the soil is dry, preferential flow is more evident [47]. With less antecedent soil
moisture, shrinkage cracks play an important role in rapid and deep water movement through dry soil.
Water backfills the shrinkage cracks, increasing the opportunity for preferential flow via preferential
pathways caused by wetting instability due to the compression of air below the accumulated water
into the shrinkage cracks. With more antecedent soil moisture, preferential flow is more dominated by
the stable preferential pathways. Lateral flow from macropores to the soil matrix reduces, and as a
consequence the amount of preferential flow and number of channels increase.

When the groundwater level affects less permeable strata, a lower value of the storage coefficient
is found due to the presence of aquitards represented by the surficial silty and clay unit that locally
confine the shallow aquifer. Changes in storage coefficient affect the amplitude of the groundwater
level fluctuation. The conducted analysis discloses the presence of a transition zone at depth from
topsoil equal to ≈5 m BGL that corresponds to the bottom of the surficial silty clay unit detected
at the site. Storage coefficient decreases passing from 0.3 to 0.08 evidence a transitional behavior
where confined and unconfined conditions coexist. Then the surficial aquifer passes from unconfined
condition to weakly confined condition and vice versa.

6. Summary and Conclusions

The present study presents the complex groundwater-level dynamics of the surficial level of the
Ionian coastal aquifer in southern Italy. We analyzed the articulate groundwater supply mechanism.
An improved modeling framework based on kinematic dispersion wave theory has been used to
simulate water flow through preferential paths and predict groundwater level fluctuations in a surficial
aquifer, which occasionally can flow in a weakly confined condition. The prediction accuracy evaluation
and comparison indicated that the kinematic dispersion wave model and its numerical solution with
the proposed particle-based model are able to capture the preferential flow recharge mechanism in the
study area, showing good agreement with the observed groundwater level time series.

The local stratigraphic sequence is characterized by a surficial thin silty and clay level covering
the loamy sandy levels hosting the aquifer. Therefore, the direct recharge could appear quite difficult
for the presence of a low permeability level covering the high permeability levels hosting groundwater.
The recharge could be attributed partly to the coarse-grained deposits associated with the terraced
deposit outcroppings about 1200 m upstream that are hydraulically connected with the coastal aquifer
system. Anyway, the response of groundwater level is almost immediate, so that it cannot be due
only to lateral recharge, but also some mechanism of direct supply. Thus, the study area is subject to
infiltration through preferential flow paths due to different physical processes at spatial and temporal
scales. At the areal scale, the presence of several reclamation channels widespread in the plain cuts the
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thin layer of low permeability deposits, leading to local topographic depressions that encourage the
opportunity of the preferential flow.

Moreover, the conversion from unconfined to weakly confined groundwater flow was highlighted.
When the groundwater level rises above the bottom of the silty and clay unit, weakly confined condition
occurs. The storage coefficient reduces from 0.3 to 0.08. These estimated values are coherent with a
critical rainfall rate qcrit of 6 mmh−1.

Recharge via preferential flow path is strictly correlated with the precipitation characteristics
in terms of duration, magnitude and intensity. In the study area, intense rainfall events favor direct
recharge of the surficial aquifer via preferential flow dynamics, but at the same time reduce the travel
time of the mobile water in vadose zone, increasing the risk of surficial groundwater contamination as
a consequence of preferential flow.

The comparison between model prediction and observed data indicates that the susceptibility
of preferential flow in the study area results is relatively high. The results evidence the influence of
moisture antecedent conditions on preferential flow mechanisms. Antecedent dry conditions seem to
favor preferential flow via shrinking cracks.

It is evident that a complex set of hydraulic processes control the surficial aquifer supply.
Both lateral/upward recharge and direct recharge via capillary-dominated matrix flow and preferential
flow processes interact with each other to give the observed hydraulic response. The state-of-the-art of
the Richards’ equation models require many input flow parameters to describe the heterogeneity of the
media. This type of model and the relative computational demands may be of the little practical use
for estimating groundwater recharge at the field scale. The developed modeling framework represents
a practical modeling approach for estimating the direct recharge due to the episodic rainfall events.

Future development of this study will regard the implementation of precise weighting lysimeters
in the study area to observe and analyze the preferential flow processes at several depths in the vadose
zone. Furthermore, transient test analysis is recommended in order to deepen the understanding of
the mixed unconfined–weakly confined groundwater behavior.
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