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Abstract: Cardiovascular diseases are the main cause of death worldwide. The aim of the present study
is to verify the performances of a data mining methodology in the evaluation of cardiovascular risk
in athletes, and whether the results may be used to support clinical decision making. Anthropometric
(height and weight), demographic (age and sex) and biomedical (blood pressure and pulse rate) data
of 26,002 athletes were collected in 2012 during routine sport medical examinations, which included
electrocardiography at rest. Subjects were involved in competitive sport practice, for which medical
clearance was needed. Outcomes were negative for the largest majority, as expected in an active
population. Resampling was applied to balance positive/negative class ratio. A decision tree and
logistic regression were used to classify individuals as either at risk or not. The receiver operating
characteristic curve was used to assess classification performances. Data mining and resampling
improved cardiovascular risk assessment in terms of increased area under the curve. The proposed
methodology can be effectively applied to biomedical data in order to optimize clinical decision
making, and—at the same time—minimize the amount of unnecessary examinations.
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1. Introduction

Cardiovascular diseases (CVDs) are reportedly the major cause of death worldwide, taking an
estimated 17.9 million lives each year, according to the World Health Organization [1]. Obesity, smoking,
physical inactivity and high blood pressure are among the most important risk factors [2]. Even if
they may be mitigated by consistent sport practice [3,4], CVDs can still be considered an actual danger
for individuals engaged in competitions or strenuous training [5–8] because of intense and repeated
efforts. Therefore, athletes are routinely monitored by sport physicians, who collect some biomedical
and personal data and screen them by means of electrocardiography (ECG).

According to the outcome of the ECG examination, individuals are diagnosed as either at risk
(positive, P) or not (negative, N). Subjects at risk are denied medical clearance for sport practice
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and eventually undergo further examination. The two classes are usually imbalanced, since the N
class contains the majority of individuals, while the more interesting P class is under-represented.
In general, a missing P (false negative, FN) may have a very high cost—in some cases the loss of
a human life—while a false alarm (false positive, FP) usually has the cost of some further clinical
investigations and temporary suspension of sport activities.

Classification is a machine learning technique which can be applied to predict categorical binary
values, like P or N, and for such reason it may be of great value in the medical field, and in diagnostics in
particular. Machine learning, a branch of artificial intelligence, consists in the application of computer
algorithms in order to (semi) automatically extract knowledge from collected data. When classification
is applied to large datasets, we usually speak of data mining, which is defined as “the process of
discovering patterns in data (...) The patterns discovered must be meaningful in that they lead to
some advantage, usually an economic advantage” [9]. As the amount of collected data has increased,
researchers and physicians are interested in evaluating their diagnostic value by means of data mining,
and eventually suggest that the observed variables may be changed or increased in order to support
medical decisions. Several data mining methods have already been used as decision support systems
for medical diagnosis [10]. These methods may be applied to large datasets in order to estimate health
risk. Wong et al. [11] used Bayesian networks for early disease outbreak detection and obtained good
performances on real data from an emergency department database, containing 7 years of medical data.
The aim of the study was not diagnostic, since the data were collected from hospital patients who were
actually ill, but rather epidemiological: to verify an incipient influenza outbreak (this approach could
be adopted also in counter-terrorism, to detect a biological attack).

Campbell and Bennet [12] adopted a kernel-based method, which performed well on a medical
dataset in identifying a rare disease. Still, the dataset size was limited and the proportion of interesting
instances in the test set was very high (27 normal observations and 67 anomalies), compared to the
prevalence of the disease in the general population.

Marinić et al. [13] adopted WEKA as a data mining tool. They applied a random forest classifier
on a relatively small sample (n = 102) of psychiatric patients in order to diagnose Post Traumatic Stress
Disorder (PTSD) and achieved significant results. Class distribution though was perfectly balanced
(51 P and 51 N) and therefore different from that of the general population, where PTSD has a much
lower prevalence. In addition, Fontaine et al. [14] explored data mining techniques in order to improve
clinical evaluation of patients with neuropsychiatric disorders.

A data mining approach was proposed by Salam and McGrath [15] in dermatology. A multi-disease
classifier improved medical diagnosis of skin disorders. Sacchi et al. [16] adopted a Naïve Bayes
classification algorithm for the prediction of glaucoma. Having a small and imbalanced dataset,
they applied both bootstrapping and resampling to train the model. Chan et al. [17] showed that
machine learning classifiers outperformed traditional statistical approaches in the diagnosis of the
same medical condition.

An increasing interest in the adoption of data mining for classification and prediction in cardiology
was reported by Kadi et al. [18] in a recent systematic literature review. For example, Karaolis et al. [19]
adopted a decision tree (DT) for the assessment of coronary risk.

Comparing different classification methods in medical statistics has been suggested by several
authors [20–22] in order to assess the real advantages of one technique over the other. Still, there is a
lack of studies applied to large datasets in domains where diseases have a low prevalence (like CVDs in
sport medicine) but individuals may be at greater risk because of increased stress or pressure. Further,
there is an on-going debate on the necessity of a sustainable and cost-effective health care [23], also by
means of a more sensible use of medical tests [24].

The aims of this study were to assess the performances of a data mining method in the prediction
of ECG outcomes in an imbalanced dataset, when a resampling technique is applied, and to verify
whether the results may be used to support clinical decision making. The underlying hypothesis was
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that, given a limited set of predictive biomedical variables, data mining could achieve good predictive
accuracy if the proper algorithms were trained with a large amount of data.

2. Materials and Methods

2.1. Sample

A dataset including medical examinations of 26,002 athletes, both sexes, was collected at
the Polyclinic for Occupational Health and Sports in Zagreb (Croatia) by medical staff in 2012.
All individuals were involved in competitive sport practice, for which medical clearance was needed.
The following data were collected for all subjects: sex, age, height, weight, resting pulse rate, diastolic
and systolic pressure, and ECG at rest (P or N). The largest majority (91.2%) of outcomes was N, while
a minority (8.8%) was P.

This study is the result of the collaborative research project “Health status and life quality of
athletes”, involving the Institute for Anthropological Research in Zagreb, the Department of Biomedical
Sciences and Surgical Specialties of the University of Ferrara, the Polyclinic for Occupational Health
and Sports of Zagreb Sports Association with Laboratory of Medical Biochemistry in Zagreb, and the
Interdisciplinary Center for Network Science and Applications of the University of Notre Dame.
The research was approved by the Ethical Committee of the Institute for Anthropological Research in
Zagreb (registration number: 1.14-1169/13).

2.2. Machine Learning Background

Two classification techniques were trained and tested in order to predict the class (P or N) of
the athletes. DT was chosen because it allows us to describe the extracted knowledge (patterns) in a
simple and intuitive way, which can be easily understood by domain experts, like medical doctors.
It is commonly preferred when explanation (understanding) is as important as prediction (knowing).
Further, DT is a well-established support tool in medical decision making [25–29].

Logistic regression (LR) is a technique commonly applied to medical datasets, half-way between
classic statistics and machine learning. The main difference between regression and classification is
that in the former the predicted variable is numeric, while in the latter it is categorical. Since in logistic
regression, the predicted variable can have only two numeric values (1 or 0), it can be used for binary
classification [30], where 1 stands for P and 0 for N.

The assessment of classification performance is a major issue in imbalanced datasets. Usually,
the basic evaluation index is accuracy, the rate of correct guesses (i.e., true positives, TP, and true
negatives, TN) on total instances (TP + TN)/(P + N). It is an acceptable choice when class distribution
is symmetric or close to it.

In case the distribution is imbalanced, accuracy can be misleading, unless a trivial solution is
acceptable [31]. In fact, given a low prevalence, a high accuracy can be easily achieved classifying
all instances as N, but it would imply missing all P individuals. Therefore, classification algorithms
may have a high specificity or true negative rate (TNR = TN/N), as the majority class (N) is well
represented, while sensitivity, or true positive rate (TPR = TP/P) may be significantly lower, as the
minority class (P) is under-represented. Therefore, performance indexes other than accuracy should be
taken into consideration.

A trade-off between TPR and TNR can be represented in receiver operating characteristic (ROC)
space (for an introduction see [32]). Different cut-off values for the same classifier correspond to points
in ROC space. The interpolation of such points draws a curve. The area under the ROC curve (AUC) is
the accepted standard in the assessment of classification performances in imbalanced datasets [33],
in particular in diagnostic systems [34–36].

Youden index J = TPR + TNR− 1 [37] is a summary measure corresponding to the distance between
a point (corresponding to a cut-off value) on the ROC curve and the underlying 45◦ (random-guessing)
line. J represents the probability of an informed decision. It has been used to assess the ability of
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biomarkers to correctly classify healthy and non-healthy individuals when equal weight is given to
both sensitivity and specificity [38,39].

Different resampling methods [40] can be applied in order to balance the class distribution and
thus improve performances. Resampling can either undersample the majority class and/or oversample
the minority class. Synthetic Minority Oversampling Technique (SMOTE) [41] has proved to be
reliable in different domains, including the prediction of type 2 diabetes [42], SMOTE does not simply
duplicate existing instances, which would easily lead to overfitting. It creates a new instance in feature
(i.e., variable, in data mining jargon) space, between an existing instance and one, randomly-chosen, of
its k nearest neighbors. Euclidean distance between two neighboring instances is calculated and then
it is multiplied by a random number between 0 and 1. The distance is used to calculate the position in
feature space of the new instance.

2.3. Data Cleaning and Resampling

The raw dataset was cleaned, removing outliers. Body weight and height were replaced by body
mass index (BMI = weight/height2), a common proxy for obesity and cardiovascular risk in the general
population [43–47]. Only systolic pressure was used, since systolic and diastolic blood pressures are
correlated, and according to recent findings, the former is a better predictor of risk [48,49].

SMOTE was applied to the minority class with 100% oversampling (P instances were doubled).
Higher percentages were tried but they did not improve classification or led to overfitting. Then random
undersampling was applied to the majority class with an even distribution spread, in order to balance
the two classes, so that class ratio P/N was set to 1.

2.4. Data Mining and Statistical Analyses

The dataset was divided into training (66% of total instances) and test (remaining 34%). DT was
first applied without resampling (1st run), then with resampling (2nd run, k = 5). In the latter case, only
training set was resampled, while test set kept the same distribution as the original subset (which is
supposed to be similar to the population, giving the high cardinality of the sample). This prevented
performances from being artificially high. Pulse rate was the best predictor in both cases. Two thresholds
were identified: low (L) and high (H). Risk was low in between, moderate for pulse rate <L and high
for pulse rate >H.

LR was applied twice. In the 1st run it was applied to all the collected variables directly. In the
2nd run, a discrete variable was created, with the following values: 0 (low risk) for pulse rate values
between L and H, 1 (moderate risk) for values <L and 2 (high risk) for values >H. This variable replaced
pulse rate in a data-driven way, instead of using a-priori values from the literature. Cross-validation
(10-fold) was used to assess the model’s performances and test whether this statistical regression
technique could improve the performances of a standard machine learning algorithm like DT.

TPR, TNR, J and AUC were used to assess the performances of the adopted method, which is
described in Figure 1.

Figure 1. Data mining process. DT: decision tree; LR: logistic regression; AUC: area under curve.

MS Excel 2016 (Microsoft Corporation, Redmond, WA, USA) was used for data collection and
data cleaning. WEKA 3.6 (University of Waikato, Waikato, New Zealand) was used for data mining.
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Stata IC 13.1 (StataCorp LLC, College Station, TX, USA) was used to perform LR, cross validation and
ROC analysis.

3. Results

Descriptive statistics by sex and age classes are shown in Table 1. Values are reported as mean and
standard deviation, with the exception of ECG positives, which are reported as count and percentage.

Table 1. Descriptive statistics by sex and age classes.

Variables 6–10 Years 11–14 Years 15–18 Years ≥19 Years Total

Females n = 1372 n = 1884 n = 970 n = 757 n = 4983

Weight (kg) 34.2 ± 8.8 51.7 ± 10.8 61.8 ± 8.8 65.1 ± 10.5 50.9 ± 15.1
Height (cm) 138.3 ± 10.0 160.6 ± 8.7 168.5 ± 7.0 168.9 ± 7.52 157.3 ± 14.9
BMI (kg/m2) 17.7 ± 2.8 19.9 ± 3.1 21.8 ± 2.6 22.8 ± 3.2 20.1 ± 3.5
Pulse rate (n) 83.1 ± 13.1 77.1 ± 13.0 68.3 ± 11.1 65.4 ± 11.7 75.2 ± 14.1

Systolic pressure (mm Hg) 97.3 ± 9.7 105.8 ± 9.9 108.7 ± 10.4 113.2 ± 11.8 105.2 ± 11.6
Diastolic pressure (mm Hg) 62.8 ± 7.47 66.4 ± 7.8 68.6 ± 7.8 73.3 ± 8.4 66.9 ± 8.6

ECG Ps (n (%)) 140 (10.2) 160 (8.5) 63 (6.5) 65 (8.6) 428 (8.6)

Males n = 4787 n = 5776 n = 4253 n = 6203 n = 21,019

Weight (kg) 33.6 ± 8.6 52.4 ± 13.4 71.4 ± 11.7 83.9 ± 12.7 61.3 ± 22.6
Height (cm) 136.9 ± 9.2 161.4 ± 11.6 178.6 ± 7.6 180.0 ± 7.3 164.8 ± 19.2
BMI (kg/m2) 17.7 ± 2.8 19.9 ± 3.3 22.3 ± 3.0 25.9 ± 3.4 21.6 ± 4.4
Pulse rate (n) 79.0 ± 12.6 73.1 ± 12.6 66.8 ± 12.4 63.8 ± 11.9 70.4 ± 13.7

Systolic pressure (mm Hg) 97.1 ± 9.1 106.8 ± 11.1 118.2 ± 10.9 126.4 ± 11.8 112.7 ± 15.6
Diastolic pressure (mm Hg) 61.5 ± 7.8 65.2 ± 7.8 69.6 ± 8.2 77.9 ± 9.4 69.0 ± 10.5

ECG Ps (n (%)) 379 (7.9) 405 (7.0) 397 (9.3) 699 (11.3) 1879 (8.9)

BMI: body mass index; ECG Ps: electrocardiography positives.

Classification performances of DT and LR are shown in Table 2.

Table 2. Algorithm classification performances.

Algorithm TPR TNR J AUC

DT (1st run) 0.29 0.97 0.26 0.68
LR (1st run) 0 1 0.00 0.56

DT (2nd run) 0.68 0.82 0.50 0.76
LR (2nd run) 0.65 0.82 0.47 0.78

TPR: True positive rate; TNR: True negative rate; J: Youden index; AUC: Area under the ROC curve; DT: Decision
tree; LR: Logistic regression.

DT performances improved considerably by means of resampling, particularly in terms of greater
sensitivity, from 0.29 to 0.68.

LR was highly significant in both runs (p < 0.001). Still, in the first run, with the default cut-off = 0.5,
performance was so low (AUC = 0.56) that no further attempt with other cut-off values was made.
DT performed better, even without resampling.

After a discrete variable was introduced in place of pulse rate, LR increased sensitivity (with
cut-off = 0.12) from 0 to 0.65, without considerably diminishing specificity. This result was achieved
because risk was high in both the lower and upper range of the continuous variable, and not
monotonously increasing. It became evident after DT was applied, since it classified as P instances
with either low or high pulse rate values. L and H were found inductively in the data (L = 60 bpm,
H = 99 bpm), but they were close to those which can be found in domain-specific literature.

4. Discussion

In the present study, we tested the effectiveness and accuracy of a data mining methodology in
the prediction of cardiovascular risk in athletes. The application of resampling and two classification
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techniques on an imbalanced dataset was evaluated. Resampling improved classification by means of
DT. LR has proved to be not an accurate diagnostic tool if applied directly to continuous variables,
since in the medical domain high risk is often associated with feature values which are either too low
or too high. This is particularly true in the assessment of cardiovascular risk, since pulse rate and
blood pressure have upper and lower thresholds.

Feature cut-off values, which were acquired inductively from the collected data, can be immediately
converted into a small set of simple decision rules to assist the diagnostic process. Additionally, they
can be used to create categorical or discrete variables for LR, in order to improve its performances,
without the need for a-priori assumptions. The chosen predictors can be easily measured by a family
practitioner at almost no cost, which would make cardiovascular risk evaluation very efficient.

Classification performances were not assessed by means of accuracy because of the asymmetric
distribution of the two classes. AUC and J have been suggested, because they represent a trade-off

between sensitivity and specificity, in case they are both given the same importance. Even if this
assumption can be reasonable from a statistical point of view, in medical diagnostics it poses a serious
ethical concern. In fact, a FP comes at a cost of some unnecessary examinations and temporary
suspension of sport activities, while a FN may imply the loss of a human life, in case a serious condition
is present. Since a FN has a higher cost than a FP, a cost matrix may be adopted, where correct
predictions (TP and TN) have no cost, and errors (FN and FP) have different weights [50]. Still, in the
medical domain, it is not always possible to compare the cost of errors. Since there is no general
agreement on the amount of resources which can be allocated to reduce the risk related to FN, it is not
easy to give the proper weights to the two kinds of errors.

Even if resampling improved DT performances, in terms of both TPR and J, sensitivity remained
lower than specificity, implying a high false negative rate. This may not be acceptable in a medical
domain where a high risk may imply the loss of a human life. Increased oversampling may lead to
overfitting, even if a minimum TPR may be required or imposed by medical authorities. Therefore,
LR cut-off values may be lowered to improve sensitivity, even if it implies a large reduction in both
specificity and J. Nonetheless, it is important to note that DT and LR performances were similar,
and therefore DT alone can be adopted as a predictive algorithm, with the advantage over LR of
improved understanding. DT confirmed to be a good means to capture and represent domain-specific
(medical, in this case) knowledge, in an intuitive and easy-to-understand way, something which
cannot be achieved by means of LR. These facts may even question the application to medical datasets
of statistical techniques instead of machine learning, when a binary classification is required, as
in diagnostics.

The main limitation of this study lies in the lack of comparison with a standard control method
(beside ECG, which is used as a gold-standard) for cardiovascular risk assessment. In order to overcome
this limitation, cardiologists and general practitioners as well should be involved in a future study
from the design phase.

5. Conclusions

This study tested the effectiveness of a simple resampling technique in improving the assessment
of cardiovascular risk, when data are imbalanced, as it is often the case in real-world situations.
SMOTE improved the performances of DT in terms of greater AUC and sensitivity. In addition,
DT produced actionable knowledge, which can be applied in the prediction of CVDs, diminishing the
need for assumptions.

Further research is required to test the performances of the proposed approach in the general
(i.e., non-athletic and older) population, to determine an acceptable and agreed classification
performance index—which will highlight the best trade-off between medical risk and sustainable
welfare—and to verify whether this data mining methodology can be applied to improve diagnosis
and optimize healthcare policies, thanks to a reduction of unnecessary examinations.
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