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Prognostic and biologic significance of DNMT3B expression in
older patients with cytogenetically normal primary acute
myeloid leukemia
C Niederwieser1, J Kohlschmidt1,2, S Volinia1, SP Whitman1, KH Metzeler1, A-K Eisfeld1, K Maharry1,2, P Yan1, D Frankhouser1, H Becker1,
S Schwind1, AJ Carroll3, D Nicolet1,2, JH Mendler1, JP Curfman1, Y-Z Wu1, MR Baer4, BL Powell5, JE Kolitz6, JO Moore7, TH Carter8,
R Bundschuh9, RA Larson10, RM Stone11, K Mrózek1,12, G Marcucci1,12 and CD Bloomfield1,12

DNMT3B encodes a DNA methyltransferase implicated in aberrant epigenetic changes contributing to leukemogenesis.
We tested whether DNMT3B expression, measured by NanoString nCounter assay, associates with outcome, gene and microRNA
expression and DNA methylation profiles in 210 older (⩾60 years) adults with primary, cytogenetically normal acute myeloid
leukemia (CN-AML). Patients were dichotomized into high versus low expressers using median cut. Outcomes were assessed in
the context of known CN-AML prognosticators. Gene and microRNA expression, and DNA methylation profiles were analyzed
using microarrays and MethylCap-sequencing, respectively. High DNMT3B expressers had fewer complete remissions (CR;
P= 0.002) and shorter disease-free (DFS; P = 0.02) and overall (OS; Po0.001) survival. In multivariable analyses, high DNMT3B
expression remained an independent predictor of lower CR rates (P = 0.04) and shorter DFS (P = 0.04) and OS (P = 0.001). High
DNMT3B expression associated with a gene expression profile comprising 363 genes involved in differentiation, proliferation
and survival pathways, but with only four differentially expressed microRNAs (miR-133b, miR-148a, miR-122, miR-409-3p) and no
differential DNA methylation regions. We conclude that high DNMT3B expression independently associates with adverse
outcome in older CN-AML patients. Gene expression analyses suggest that DNMT3B is involved in the modulation of several
genes, although the regulatory mechanisms remain to be investigated to devise therapeutic approaches specific for these
patients.
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INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous disease
presenting with a wide spectrum of prognostically relevant
cytogenetic aberrations, gene mutations and abnormal expression
of genes and microRNAs. Cytogenetically normal AML (CN-AML)
patients, constituting 40 to 50% of all AML patients,1 are the
largest and molecularly best characterized cytogenetic subset in
primary (de novo) AML.1–3 Although leukemic blasts of these
patients do not contain microscopically detectable chromosome
abnormalities, they harbor prognostically relevant mutations and
aberrantly expressed genes and microRNAs.2–16 In addition to
these genetic alterations, epigenetic changes have recently been
shown to participate in myeloid leukemogenesis and be
pharmacologically targetable.17,18 Notably, some genes whose
mutations are prognostic in CN-AML encode proteins that are

implicated in epigenetic regulation of gene transcription, namely
IDH2, ASXL1 and DNMT3A. The latter is among the most frequently
mutated genes in primary CN-AML patients, being found mutated
in 29 to 34% of the patients.9,19

DNMT3A encodes DNA methyltransferase 3A (DNMT3A),
which is involved in epigenetic gene silencing through DNA
hypermethylation.20 In addition to DNMT3A, DNMT1 and DNMT3B
also mediate DNA methylation in normal and malignant cells, and
may represent potential therapeutic targets in cancer and
leukemia.21–24 However, in contrast to DNMT3A, no recurrent
mutations of DNMT1 and DNMT3B genes have been reported in
AML.25 Instead, one study has indicated that higher expression of
DNMT3B is associated with worse outcome in AML.26 However, the
patient cohort analyzed was cytogenetically diverse and hetero-
geneous for clinical features and treatment received. Thus, it is
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unknown whether DNMT3B expression is an independent prog-
nostic factor and can be used for stratification guidance in CN-AML.
Thus, we analyzed the clinical significance of DNMT3B expres-

sion in the context of a comprehensive panel of molecular
prognosticators in a relatively large cohort of older (aged ⩾ 60
years) patients with CN-AML who were similarly treated on
cytarabine/daunorubicin-based protocols. To gain biologic
insights, we also derived genome-wide DNMT3B-associated gene
and microRNA expression and DNA methylation profiles. We
studied older patients because both the incidence of AML and the
role of epigenetics increase with age. Moreover, we have recently
reported a favorable clinical response to hypomethylating agents
in this age group of AML patients.27

PATIENTS AND METHODS
Patients, treatment and cytogenetic studies
Pretreatment bone marrow or blood samples were obtained from 210
patients with primary CN-AML aged 60 to 83 years (median, 68 years) who
received intensive first-line therapy on Cancer and Leukemia Group B
(CALGB) trials.28–32 All patients received cytarabine–daunorubicin-based
induction chemotherapy, and no patient received allogeneic hematopoietic
stem cell transplantation during first complete remission (CR). For details
regarding treatment protocols and sample collection, see Supplementary
Information. All patients were enrolled on companion CALGB/Alliance
protocols: 8461 (cytogenetic analyses), 9665 (tissue banking) and 20 202
(molecular analyses).
Cytogenetic analyses were performed in institutional CALGB/Alliance

cytogenetics laboratories. For the patient’s karyotype to be considered
normal, ⩾ 20 metaphase cells from short-term cultures of pretreatment
bone marrow specimens had to have been analyzed and the normal result
confirmed by central karyotype review.33 All patients provided written
informed consent for participation in these studies; study protocols were in
accordance with the Declaration of Helsinki and approved by local
Institutional Review Boards.

Single-gene expression analyses
The expression of DNMT3B transcript was assessed by NanoString
nCounter assays (NanoString Technologies, Seattle, WA, USA; Supple-
mentary Information).34 These assays measured global expression of the
DNMT3B gene, and did not allow for quantification of isoform-specific
expression of DNMT3B. DNMT3B expression levels were normalized using
ABL as an internal control. We also used NanoString nCounter assays to
measure expression of BAALC, ERG and miR-155, and real-time reverse
transcription-PCR to measure miR-3151 expression, all of which have been
previously shown to affect prognosis of older CN-AML patients.10,15,16

Mutational analyses
The presence or absence of FLT3 internal tandem duplication (FLT3-
ITD),35,36 FLT3 tyrosine kinase domain mutations (FLT3-TKD),37 MLL partial
tandem duplication (MLL-PTD),38 and mutations in the NPM1,5 CEBPA,39

WT1,40 IDH1 and IDH2,7 TET2,41 ASXL1,8 DNMT3A9 and RUNX142 genes were
determined centrally as previously described.

Gene and microRNA expression profiling
The gene and microRNA expression profiling were assessed using the
Affymetrix U133 plus 2.0 array (Affymetrix, Santa Clara, CA, USA) and
The Ohio State University custom microRNA array (OSU_CCC Version
4.0, The Ohio State University, Columbus, OH, USA), respectively, as
previously reported,5,43 and detailed in the Supplementary Information.
For DNMT3B, the Affymetrix U133 plus 2.0 arrays measured global
DNMT3B expression levels, and did not quantify expression of the
individual DNMT3B isoforms. For the gene and microRNA expression
profiling, summary measures of gene and microRNA expression were
computed, normalized and filtered (Supplementary Information). A
DNMT3B expression-associated signature (see Supplementary Information
for details) was derived by comparing gene expression between high and
low DNMT3B expressers in the CALGB/Alliance cohort and in two additional
sets of CN-AML patients with microarray and RNAseq gene expression data
publicly available (German AML Cooperative Group (AMLCG)44 and The
Cancer Genome Atlas (TCGA)25). For comparison of the high DNMT3B

expression signature with the FLT3-ITD signature we used gene set
enrichment analysis (for details see Supplementary Information). For the
microRNA expression signature, only the CALGB/Alliance patients were
used. Univariable significance levels of Po0.001 (false discovery rates
o0.01) were used to select genes and microRNAs that constituted the
signatures. To assess enrichment of genes in the DNMT3B gene expression-
associated signature in distinct biologic processes, a Gene Ontology
analysis was performed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID).45 We identified as statistically significant
‘annotation clusters’ those clusters of Gene Ontology terms with
enrichment scores of 42.0, P-values ⩽ 0.001 and Benjamini corrected
P-values ⩽ 0.05. All molecular analyses were performed centrally at The
Ohio State University.

DNA methylation
Genome-wide DNA methylation and levels of DNA methylation across the
genome’s functional regions (that is, genomic features) were measured
using the MethylCap-seq assay as previously reported.18

Statistical analyses
The patients were dichotomized into high and low expressers using the
median cut. This cut was supported by significant results of the trend test
applied to outcome of patients divided into quartiles by DNMT3B
expression (P⩽ 0.001). We compared pretreatment features and outcome
between patients with high and low DNMT3B expression. Definitions of
clinical end points (that is, CR rates, disease-free (DFS) and overall (OS)
survival) are provided in the Supplementary Information. Baseline
characteristics between high and low DNMT3B expressers were compared
using the Fisher’s exact test for categorical and the Wilcoxon rank-sum test
for continuous variables.46 The categorical variables included the European
LeukemiaNet (ELN) Genetic Groups.47 The ELN guidelines classify CN-AML
patients within the Favorable or Intermediate-I Genetic Groups based on
CEBPA, NPM1 and FLT3mutational status. The ELN Favorable Genetic Group
consists of CN-AML patients with CEBPA mutation and/or NPM1 mutation
without FLT3-ITD, whereas the Intermediate-I Genetic Group is comprised
of patients with wild-type CEBPA and FLT3-ITD with or without NPM1
mutation, or wild-type NPM1 without FLT3-ITD.47

For time-to-event analyses, we calculated survival estimates using the
Kaplan–Meier method, and compared groups by the log rank test.46 In
order to provide the odds ratios and hazard ratios and associated
confidence intervals, logistic regression and Cox proportional hazards
models were generated to compare outcomes between high and low
DNMT3B expressers for CR and survival end points (DFS, OS), respectively,
and P-values from the Wald test are reported. We constructed multi-
variable logistic regression models to analyze factors associated with the
achievement of CR, and multivariable Cox proportional hazards models for
factors associated with survival end points,46 the details of which are
provided in the Supplementary Information. All analyses were performed
by the Alliance for Clinical Trials in Oncology Statistics and Data Center.

RESULTS
Associations of DNMT3B expression with pretreatment clinical and
molecular characteristics
At diagnosis, high DNMT3B expressers had higher white blood
counts (WBC; P= 0.004), and percentages of blood (P= 0.004) and
marrow (P= 0.02) blasts than low DNMT3B expressers. Concerning
molecular features, high DNMT3B expressers were more often
FLT3-ITD-positive (Po0.001) and classified in the ELN Intermedi-
ate-I Genetic Group (P= 0.02). IDH2-R140 mutations were less
frequent in high DNMT3B expressers, whereas six of seven IDH2-
R172 mutations were detected in this patient group. High DNMT3B
expressers also had higher ERG (Po0.001), BAALC (P= 0.002)
and miR-155 (P= 0.006) expression than low expressers (Table 1,
Supplementary Figure S1).

Associations of DNMT3B expression with clinical outcome in the
entire patient cohort
With a median follow-up of 5.1 years (range, 2.3–11.6 years) for
patients who are alive, high DNMT3B expressers had lower CR
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rates (P= 0.002, Wald test; 58% vs 78%), and shorter DFS (P= 0.02,
Wald test) and OS (Po0.001, Wald test) than DNMT3B low
expressers (Table 2, Figure 1).
In a multivariable model for CR, DNMT3B expression remained

prognostic (P= 0.04), after adjustment for BAALC expression status
(Po0.001), WBC (P= 0.007) and age (P= 0.02) (Table 3). High
DNMT3B expressers were half as likely to achieve a CR as low
expressers. In multivariable analysis for DFS, high DNMT3B
expression associated with shorter DFS (P= 0.04), once adjusted
for BAALC expression (P= 0.004), DNMT3A-R882 mutation status
(P= 0.009) and ELN Genetic Groups (P= 0.03). The risk of
experiencing relapse or death was 46% higher for high DNMT3B

Table 1. Comparison of clinical and molecular characteristics of
patients with cytogenetically normal acute myeloid leukemia with
high versus low DNMT3B expression

Characteristic High
DNMT3B
(n= 105)

Low
DNMT3B
(n= 105)

P-value

Age, years 0.82
Median 68 68
Range 60–83 60–81

Sex, n (%) 0.58
Male 58 (55) 53 (50)
Female 47 (45) 52 (50)

Race, n (%) 0.48
White 96 (92) 92 (89)
Nonwhite 8 (8) 11 (11)

Hemoglobin, g/dl 0.71
Median 9.4 9.3
Range 6.5–12.4 5.4–15.0

Platelet count, x 109/l 0.87
Median 68 71
Range 4–850 11–510

WBC, x 109/l 0.004
Median 43.7 21.8
Range 1.0–450.0 0.8–249.3

Blood blasts, % 0.004
Median 64 40
Range 0–99 0–97

Bone marrow blasts, % 0.02
Median 72 64
Range 21–97 4–97

Extramedullary involvement, n (%) 27 (27) 24 (23) 0.63

NPM1, n (%) 0.31
Mutated 67 (66) 60 (59)
Wild type 34 (34) 42 (41)

FLT3-ITD, n (%) o0.001
Present 54 (53) 21 (21)
Absent 48 (47) 81 (79)

CEBPA, n (%) 0.83a

Mutated 13 (13) 12 (12)
Single mutated 10 5
Double mutated 3 7

Wild type 88 (87) 90 (88)

ELN Genetic Group, n (%)b 0.02
Modified Favorable 38 (38) 56 (55)
Intermediate-I 63 (62) 45 (45)

FLT3-TKD, n (%) 0.83
Present 12 (12) 11 (11)
Absent 89 (88) 91 (89)

WT1, n (%) 0.41
Mutated 8 (8) 5 (5)
Wild type 93 (92) 97 (95)

TET2, n (%) 1.00
Mutated 32 (32) 31 (32)
Wild type 68 (68) 67 (68)

MLL-PTD, n (%) 1.00
Present 5 (6) 5 (6)
Absent 74 (94) 81 (94)

IDH1, n (%) 0.18
Mutated 14 (14) 8 (8)
Wild type 86 (86) 94 (92)

Table 1. (Continued )

Characteristic High
DNMT3B
(n= 105)

Low
DNMT3B
(n= 105)

P-value

IDH2, n (%) 0.05
Mutated 18 (18) 31 (30)
R140 12 30 0.005c

R172 6 1 0.13d

Wild type 82 (82) 71 (70)

RUNX1, n (%) 0.31
Mutated 17 (18) 11 (12)
Wild type 79 (82) 81 (88)

ASXL1, n (%) 0.69
Mutated 13 (13) 15 (15)
Wild type 87 (87) 84 (85)

DNMT3A, n (%) 0.65
Mutated 35 (35) 31 (32)
R882 19 20 1.00e

Non-R882 16 11 0.40f

Wild type 64 (65) 66 (68)

ERG expression group, n (%)g,h o0.001
High 65 (62) 40 (38)
Low 40 (38) 65 (62)

BAALC expression group, n (%)g,h 0.002
High 64 (61) 41 (39)
Low 41 (39) 64 (61)

miR-155 expression group, n (%)g,h 0.006
High 63 (60) 42 (40)
Low 42 (40) 63 (60)

miR-3151 expression group, n (%)g,i 0.76
High 42 (49) 39 (46)
Low 43 (51) 46 (54)

Abbreviations: ELN, European LeukemiaNet; FLT3-ITD, internal tandem
duplication of the FLT3 gene; FLT3-TKD, tyrosine kinase domain mutation in
the FLT3 gene; MLL-PTD, partial tandem duplication of the MLL gene;
n, number; WBC, white blood count. aThe P-value pertains to a comparison of
frequencies of CEBPA mutations (single and double combined) versus
CEBPA wild-type between high and low DNMT3B expressers. bThe ELN
modified Favorable Genetic Group is defined as CN-AML patients with
mutated CEBPA and/or mutated NPM1 without FLT3-ITD. All remaining CN-
AML patients (that is, those with wild-type CEBPA and wild-type NPM1 with
or without FLT3-ITD, or mutated NPM1 with FLT3-ITD) belong to the ELN
Intermediate-I Genetic Group.47 cThe P-value pertains to a comparison of
frequencies of IDH2-R140 mutations versus IDH2 wild-type between high
and low DNMT3B expressers. dThe P-value pertains to a comparison of
frequencies of IDH2-R172 mutations versus IDH2 wild-type between high
and low DNMT3B expressers. eThe P-value pertains to a comparison of
frequencies of DNMT3A-R882 mutations versus DNMT3A wild-type between
high and low DNMT3B expressers. fThe P-value pertains to a comparison of
frequencies of DNMT3A non-R882 mutations versus DNMT3A wild-type
between high and low DNMT3B expressers. gThe median expression value
was used as a cut point. hData was assessed by the NanoString
nCounter assay. iData was assessed by real-time reverse transcription-PCR.
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expressers than for low expressers. DNMT3B expression also
remained prognostic for OS (P= 0.001), after adjustment for BAALC
(Po0.001), miR-3151 (P= 0.02) and miR-155 (P= 0.02) expression.
The risk of death was 72% higher for high DNMT3B expressers
compared with low expressers (Table 3).

Associations of DNMT3B expression with clinical outcome in ELN
Genetic Groups
We analyzed the associations of DNMT3B expression with outcome
separately within the ELN Favorable and Intermediate-I Genetic
Groups. Within the Favorable Group (n= 94), there was no
significant difference in CR rates (71% vs 84%, P= 0.14, Wald test)
or DFS (P= 0.10, Wald test) between high and low DNMT3B
expressers. However, high expressers had shorter OS (P= 0.002,
Wald test) than low expressers (Table 2, Figures 2a and b). In
multivariable analyses for the ELN Favorable Genetic Group
(Table 3), DNMT3B expression remained significant for OS
(P= 0.003) after adjustment for BAALC expression (P= 0.01). High
DNMT3B expressers were twice as likely to die as low expressers.
In the Intermediate-I Group (n= 108), high DNMT3B expressers

had a lower CR rate (49% vs 73%, P= 0.01, Wald test) and shorter
OS (P= 0.03, Wald test) than low DNMT3B expressers, but there
was no significant difference in DFS between the groups (Table 2,
Figures 2c and d). In multivariable analyses within the ELN
Intermediate-I Genetic Group (Table 3), DNMT3B expression was
significant for OS (P= 0.02), after adjustment for BAALC expression

(P= 0.03), miR-3151 expression (P= 0.03) and WBC (P= 0.03). High
DNMT3B expressers were 1.7 times more likely to die than low
expressers.

Genome-wide gene expression profiles associated with DNMT3B
expression
To gain biologic insights into the role of DNMT3B, we derived a
DNMT3B-associated gene expression profile using three indepen-
dent sets of CN-AML patients, that is, CALGB/Alliance (n= 177),
AMLCG (n= 75) and The Cancer Genome Atlas (n= 88). We
identified 195 upregulated genes and 168 downregulated genes
that were significantly associated with higher DNMT3B expression
in each of the three cohorts (Supplementary Table S1). As high
DNMT3B expression was associated with the presence of FLT3-ITD
(Table 1), we performed gene set enrichment analysis to test
whether a set of 195 genes that are upregulated in high DNMT3B
expressers was associated with a set of genes differentially
expressed between patients who harbored FLT3-ITD versus those
who did not (Supplementary Information). We found a significant
correlation between the high DNMT3B expression and FLT3-ITD
signatures (P= 0.006; false discovery rate = 0.006; Supplementary
Figure S2). Among the genes upregulated in high DNMT3B
expressers, we noted a variety of genes previously involved in
AML including CDK6 and WT1 that encode cyclin kinase and
transcription factor proteins, respectively. Among the down-
regulated genes, we noted genes involved with both normal

Table 2. Outcomes of patients with cytogenetically normal acute myeloid leukemia according to DNMT3B expression status

End point High DNMT3B (I) Low DNMT3B (II) P-valuea OR/HR (95% CI) I vs II

All patients, n 105 105
Complete remission, n (%) 61 (58) 82 (78) 0.002 0.39 (0.21–0.71)
Disease-free survival 0.02 1.55 (1.09–2.20)
Median, years 0.6 1.1
% Disease-free at 3 years (95% CI) 13 (6–23) 22 (14–31)
% Disease-free at 5 years (95% CI) 11 (5–21) 15 (8–23)

Overall survival o0.001 1.85 (1.38–2.47)
Median, years 0.8 1.5
% Alive at 3 years (95% CI) 11 (6–18) 29 (20–37)
% Alive at 5 years (95% CI) 8 (4–14) 21 (14–29)

Patients in the ELN modified Favorable Genetic Groupb, n 38 56
Complete remission, n (%) 27 (71) 47 (84) 0.14 0.47 (0.17–1.28)
Disease-free survival 0.10 1.54 (0.92–2.57)
Median, years 0.9 1.3
% Disease-free at 3 years (95% CI) 15 (5–30) 30 (18–43)
% Disease-free at 5 years (95% CI) 11 (3–26) 21 (11–34)

Overall survival 0.002 2.04 (1.29–3.22)
Median, years 1.3 2.1
% Alive at 3 years (95% CI) 18 (7–31) 39 (27–52)
% Alive at 5 years (95% CI) 12 (4–24) 30 (19–43)

Patients in the ELN Intermediate-I Genetic Groupb, n 63 45
Complete remission, n (%) 31 (49) 33 (73) 0.01 0.35 (0.15–0.80)
Disease-free survival 0.25 1.36 (0.81–2.27)
Median, years 0.5 0.7
% Disease-free at 3 years (95% CI) 13 (4–27) 9 (2–22)
% Disease-free at 5 years (95% CI) 13 (4–27) 3 (0–13)

Overall survival 0.03 1.57 (1.06–2.33)
Median, years 0.6 1.1
% Alive at 3 years (95% CI) 8 (3–16) 16 (7–28)
% Alive at 5 years (95% CI) 6 (2–14) 9 (3–19)

Abbreviations: CI, confidence interval; ELN, European Leukemia Net; HR, hazard ratio; n, number; OR, odds ratio. aP-values provided are generated by logistic
regression and Cox proportional hazards models to compare outcome of patients for CR and survival end points (DFS, OS), respectively, using the Wald test.
bThe ELN modified Favorable Genetic Group is defined as CN-AML patients with mutated CEBPA and/or mutated NPM1 without FLT3-ITD. All remaining
CN-AML patients (that is, those with wild-type CEBPA and wild-type NPM1 with or without FLT3-ITD, or mutated NPM1 with FLT3-ITD) belong to the
ELN Intermediate-I Genetic Group.47
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monocyte/macrophage differentiation and immune function
including CD14, TLR4, CEBPB and TLR8.
Gene Ontology was used to assess the biologic features of the

DNMT3B expression profile (Table 4). For DNMT3B-associated
upregulated genes, there were three Gene Ontology terms
comprising genes involved in nucleotide biosynthetic processes
and metabolism and included in annotation cluster 1 that had a
trend for statistical significance (Benjamini P-value o0.1). For
DNMT3B-associated downregulated genes, cellular processes
included lysosome biology, endocytosis and membrane signaling.
These results may be interpreted as consistent with the previously
noted dysregulated genes involved in monocyte/macrophage
differentiation and activity.

Genome-wide microRNA profiles associated with DNMT3B
expression
The influence of DNMT3B expression on microRNA genome-wide
profiles could be evaluated in 162 patients. In contrast to coding
genes, only four microRNAs were differentially expressed between
high and low DNMT3B expressers (P⩽ 0.001). High DNMT3B
expression was associated with miR-133b upregulation, and
miR-148a, miR-122 and miR-409-3p downregulation. miR-133b
upregulation in high DNMT3B expressers was somewhat surprising
as this microRNA was reported to have tumor suppressor activity
in other cancers.48,49 However, consistent with the downregulated
gene expression profile as discussed above, miR-133b has recently
been shown to target granulocyte-macrophage colony-
stimulating factor (GM-CSF), a cytokine involved in granulocyte–
monocyte/macrophage differentiation.50 Among the downregulated

microRNAs, miR-148a was reported to target DNMT3B and to be
itself a target of aberrant hypermethylation in cancer.51,52 Lower
expression of miR-122 has been associated with aggressive
hepatocellular carcinoma and miR-409-3p with cell invasion and
metastasis in gastric cancer53–56; however, a role for these
microRNAs in AML is currently unknown.

Genome-wide methylation profiling associated with DNMT3B
expression
As DNMT3B encodes a methyltransferase that mediates de novo
DNA methylation, we assessed whether high and low DNMT3B
expressers differed in DNA methylation patterns. Surprisingly, we
found no significant differences in genome-wide DNA methylation
levels or in the numbers of differentially methylated regions18 in
distinct functional genomic regions (for example, gene promoters)
when high versus low DNMT3B expressers were compared.

DISCUSSION
In this study, we report that high DNMT3B expression associates
with lower CR rates and shorter DFS and OS in chemotherapy-
treated CN-AML patients aged ⩾ 60 years. High DNMT3B expres-
sion was associated with such adverse prognostic factors as FLT3-
ITD, high ERG, BAALC and miR-155 expression and the ELN
Intermediate-I Genetic Group; nevertheless the association of
DNMT3B expression with clinical outcome is independent from the
aforementioned and other established molecular and clinical
prognosticators for all outcome end points studied.
Our findings are consistent to some extent with the only, to our

knowledge, previous study that assessed the prognostic value of
DNMT3B expression.26 Although, in the subset of 93 CN-AML
patients, Hayette et al.26 did not find significant differences in
event-free survival or OS between high and low DNMT3B
expressers, high DNMT3B expressers had a shorter event-free
survival than low DNMT3B expressers in the whole cytogenetically
diverse cohort of 191 AML patients analyzed. It is difficult to
directly compare their results with ours as approximately one-half
of the patients analyzed by Hayette et al.26 had various abnormal
karyotypes, more than two-thirds of the patients were younger
than 60 years and a quarter underwent allogeneic hematopoietic
stem cell transplantation in first CR. Thus, although the two studies
are not comparable, they both conclude that higher DNMT3B
expression is associated with worse outcome in AML.
Recently, the ELN reporting system,47 which for CN-AML is

based on only three molecular markers (that is, FLT3-ITD, CEBPA
and NPM1mutations), was shown to provide important prognostic
information in AML.57 However, we and others have shown that
additional molecular markers, such as TET2,41 ASXL1,8 RUNX142 and
DNMT3A58 mutations and expression of MN1,12 miR-15515 and
miR-3151,16 may refine outcome prediction of CN-AML patients
within the ELN Genetic Groups. Hence, in the current study, we
investigated whether considering DNMT3B expression as a novel
prognosticator could alter patient classification within the ELN
Genetic Groups. In the Favorable Group, we found that low
DNMT3B expression identified a subset of CN-AML patients with a
significantly longer OS, thus making DNMT3B expression the third
molecular marker, in addition to ASXL1 mutations8 and miR-155
expression,15 capable of refining prognostication of older patients
in this ELN Genetic Groups. We also observed a significant
difference in OS between high and low DNMT3B expressers
classified in the ELN Intermediate-I Genetic Group. Previously,
RUNX1 mutations42 and expression levels of MN1,12 miR-15515 and
miR-315116 were demonstrated to add prognostic information in
this ELN Genetic Group.
We report the first, to our knowledge, DNMT3B-associated gene

and microRNA expression and DNA methylation profiles in
CN-AML. We were able to derive a strong gene expression profile
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Figure 1. Clinical outcome of CN-AML patients with high and low
DNMT3B expression. Kaplan–Meier survival curves for (a) disease-free
survival and (b) overall survival. P-values presented are from the log
rank test.
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comprising 363 genes by overlapping the microarray results from
three independent sets of patients. The profile was quite
heterogeneous, comprising genes encoding for proteins involved
in multiple biologic processes that play a role in leukemia cell
differentiation, proliferation and survival. Among the down-
regulated genes, we noted enrichment of genes involved in
monocyte/macrophage differentiation and activity, suggesting a
role of DNMT3B in impairing differentiation of the leukemic blasts
into cells with normal innate immunity activity. Using gene set
enrichment analysis, we found a significant correlation between
the high DNMT3B expression and FLT3-ITD signatures (Supplementary
Figure S2). This, along with the increased frequency of FLT3-ITD in
high DNMT3B expressers (Table 1), suggests the existence of a
functional association between high expression of the DNMT3B gene
and FLT3-ITD.
In contrast, the DNMT3B-associated microRNA profile was relatively

weak, comprising only four microRNAs that were differentially
expressed in high versus low DNMT3B expressers. Nevertheless, the
unique upregulation of expression of miR-133b, recently reported to
target GM-CSF,50 in DNMT3B high expressers was somewhat
consistent with the enrichment of the gene expression profile in
multiple downregulated genes involved in the differentiation and
activity of hematopoietic cells participating in innate immunity.
Surprisingly, despite the fact that DNMT3B encodes a DNA

methyltransferase, we observed no significant association of high

DNMT3B levels and DNA methylation changes. No difference in
global DNA methylation levels and number of differentially
methylated regions could be identified between DNMT3B high
and low expressers. Our results are reminiscent of a recent report
showing that changes in DNMT3B expression did not affect
methylation levels of putative DNMT3B target genes.59 Moreover,
Russler–Germain et al.60 have recently demonstrated that DNA
methylation levels in leukemic blasts from CN-AML patients are
not influenced by DNMT3B expression as mainly inactive splice
variants of DNMT3B are expressed in these cells. Overall,
therefore, these data may suggest that although overexpressed
DNMT3B is a potentially valuable predictive marker for response
to conventional chemotherapy, it does not necessarily identify
subsets of older AML patients characterized by aberrant DNA
methylation who might be responsive to hypomethylating
azanucleosides.
In summary, we have demonstrated that DNMT3B expression

constitutes an independent prognostic factor in older CN-AML
patients treated intensively, and could also refine the
ELN classification. Furthermore, we have provided some
insights into the biologic activity of DNMT3B in CN-AML, which
is seemingly independent from mechanisms of DNA
hypermethylation and/or microRNA-dependent gene repression.
Further studies focused on gaining more clinical and mechanistic
insights into the leukemogenic role of DNMT3B expression are

Table 3. Multivariable analyses of CN-AML patients according to DNMT3B expression status

Variable Complete remission Disease-free survival Overall survival

OR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

All patients
DNMT3B expression, high vs low 0.49 (0.25–0.97) 0.04 1.47 (1.01–2.13) 0.04 1.72 (1.24–2.38) 0.001
BAALC expression, high vs low 0.21 (0.10–0.43) o0.001 1.79 (1.21–2.65) 0.004 1.98 (1.39–2.80) o0.001
WBC, per 50-unit increase 0.69 (0.52–0.90) 0.007
Age, per 10-year increase 0.49 (0.27–0.89) 0.02
DNMT3Aa

R882 mutated vs wild type 1.85 (1.17–2.95) 0.009
non-R882 mutated vs wild type 0.92 (0.52–1.61) 0.76

ELN Genetic Group, Favorable vs Intermediate-Ib 0.65 (0.45–0.96) 0.03
miR-3151 expression, high vs low 1.51 (1.07–2.13) 0.02
miR-155 expression, high vs low 1.47 (1.06–2.05) 0.02

Patients in the ELN modified Favorable Genetic Groupb

DNMT3B expression, high vs low
BAALC expression, high vs low

No models including a significant term for DNMT3B expression
were found

1.99 (1.26–3.15)
1.81 (1.13–2.92)

0.003
0.01

Patients in the ELN Intermediate-I Genetic Groupb

DNMT3B expression, high vs low
BAALC expression, high vs low

No models including a significant term for DNMT3B expression
were found

1.73 (1.10–2.72)
1.88 (1.05–3.35)

0.02
0.03

miR-3151 expression, high vs low 1.79 (1.05–3.07) 0.03
WBC, per 50-unit increase 1.16 (1.01–1.33) 0.03

Abbreviations: CI, confidence interval; ELN, European LeukemiaNet; HR, hazard ratio; OR, odds ratio; WBC, white blood count. An odds ratio o1 means a lower
CR rate for the higher values of the continuous variables and the first category listed for the categorical variables. A hazard ratio 41 (o1) corresponds to a
higher (lower) risk of an event for higher values of continuous variables and the first category listed of a dichotomous variable. Variables were considered for
inclusion in the multivariable models if they had a univariable P-value of ⩽ 0.20. See the Supplementary Information for a full list of variables evaluated in
univariable analyses. As NPM1, FLT3-ITD and CEBPA mutations are integrated in the ELN genetic classification, they were not additionally considered as
individual variables. In the entire patient cohort, variables considered for inclusion in the model for achievement of CR were DNMT3B, ERG, BAALC, miR-155 and
miR-3151 expression, ELN Genetic Groups, WT1 and ASXL1 mutation status, WBC, age and extramedullary involvement. In the model for DFS, we considered
DNMT3B, ERG, BAALC and miR-3151 expression, ELN Genetic Groups, FLT3-TKD, ASXL1, DNMT3A-R882 and DNMT3A non-R882 mutation status and extramedullary
involvement; and in the model for OS, DNMT3B, ERG, BAALC, miR-155 and miR-3151 expression, ELN Genetic Groups, MLL-PTD, WT1, ASXL1, DNMT3A-R882 and
DNMT3A non-R882 mutation status, WBC and extramedullary involvement. For patients in the ELN modified Favorable Genetic Group, variables considered for
inclusion in the model for OS were DNMT3B, ERG, BAALC and miR-155 expression, ASXL1 and TET2mutation status and extramedullary involvement. For patients
in the ELN Intermediate-I Genetic Group, variables considered for inclusion in the model for OS were DNMT3B, ERG, BAALC, miR-155 and miR-3151 expression,
RUNX1, IDH1, DNMT3A-R882 and DNMT3A non-R882 mutation status, and WBC and hemoglobin. aThe types of DNMT3A mutations detected in our cohort are
provided in Supplementary Table S2. bThe ELN modified Favorable Genetic Group is defined as CN-AML patients with mutated CEBPA and/or mutated NPM1
without FLT3-ITD. All remaining CN-AML patients (that is, those with wild-type CEBPA and wild-type NPM1 with or without FLT3-ITD, or mutated NPM1 with
FLT3-ITD) belong to the ELN Intermediate-I Genetic Group.47
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warranted to design active therapeutic strategies for high
DNMT3B expressers in CN-AML.
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Figure 2. Clinical outcome of CN-AML patients with high and low DNMT3B expression classified into ELN Genetic Groups. Kaplan–Meier
survival curves for (a) disease-free survival and (b) overall survival of patients in the ELN modified Favorable Genetic Group; (c) disease-free
survival and (d) overall survival of patients in the ELN Intermediate-I Genetic Group. P-values presented are from the log rank test.

Table 4. Gene Ontology terms associated with differentially expressed genes in the high DNMT3B expression group

Biologic process or cellular component Number of genes Benjamini P-value

Associations with genes upregulated in the high DNMT3B expression group
Annotation Cluster 1
GOTERM_BP: nucleotide biosynthetic process 10 0.098
GOTERM_BP: nucleobase, nucleoside and nucleotide biosynthetic process 10 0.066
GOTERM_BP: nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic process 10 0.066

Associations with genes downregulated in the high DNMT3B expression group
Annotation Cluster 1
GOTERM_CC: vacuole 12 0.0052
GOTERM_CC: lytic vacuole 10 0.012
GOTERM_CC: lysosome 10 0.012

Annotation Cluster 2
GOTERM_BP: endocytosis 11 0.0091
GOTERM_BP: membrane invagination 11 0.0091
GOTERM_BP: membrane organization 12 0.089

Annotation Cluster 3
GOTERM_CC: intrinsic to membrane 74 0.028

Abbreviations: BP, biologic process; CC, cellular component; GO, Gene Ontology, see also Huang da et al.45
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