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Abstract The steplength selection is a crucial issue
for the effectiveness of the stochastic gradient methods
for large-scale optimization problems arising in machine
learning. In a recent paper, Bollapragada et al. [2] pro-
pose to include an adaptive subsampling strategy into a
stochastic gradient scheme, with the aim to assure the
descent feature in expectation of the stochastic gradi-
ent directions. In this approach, theoretical convergence
properties are preserved under the assumption that the
positive steplength satisfies at any iteration a suitable
bound depending on the inverse of the Lipschitz con-
stant of the objective function gradient.

In this paper, we propose to tailor for the stochastic
gradient scheme the steplength selection adopted in the
full-gradient method knows as Limited Memory Steep-
est Descent method. This strategy, based on the Ritz-
like values of a suitable matrix, enables to give a local
estimate of the inverse of the local Lipschitz parame-
ter, without introducing line search techniques, while
the possible increase of the size of the subsample used
to compute the stochastic gradient enables to control
the variance of this direction. An extensive numerical
experimentation highlights that the new rule makes the
tuning of the parameters less expensive than the trial
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1 Introduction

The problem we consider is the unconstrained mini-
mization of the form

min
x∈Rd

F (x) ≡ E[f(x, ξ)], (1)

where ξ is a multi-value random variable, f represents
a cost function and the mathematical expectation E
is defined with respect to ξ in the probability space
(Ξ,F ,P). It is assumed that the function f : Rd×Ξ →
R is known analytically or it is provided by a black box
oracle within a prefixed accuracy. In practice, since the
probability distribution of ξ is unknown, we seek the
solution of a problem that involves an estimate of the
objective function F (x). The most common approxi-
mation is the Sample Average Approximation, defined
as

min
x∈Rd

Fn(x) ≡ Fn(x, ξ(n)), (2)

where the objective function is the Empirical Risk

Fn(x, ξ
(n)) =

1

n

n∑
i=1

f(x, ξ
(n)
i ) =

1

n

n∑
i=1

fi(x), (3)

based on a random sample ξ(n) = {ξ(n)1 , ..., ξ
(n)
n } of size

n of the variable ξ. In the machine learning framework,
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each fi(x) ≡ f(x, ξ
(n)
i ) denotes the loss function re-

lated to the instance ξ(n)i of the training set. In the big
data framework, since n can be a very large number,
it is prohibitively expensive to deal with the objective
function Fn(x, ξ(n)), its gradient or its Hessian matrix.
A common approach to address the problem (1) or its
approximation (2)-(3) is the Stochastic Gradient (SG)
method and its variants, requiring only the gradient of
one or few terms of Fn(x) at each iteration, so that the
cost of the overall optimization procedure is limited.
Starting from a vector x(0) ∈ Rd, the basic iteration of
the SG method can be written as

x(k+1) = x(k) − αkg(x(k), ξ(nk)), (4)

where ξ(nk) denotes a set of nk realizations of the ran-
dom variable ξ, randomly chosen from the sample data
ξ(n), g(x(k), ξ(nk)) is the stochastic gradient vector at
the current iterate x(k) and αk is a positive steplength,
known also as learning rate. The main strategies for the
choices of ξ(nk) give rise to the standard SG method,
when nk = 1 for all k, and its mini-batch version, for
nk > 1. In particular, given a randomly chosen subset
Sk ⊂ {1, ..., n} of |Sk| = nk indices, nk ≥ 1, and a
subsample of the training set ξ(nk) = {ξ(nk)

i }i∈Sk
, the

stochastic gradient is defined as

g
(nk)
k ≡ g(x(k), ξ(nk)) =

1

nk

∑
i∈Sk

∇fi(x(k)). (5)

As concerns the convergence results of the standard SG
method (4) and its variant with fixed subsample size nk,
a very deep survey is given in [3]. The results provided
in [3] hold in the case of the solution of both problems
(1) and (2). Under the crucial assumption that the gra-
dient of the objective function is L-Lipschitz contin-
uous and some additional conditions on the first and
second moments of the stochastic gradient, when the
positive steplength αk is bounded from above by a con-
stant αmax, the expected optimality gap for strongly
convex objective functions, or the expected sum of gra-
dients for general objective functions, asymptotically
converge to values proportional to αmax. In practice,
if the steplength is sufficiently small and k → ∞, the
method generates iterates in the neighborhood of the
optimal or stationary value.
Nevertheless, since the constants related to the assump-
tions, such as the Lipschitz parameter or the parameters
involved in the bounds of the moments of the stochas-
tic directions, are unknown and not easy to approx-
imate, there is no guidance on the specific choice of
the steplength. A selection of a too small value of a
steplength without an accurate tuning, can give rise to
a very slow learning process. In literature there exists

a number of different proposals to overcome this draw-
back without resorting to second-order methods or in-
troduce line search techniques.
In particular, we refer to [17,19], where the updating
rule of the steplength is borrowed from the Barzilai’s
rules, well known in the deterministic context. In case
of strongly convex objective functions, in order to ob-
tain a linear convergence in expectation to zero for the
optimality gap [19] or to a solution for the sequence
of the iterates [17], the updating rules are inserted in
variance reducing schemes as SVRG [14] or SAGA [8].
These methods require to periodically compute the full
gradient or to store the last computed term of each gra-
dient in the sum (3).
Another way to obtain the linear convergence for strongly
convex objective functions consists in increasing nk at
a geometric rate [4] (see also [12]). Despite this very
strong condition, from the practical point of view, a
procedure based on the so-called norm test, enables to
control the sample size nk so that

E[‖g(nk)
k −∇F (x(k))‖2] ≤ ζ‖∇F (x(k))‖2

for some ζ > 0 [13]. In the practical implementation,
the left side of the last inequality can be approximated
with the sample variance and the gradient ∇F (x(k))
on the right side with a sample gradient [4,3]. Similar
techniques are developed in [5], relaxing the norm test
by the use of a line search technique based on the true
value of the objective function.
Recently, Bollagragrada et al. suggest in [2] to increase
the sample on the basis of an inner product test, com-
bined with an orthogonality test. These conditions guar-
antee that the negatives of the stochastic gradients based
on subsamples of suitable size are descent directions
in expectation. Numerical evidence highlights that the
mechanism give rises to an increase of nk slower than
the one induced by the norm test; on the other hand,
linear rate of convergence for objective functions sat-
isfying the Polyak-Lojasiewicz (P-L) condition is pre-
served and other theoretical convergence features hold
for general problems. These results strongly depend on
the knowledge of the Lipschitz parameter L or on its
suitable (local) estimate. Consequently, motivated by
the numerical experiences shown in [10], in this pa-
per we propose to tailor the steplength selection rule
adopted in the Limited Memory Steepest Descent (LMSD)
method [9] to give a local estimate of the inverse of L
in the SG framework, combining this strategy with the
technique for increasing the subsample size detailed in
[2] to adaptively control the variance of the stochastic
directions.
The paper is organized as follows. In Section 2, we
briefly recall the inner product test, the orthogonal-
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ity test and the related theoretical convergence results.
Section 3 is devoted to address the Ritz-like values in
the context of the LMSD deterministic method and to
tailor this technique to the stochastic framework; more
precisely, the SG iteration based on the steplength de-
fined by a Ritz-like value is combined with the adaptive
subsampling technique proposed in [2]. In Section 4 we
describe the results of an extensive numerical experi-
mentation. The conclusions are drawn in Section 5.

2 Theoretical results on SG method equipped
with inner product and orthogonality tests

The convergence results on SG iteration (4) requires
that the stochastic gradient g(nk)

k based on the subsam-
ple ξ(nk) is a descent direction sufficiently often, i.e.,
assuming that Sk is chosen uniformly at random from
{1, ..., n} and g(nk)

k is an unbiased estimate of∇F (x(k)),
we can write

E[g(nk)
k

T
∇F (x(k))] = ‖∇F (x(k))‖2, (6)

for all k ≥ 0. The variance of the term on the left hand
side of (6) can be controlled by determining the sam-
ple size nk at the k-th iteration so that the stochastic
gradient is guaranteed to be a suitable estimate of the
corresponding gradient. In particular, the following con-
dition can be imposed on the sample size nk of ξ(nk):

E[(g(nk)
k

T
∇F (x(k))−‖∇F (x(k))‖2)2] ≤ θ2‖∇F (x(k))‖4,

(7)

for some θ > 0. Furthermore, the inner product test can
be combined with the orthogonality test, guaranteeing
that the step direction is bounded away from orthogo-
nality with ∇F (x(k)):

E[‖g(nk)
k −

g
(nk)
k

T
∇F (x(k))

‖∇F (x(k))‖2
∇F (x(k))‖2] ≤ ν2‖∇F (x(k))‖2,

(8)

for some ν > 0. The combination of the two tests (7)
and (8) is also known as augmented inner product test.
Borrowing the results stated in [2], we perform the fol-
lowing additional assumptions:

A. ∇F is L-Lipschitz continuous;
B. the Polyak-Lojasiewicz (P-L) condition holds

‖∇F (x)‖2 ≥ 2c(F (x)− F∗), ∀x ∈ Rd, (9)

where c is a positive constant and F∗ = infx∈Rd F (x);
C. αk ∈ (αmin, αmax], and αmax ≤ 1

(1+θ2+ν2)L , for
given positive constants θ, ν in (7) and (8).

We remark that assumption B holds when F is c-strongly
convex, but it is also satisfied for other functions that
are not convex (see [15]). In addition we observe that
assumptions A and B do not guarantee the existence
of a stationary point for F ; nevertheless, under the two
assumptions, any stationary point for F is a global min-
imizer.
Furthermore, in view of the assumption C, the iteration
(4) can be equipped by a variable steplength, as long
as it belongs to the interval (αmin, αmax], where αmax
is proportional to the inverse of L.
Following the arguments of [2], the following theorems
can be stated.

Theorem 1 Suppose the assumptions A and B hold.
Let {x(k)} be the sequence generated by (4), where the
size nk of any subsample is chosen so that the con-
ditions (7) and (8) are satisfied and αk satisfies the
assumption C. Then, we have that

E[F (x(k))− F∗] ≤ ρk(F (x(0))− F∗), (10)

where ρ = 1 − c αmin. In particular, for a constant
steplength αk ≡ αmax = 1

(1+θ2+ν2)L , for all k ≥ 0, we
have ρ = 1− c

(1+θ2+ν2)L .

The proof follows as in Theorem 3.2 of [2], by using the
(P-L) condition instead of the strongly convexity of F
and the inequality αk ≤ αmax ≤ 1

(1+θ2+ν2)L .
In the case of a convex function F such that the P-
L condition does not hold, we can state the following
theorem, whose proof runs as the one of Theorem 3.3 of
[2], taking account of αk ≤ αmax and of the additional
strict bound on αmax.

Theorem 2 Suppose the assumption A holds. Let {x(k)}
be the sequence generated by (4), where the size nk of
any subsample is chosen so that the conditions (7) and
(8) are satisfied and αk satisfies the assumption C, with
αmax <

1
(1+θ2+ν2)L . Assume that X∗ = argminxF (x) 6=

∅. Then, we have that

min
0≤k≤K

E[F (x(k))− F∗] ≤
1

2αkγK
‖x(0) − x∗‖2, (11)

where x∗ ∈ X∗ and γ = 1− αmaxL(1 + θ2 + ν2).

Finally, along the lines of Theorem 3.4 in [2], taking into
account that αk > αmin, we state the following propo-
sition for the case of a general non-convex objective
function F . In this case, {∇F (x(k))} converges to zero
in expectation, with a sub-linear rate of convergence of
the smallest gradients arising after K iterations.

Theorem 3 Suppose the assumption A holds and F

is bounded below from F∗. Let {x(k)} be the sequence
generated by (4), where the size nk of any subsample is
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chosen so that the conditions (7) and (8) are satisfied
and αk satisfies the assumption C. Assume that X∗ =
argminxF (x) 6= ∅. Then, we have that

lim
k→∞

E[‖∇F (x(k))‖2] = 0. (12)

Furthermore, for any K > 0, we have

min
0≤k≤K−1

E[‖∇F (x(k))‖2] ≤ 1

2αminK
(F (x(0))− F∗).

(13)

To make a robust implementation of the iteration (4),
Bollapragada et al. propose to determine the current
steplength by a backtracking line search, aimed at pro-
viding a (local) estimate of Lipschitz parameter.
Exploiting the assumption of αk belonging to a suitable
bounded interval, we propose an updating rule for the
definition of the current αk, based on a stochastic ver-
sion of the LMSD computation of Ritz-like values. In
the next section we recall the deterministic procedure
and we describe the stochastic version in details.

3 Steplength selection via Ritz and harmonic
Ritz values

Among the state-of-the-art steplength selection strate-
gies for deterministic gradient methods, the limited mem-
ory rule proposed in [9] is one of the most effective ideas
for capturing second-order information on the objective
function. In order to describe our strategy for extend-
ing this approach to the stochastic gradient methods,
in the following we recall in basic details on the rule [9].

3.1 The determinist framework

The limited memory rule [9] provides the steplengths
for performing groups of m ≥ 1 iterations, where m is a
small number (generally not larger than 7). After each
group of m iterations, called sweep, a symmetric tridi-
agonal m ×m matrix is defined by exploiting the gra-
dients computed within the sweep. The m eigenvalues
of the tridiagonal matrix are interpreted as approxima-
tions of the eigenvalues of the Hessian of the objective
function at the current iteration and their inverses de-
fine the m steplengths for the new sweep. The crucial
point of this approach consists in building the tridiag-
onal matrix in an inexpensive way, starting from the
information acquired in the last sweep. To this end, in
[9] the following strategy is proposed: suppose that the
iterate x(j) and m steplengths αj+k, k = 0, . . . ,m − 1,

are available for performing a new sweep and store the

gradients and the steplengths used within the sweep in
the following way:

Gj = [gj , gj+1, . . . , gj+m−1], (14)

Jj =


1
αj

− 1
αj

. . .

. . . 1
αj+m−1

− 1
αj+m−1

. (15)

From the d×m matrix Gj , an upper triangular m×m
matrix Rj such that GTj Gj = RTj Rj can be obtained,
for example by means of the Cholesky factorization of
GTj Gj ; the matrix Rj is non-singular if Gj is full rank.
By using Gj , Jj and Rj define the matrix

Tj = R−Tj GTj [Gj gj+m]JjR
−1
j = [Rj rj ]JjR

−1
j (16)

where rj is the solution of the linear system RTj rj =

GTj gj+m. In case of quadratic strictly convex objective
function, Tj is the symmetric tridiagonal matrix pro-
vided by m steps of the Lanczos process applied to the
Hessian matrix of the objective function, with starting
vector gj/‖gj‖; this means that its eigenvalues, called
Ritz values, are special approximations of the Hessian
eigenvalues. In the general non-quadratic case, Tj is up-
per Hessenberg and a symmetric tridiagonal matrix T j
can be obtained as

T j = tril(Tj) + tril(Tj ,−1)′, (17)

where the Matlab notation is used for denoting the
lower triangular of Tj . The limited memory steplength
rule [9] proposes to use the eigenvalues of T j , λi, i =
1, . . . ,m, as approximations of the eigenvalues of the
Hessian of the objective function at the iteration (j +

m), and to exploits the inverses of these approximations
as steplengths for the next sweep:

αj+m−1+i =
1

λi
, i = 1, . . . ,m. (18)

Following the terminology used in the quadratic case,
we call Ritz-like values the eigenvalues of T j .

In [9] another idea is also introduced for defining the
steplengths for the sweeps, based on a similar strategy.
In the strictly convex quadratic case, this idea consists
in obtaining the steplengths as eigenvalues of the matrix
P−1J Tj , where

Pj = R−Tj JTj

(
Rj rj
0 ρj

)T (
Rj rj
0 ρj

)
JjR

−1
j =

=
(
TTj tj

)(Tj
tTj

)
,

(19)
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ρj =
√
gTj+mgj+m − rTj rj and tj is the solution of the

linear system RTj tj = JTj

(
0

ρj

)
. The reciprocals of the

eigenvalues of P−1J Tj are called harmonic Ritz.
Replacing Tj in (19) by the non-singular tridiagonal

matrix T j , a pentadiagonal matrix P j is obtained. The
matrices T j and T

−1
P j can have nonpositive eigenval-

ues. This phenomenon is due firstly to the non-quadratic
features of the objective function and secondly to the
presence of negative curvature. The first situation can
arise also for convex objective functions whereas the
second one concerns the minimization of general func-
tions. To overcome these drawbacks, there are differ-
ent strategies. In [9,16], the authors suggest to sim-
ply discard these values, hence providing fewer than m
steplengths for the next sweep; if no positive eigenvalues
are available, any tentative steplength can be adopted
for a sweep of length 1. In addition it can be conve-
nient to discard also the oldest back gradients. Another
strategy, aimed at handling non-positive curvature, is
to adopt a local cubic model, that reduces to a stan-
dard quadratic model when only positive eigenvalues
are computed [6].

3.2 Stochastic framework

The strategy suggested by the LMSD method for an
adaptive update of the steplength in the full gradient
method performs as well as an L-BFGS method also
for the minimization of non-quadratic and non-convex
objective functions [9,16]. In a stochastic framework,
where the computation of the Hessian matrix is very
expansive, even when it is based on a subsampling, the
LMSD approach can inspire a strategy for defining a
selecting rule of the steplength at the current iteration
of SG. The main difference with respect to the deter-
ministic case, is in the construction of the matrix Gj ,
where we have to replace the full gradients computed
at the m most recent iterations (m ≥ 1) with the cor-
responding stochastic gradients at the iterates x(j+i),
obtained by using different samples of data {ξ(nj+i)},
i = 0, ..,m− 1:

Gj = [g
(nj)
j , g

(nj+1)
j+1 , ..., g

(nj+m−1)
j+m−1 ]. (20)

Following the procedure developed in the deterministic
case combined with the approximation (17), the matri-
ces T j and P j can be computed, by replacing Gj in
(16) with Gj .
When the collected stochastic gradients are suitable ap-
proximations of the full gradients, i.e., they are in ex-
pectation suitable descent directions at the current it-
erate with a reduced variance, it is quite likely that

from the inverses of the eigenvalues of the matrices
T j and T

−1
j P j , that are the Ritz-like and harmonic

Ritz-like values, useful approximations of the inverse of
the local Lipschitz constant of ∇F can be obtained for
the new sweep of iterations. For simplicity, we refer in
the following to the Ritz-like values, but, similarly, the
same considerations hold for harmonic Ritz-like values.
We observe that, in addition to the drawbacks high-
lighted in the deterministic context, in this case Gj is
only an approximation of Gj and, as a consequence,
non-positive Ritz-like values can arise. As in the de-
terministic case, these values can be discarded, by re-
moving also the oldest back stochastic gradients from
Gj . As a consequence, fewer than m Ritz-like values
λi, i = 1, . . . ,mR, mR ≤ m, can be available. Fur-
thermore, in order to avoid line search techniques, it is
convenient to consider only the values λi belonging to a
prefixed range [ 1

αmax
, 1
αmin

), where αmax > αmin > 0.
In particular, we redefine

λi ← max

(
1

αmax
,min

(
λi,

1

αmin

))
, i = 1, ...,mR,

(21)

and we eliminate the values λi = 1/αmin, reducing
again mR and discarding all the stochastic gradients
giving rise to these values. If mR = 0, a tentative
steplength α ∈ (αmin, αmax] can be adopted for a sweep
of length 1. This reference value is also used at the first
iterate. If mR > 0, the steplengths in the next sweep
are defined as

αj+m+i =
1

λi
, i = 1, ...,mR. (22)

A similar procedure involving the harmonic Ritz-like
values enables us to define alternatively the steplengths
in the next sweep as

αj+m+i =
1

λi
, i = 1, ...,mH . (23)

We remark that, in view of Th. 3.3 in [6], the positive
harmonic Ritz-like values are greater or equal than the
corresponding Ritz-like values; as a consequence, the
rule (23) generates shorter steplengths with respect to
the ones defined by (22). The alternate use of different
rules to generate long and short stepsizes in the full gra-
dient methods has been deeply investigated (see, for ex-
ample, [7,20,11]), showing a large increase in their prac-
tical performance. Also in the stochastic framework, we
can explore an alternate use of the Ritz-like and har-
monic Ritz-like values. A first approach can be to sim-
ply toggle the use of the Ritz-like values to the one of
the harmonic Ritz-like values at each sweep (Alternate
Ritz-like values or A-R).
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A second strategy may be to link the choice between
Ritz-like and harmonic Ritz-like values to the selection
of the size of the current subsample. We discuss in de-
tails this selection. A crucial point is how to check when
the stochastic gradients assembling the matrix Gj can
be considered acceptable estimates of the corresponding
gradients. Inspired by the adaptive sampling technique
in [2], the variance can be monitored by a suitable in-
crease of the sample size nk. More precisely, the inner
test condition (7) can be imposed on the sample size
nk. Since the left hand side term of (7) is bounded from
above by the true variance of individual gradient, the
condition (7) holds when the following exact variance
inner product test is satisfied:
E[(∇fi(x(k))T∇F (x(k))− ‖∇F (x(k))‖2)2]

nk
≤

≤ θ2‖∇F (x(k))‖4. (24)

In order to implement condition (24), the variance can
be approximate with the sample variance

Vari∈Sk
(∇fi(x(k))T∇F (x(k)))

and the gradient ∇F (x(k)) on the right side with a sam-
ple gradient, so that the approximate inner product test
is given by the following condition

(
∑
i∈Sk

(∇fi(x(k))T g(nk)
k − ‖g(nk)

k ‖2)2

nk(nk − 1)
≤ θ2‖g(nk)

k ‖4.

(25)

When this condition is not satisfied by the current sam-
ple size, the sample size is increased so that (25) is sat-
isfied. With regard to the orthogonality test, a sufficient
condition for (8) is the following exact variance orthog-
onality test :

E[‖∇fi(x(k))− ∇fi(x
(k))T∇F (x(k))
‖∇F (x(k))‖2 ∇F (x(k))‖2]
nk

≤

≤ ν2‖∇F (x(k))‖2. (26)

As for the previous test (24), a practical variant, named
approximate variance orthogonality test, based on the
sample approximation can be formulated as follows∑

i∈Sk
‖∇fi(x(k))−

∇fi(x(k))T g
(nk)

k

‖g(nk)

k ‖2
g
(nk)
k ‖2

nk(nk − 1)
≤ ν2‖g(nk)

k ‖2.

(27)

In order to choose a new sample size nk when the con-
ditions (25) and (27) are not satisfied, we can compute

Z1 =
Vari∈Sk

(∇fi(x(k))T g(nk)
k

θ2‖g(nk)
k ‖4

,

Z2 =
Vari∈Sk

(∇fi(x(k))−
∇fi(x(k))T g

(nk)

k

‖g(nk
k )‖2

g
(nk)
k )

ν2‖g(nk)
k ‖2

(28)

and set nk = min(dmax(Z1, Z2)e, n). We observe that,
when at the iteration k the size of the sample increases,
the stochastic gradients previously stored are related to
subsamples of lower size; then, we propose to discard
the available Ritz-like values and to exploit the cur-
rent stored stochastic gradients to determine a set of
harmonic Ritz-like values. Indeed this strategy, named
Adaptive Alternation of Ritz-like values (AA-R), leads
to shorter steplengths in this transition phase.

The approximated version (25)-(27) of the augmented
inner test is a way to choose the size of the subsample at
the current iteration with the aim to control the good-
ness of the estimate g(nk)

k of the full gradient ∇F (x(k)),
but other approaches in literature can be found, as for
example the norm test in [4,5,13], or the rule based
on the matrix Bernstein inequality [18, Th. 6.1.1, Cor.
6.2.1] (see [5,1]). We followed the strategy based on
the conditions (25) and (27) since numerical experience
highlights that they are not too restrictive, slowly in-
creasing the sequence {nk}.

4 Numerical Experiments

In order to evaluate the effectiveness of the proposed
steplength rule for SG methods, we consider the opti-
mization problems arising in training binary and multi-
labels classifiers for the following well known data-sets:

– the MNIST data-set of handwritten digits, catego-
rized in 10 classes (downloadable from http://
yann.lecun.com/exdb mnist), commonly used for
testing different systems that process images; the
images in gray-scale [0, 255] are normalized in the
interval [0, 1] and centered in a box of 28 × 28 pix-
els; the data-set contains 60, 000 images for training
whereas further 10, 000 images can be used for test-
ing purposes;

– the web data-set w8a downloadable from https://
www.csie.ntu.edu.tw/ ~cjlin/libsvmtools/
datasets/binary.html, containing 49749 examples,
partitioned in 44774 samples for training and 4975

for testing; each example is described by 300 binary
features.

We consider two kinds of problems, the first relating
to convex objective functions and the second involving
a non-convex objective function. In the case of convex
minimization problems, a binary classifier is searched
for the data-sets MNIST and w8a. For the MNIST
data-set, the two classes are the even and odd digits.
In the non-convex case, the objective function arises
from the design of a multi-class classifier for theMNIST
data-set. In both kinds of problems, a regularization
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term was added to the loss function to avoid overfit-
ting.

4.1 Convex problems

We built linear classifiers corresponding to three differ-
ent convex loss functions. Thus the minimization prob-
lem has the form

min
x∈Rd

Fn(x) +
δ

2
‖x‖22, (29)

where δ > 0 is the regularization parameter. By denot-
ing as ai ∈ Rd and bi ∈ {1,−1} the feature vector and
the class label of the i-th sample, respectively, the loss
function Fn(x) assumes one of the following form:

– logistic regression (LR) loss:

Fn(x) =
1

n

n∑
i=1

log
[
1 + e−bia

T
i x
]
;

– square loss (SL):

Fn(x) =
1

n

n∑
i=1

(1− biaTi x)2;

– smooth hinge loss (SH):

Fn(x) =
1

n

n∑
i=1


1
2 − bia

T
i x, if biaTi x ≤ 0

1
2 (1− bia

T
i x)

2, if 0 < bia
T
i x < 1

0, if biaTi x ≥ 1.

We compare the effectiveness of the following schemes:

– SG with a fixed mini-batch size in the version with
fixed steplength, denoted by SG mini;

– methods using Ritz-like values to adaptively select
a suitable steplength; in particular, we consider:
– Alternate Ritz-like values in the scheme denoted

by A-R, which toggles the use of the Ritz-like
values to the one of the harmonic Ritz-like values
at each sweep;

– Adaptive Alternation of Ritz-like values in the
scheme denoted byAA-R; in this method, when
at the iteration k the size of the sample increases,
we discard the available Ritz-like values and we
exploit the current stored stochastic gradients to
determine a set of harmonic Ritz-like values.

For both methods, an adaptive strategy is used for
increasing the mini-batch size, as detailed in Section
3.2. In all the numerical simulations, we set θ = 0.7

in (25) and ν = 7 in (27).

In all the numerical experiments, carried out in Matlabr

on 1.6 GHz Intel Core i5 processor, we use the following
setting:

– the regularization parameter δ is equal to 10−8;
– in SG mini the size of the mini-batch is set as
|Sk| = |S| = 50 for all k ≥ 0;

– in A-R and AA-R methods, the size of the initial
mini-batch is |n0| = 3; furthermore the maximum
length of the sweep is set as m = 3;

– each method is stopped after 10 epochs, i.e., after
a time interval equivalent to 10 evaluations of a full
gradient of Fn or 10 visits of the whole data-set; in
this way we compare the behaviour of the methods
in a time equivalent to 10 iterations of a full gradient
method applied to Fn(x).

In the following, we report the results obtained by the
considered methods on the MNIST and w8a, by using
the three loss functions (logistic regression, square and
smooth hinge functions). For any numerical simulation
we perform 10 runs with the same parameters, but leav-
ing the possibility to the random number generator to
vary. Indeed, due to the stochastic nature of the meth-
ods, the average values in different simulations provide
more reliable outcomes. In particular, for any numerical
test, we report the following results:

– the average value of the optimality gap Fn(x)−F∗,
where x is the iterate obtained at the end of the 10
epochs and F∗ is an estimate of the optimal objec-
tive value; this value is obtained by a full gradient
method with a huge number of iterations;

– the related average accuracy A(x) at the end of the
10 epochs with respect to the testing set, i.e., the
percentage of well-classified examples.

First of all, we determine by a trial procedure the best
steplength αOPT for the standard SG method, i.e., the
steplength corresponding to the best obtained results.
Indeed, following [3], a suitable steplength for SG mini
is αSG mini = |S|αOPT , where αOPT is a fixed steplength
for the standard SG method.We have tried five differ-
ent steplengths for each combination of standard SG
and data-set. In Table 1, we report the value of the
steplength αOPT corresponding to the best performance
of standard SG in 20 epochs. Furthermore, in order to
highlight the trouble to define a suitable learning rate,
in Figure 1 we show the trend of the optimality gap
for five values of the steplengths in the case of MNIST
data-set with logic regression and square loss functions.
The instability of the standard SG method behavior
with respect to the selection of the steplength moti-
vates the expensive trial process that produces Table
1.
In the following, we report the numerical results of the
comparison between SG mini and A-R and AA-R
methods. In particular, in A-R and AA-R methods,
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Fig. 1 Behaviour of standard SG in 20 epochs on the MNIST data-set, with logistic regression (on the left panel) and
square loss (in the right panel).
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Table 1 Values of the best-tuned steplength αOPT in 20
epochs for the standard SG method in the case of the two
data-sets and the three loss functions.

MNIST w8a
Fn(x) LR SL SH LR SL SH
αOPT 10−3 10−4 10−3 10−1 10−3 5 10−2

different settings of the bounds αmax and αmin are
used:

1. αmin = αOPT 10−2, αmax = αOPT 500;
2. αmin = αOPT 10−3 and αmax = αOPT 500;
3. αmin = αOPT 10−2 and αmax = αOPT 1000;
4. αmin = αOPT 10−3 and αmax = αOPT 1000.

The tentative value of the steplength α is set as 10αOPT .
Figures 2 and 3 show the behaviour of the optimality
gap with respect to the first 10 epochs for MNIST and
w8a, respectively, in the case of the three loss functions.
In particular the dashed black line refers to SG-mini
whereas the red and the blues lines are related to A-R
and AA-R methods respectively in the above specified
four settings. We observe that the results obtained with
the A-R and AA-R methods are comparable with the
ones obtained with the SG mini equipped with the
best tuned steplength. Indeed, the adaptive steplength
rules in A-R and AA-R methods seem to be slightly
dependent on the values of αmax and αmin, making the
choice of a suitable learning rate a less difficult task
with respect to the selection of a good constant value
in standard SG and SG mini methods.

In the Tables 2 and 3, we summarize the setting that
provides the best results for A-R and AA-R methods.
In Tables 4, 5 and 6, we show the final optimality gap
(with respect to the training set) and accuracy (with

Table 2 Values of the setting providing the best results
for A-R method.

MNIST w8a
Fn(x) LR SL SH LR SL SH
α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−7 10−6 10−3 10−6 5 10−4

αmax 1 5 10−2 5 10−1 100 1 25

Table 3 Values of the setting providing the best results
for AA-R method.

MNIST w8a
Fn(x) LR SL SH LR SL SH
α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−6 10−5 10−3 10−6 5 10−4

αmax 1 10−1 1 100 5 10−1 50

Table 4 Numerical results of the considered methods
with Fn(x) given by the logistic regression after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0145 0.890 0.0062 0.901
A-R 0.0263 0.890 0.0165 0.903
AA-R 0.0222 0.893 0.0168 0.903

Table 5 Numerical results of the considered methods
with Fn(x) given by the square loss after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0078 0.892 0.0041 0.890
A-R 0.0163 0.888 0.0109 0.888
AA-R 0.0144 0.890 0.0094 0.888

respect to the testing set) obtained at the end of 10
epochs for the logistic regression, square and smooth
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Fig. 2: Behaviour of the optimality gap in 10 epochs for
SG mini, A-R and AA-R methods in the case of the
MNIST data-set.
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Fig. 3: Behaviour of the optimality gap in 10 epochs for
SG mini, A-R and AA-R methods in the case of the
w8a data-set.
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Fig. 4: Mini-batch size in A-R and AA-R methods on
the MNIST data-set with respect to the iterations.
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Fig. 5: Mini-batch size in A-R and AA-R methods on
the w8a data-set with respect to the iterations.
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Table 6 Numerical results of the considered methods
with Fn(x) given by the smooth hinge loss after 10 epochs.

MNIST w8a
method Fn(x)− F∗ A(x) Fn(x)− F∗ A(x)
SG mini 0.0079 0.897 0.0024 0.907
A-R 0.013 0.896 0.0067 0.904
AA-R 0.0149 0.896 0.0067 0.904

hinge loss functions, respectively, for the best setting.
The final accuracy of the three methods differs at most
to the third decimal digit. This observation can also be
extended to the simulations obtained for A-R and AA-
R methods with the other settings. In Figures 4 and
5 we show the increase of the subsample size in A-R
and AA-R methods in the case of all the convex loss
functions.

Starting with n0 = 3, the size of current subsample is at
least 120 in the case of MNIST data-set and 900 in the
case of w8a data-set at the end of the 10 epochs, much
smaller than the number of sample n of the training
set.
Finally, in Figures 6 and 7, we compare the behaviour
of SG mini and A-R and AA-R methods when the
parameter αSGmini is not the best-tuned value, as in
the previous experiments.

In particular, SG mini method in Figure 6 is carried
out with αOPT replaced by α = 10−5 for logistic re-
gression function and α = 10−5 for smooth hinge loss
function, that is αSGmini = α|S|. In Figure 7, SG mini
is equipped with α = 1 for logistic regression function
and α = 10−5 for square loss function. A-R and AA-R
methods are executed using the four previously speci-
fied settings, with αOPT set as above.

Figures 6 and 7 highligth that a too small fixed
steplength in SG mini produces a slow descent of the
optimality gap; on the other hand, a steplength value
larger than the best-tuned one can cause oscillating be-
havior of the optimality gap and, sometimes, it does
not guarantee the convergence of SG mini method. As
regard A-R and AA-R methods, these approaches ap-
pear less dependent on an optimal setting of the param-
eters and they enable us to obtain smaller optimality
gap values after the same number of epochs exploited
by SG mini.
Furthermore, we observe that in A-R method, the be-
haviour of the optimality gap is more stable than in
AA-R method. Nevertheless, AA-R method can pro-
duce a smaller optimality gap at the end of 10 epochs.

4.2 Some further experiments and remarks on convex
problems

In the previous experiments, A-R and AA-R meth-
ods are equipped with the approximated version of the
augmented inner test, based on sample statistics. For
small samples, the conditions (25)-(27) may not be re-
liable enough in providing a sample size able to control
the errors in the gradient estimates; indeed, in presence
of noise, the norm of the current stochastic gradient
g
(nk)
k can be greater than ‖∇F (x(k)‖, so that the con-
ditions (25)-(27) are verified for many iterations before
producing an increase in the sample size. To prevent
this drawback, in [2], when the sample size does not
change for at least r consecutive iterations, an average
vector of the last r sample gradients is computed:

gavg =
1

r

k∑
j=k−r+1

g
(nj)
j . (30)

When ‖gavg‖ < γ‖g(nk)
k ‖, for a prefixed γ ∈ (0, 1), the

augmented inner product test is performed by replac-
ing the current stochastic vector with the average vec-
tor gavg; the possible consequence is an increase of the
sample size. Typical values for r and γ are 10 and 0.38

respectively. For more details, also on this special set-
ting, see [2]; here, this practical procedure is viewed as a
recovery strategy to improve the stability of SGmethod
equipped with a line search rule for providing a suitable
steplength. On the other hand, after some epochs, the
effectiveness of the method can degrade for faster in-
crease of the sequence {nk}, although the adoption of
the recovery procedure makes smaller the total number
of backtracking steps. In order to highlight this remark,
in Figure 8 we shows the results obtained for MNIST
when the problem (29) with logistic regression function
is addressed by SG method equipped with a simple line
search. In particular, we report the optimality gap with
respect to 10 epochs when the augmented inner product
test is coupled with the recovery procedure (magenta
line) and without this recovery procedure (green line).
In the latter case, the final sample size is 48 with a large
number of backtracking steps (2700), while in the for-
mer one the sample size increases until 3300 with very
few backtracking steps (110). As a consequence, the re-
covery procedure appears crucial for the control of the
effectiveness of the line search and the sequence {nk}.
The numerical results of the previous section show that
A-R and AA-R methods are less dependent on the
lack of reliability of the augmented inner product test
for small values of nk. Nevertheless, we can introduce
the recovery procedure when the computation of Ritz-
like values gives rise to mR = 0 and the steplength at
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Fig. 6 Comparison between SG-mini with respect to A-R and AA-R in 10 epochs on the MNIST data-set.
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(a) Logistic regression loss with smaller steplength than the best-tuned
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(b) Smooth hinge loss with smaller steplength than the best-tuned

Fig. 7 Comparison between SG-mini with respect to A-R and AA-R in 10 epochs on the w8a data-set.
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the next iteration is set to a tentative value α. More
precisely, when this situation occurs, if the sample size
has not changed in the last r iterations, the novel sam-
ple size is determined by using the approximated aug-
mented inner product test with g

(nk)
k replaced by the

average vector (30). In Figures 9 and 10, we show the
behaviour of the optimality gap obtained by using the
modified versions of A-R and AA-R methods and SG
method equipped with the line search rule for MNIST
and w8a, respectively, in the case of the three loss func-
tions in the objective. The comparison with Figures 2
and 3 allows to observe that the recovery procedure im-
proves the stability of A-R and AA-R methods with
respect to the setting of αmin and αmax, preserving the
effectiveness of the approach. Indeed the accuracy of

the two versions at the end of 10 epochs differs at most
to the third decimal digit. The final value of the sample
size is at most 10 times the one obtained without the use
of the recovery procedure. As already observed in the
previous section, AA-R method allows to obtain bet-
ter results with respect to A-R in most experiments.
Furthermore, we observe that the performance of our
approach appears generally better with respect to SG
with a line search procedure. The comparison is carried
out by considering only the number of scalar products
performed in all methods, that is n scalar products for
each epoch. Indeed, for the considered loss functions,
the computational cost of the evaluation of the stochas-
tic gradient g(nk)

k is essentially given by the nk scalar
products aTi x(k), i ∈ Sk.
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Fig. 8 Behaviour of the optimality gap in 10 epochs for
SG method equipped with a line search rule; magenta
line is related to the version of the method combined with
the recovery procedure while the green line is used for the
version without this procedure. The parameters are chosen
as in [2]. In the experiment, logistic regression is the loss
function and MNIST is the data-set.
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As regard SG method with a line search rule, we ob-
serve that, although the evaluation of an estimate of the
objective function 1

nk

∑
i∈Sk

fi(x
(k)) at x(k) does not re-

quire additional scalar products and it is negligible, the
computation of the same estimate at x(k) − αg(nk)

k re-
quires at least additional nk scalar products. Thus, each
iteration of SG with line search has a computational
cost at least equal to two evaluations of the stochastic
gradient on the same sample. Any backtracking step
increases the count of total scalar products. This pre-
liminary analysis appears to favor schemes that avoid a
line search rule for the determination of the steplength,
also in the case of a few epochs when the sample size
remains low. This topic may be the subject of future
investigations.

4.3 A non-convex problem: a Convolutional Neural
Network

In the non-convex case we consider as loss function an
Artificial Neural Network. In particular, dealing with
image classification, we consider a Convolutional Neural
Network (CNN). The network is composed of an input
layer, two sequences of convolutional and max-pooling
layers, a fully connected layer and an output layer. We
make use of Rectified Linear Unit (ReLU) activations
combined by a softmax function for the output layer
and of a cross entropy as loss function (see Figure 11).
We consider the optimization problem arising in train-
ing a multi-class classifier for the MNIST data set.
We compare the effectiveness of the same methods con-

sidered in the previous section, i.e., SG mini, A-R
and AA-R methods. In all the numerical experiments
we use the following setting:

– regularization parameter δ = 10−4;
– the first convolutive layer is composed by 64 filters,

each filter has 5 × 5 dimension; after we apply a
max-pooling of size 2× 2;

– the second convolutive layer is composed by 32 fil-
ters, each filter has 5× 5 dimension; after we apply
a max-pooling of size 2× 2;

– in SG mini, the size of the mini-batch, is set as
|S| = 50;

– inA-R andAA-Rmethods, the length of any sweep
is at most m = 3; furthermore, θ = 0.7 in (25) and
ν = 7 in (27) for all the numerical simulations;

The numerical experiments were carried out in Matlabr

on Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 8
CPUs.
In the Figure 12 we can observe the different accuracies
(with respect to the testing set) provided by the CNN
trained with SG mini in 5 epochs; the fixed steplength
is set to values between 0.001 and 0.9. As we can see, the
method provides effective results for α = 0.5; a similar
accuracy is obtained for α = 0.1. In cases with smaller
steplengths, the accuracy in 5 epochs is unsatisfactory,
while a higher steplength can lead to the divergence of
the method. Hence, in a more marked way than the
convex case, for non-convex problems, finding an effec-
tive steplength requires a very expensive trial proce-
dure. Conversely, using a random steplength without a
prior trial phase, can lead to inaccurate results due to
slow convergence or divergence of the method.

In Figure 13 we report the results obtained by train-
ing the CNN with the A-R and AA-R methods. In
particular we show the behaviour of the accuracy with
respect to the testing set in the first 5 epochs with the
following settings:

– for A-R method, αmin = 10−3, αmax = 1, n0 = 10;
– for AA-R method, αmin = 10−2, αmax = 1, n0 = 3.

The parameter α is set as 0.1 in all cases. We observe
that A-R appears more robust with respect to the am-
plitude of the interval where αk can belong. Further-
more, we notice that the subsample size increases up to
a maximum of 204 and 182 inA-R andAA-Rmethods
respectively.

5 Conclusions

In this paper we proposed to tailor the steplength se-
lection rule based on the Ritz-like values, used success-
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Fig. 9: Behaviour of the optimality gap in 10 epochs for
the versions of A-R and AA-R methods using with the
recovery procedure and SG equipped with a line search
rule in the case of the MNIST data-set.
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Fig. 10: Behaviour of the optimality gap in 10 epochs for
the versions of A-R and AA-R methods using with the
recovery procedure and SG equipped with a line search
rule in the case of the w8a data-set.
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Fig. 11 Artificial Neural Network structure
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Fig. 12 CNN Accuracy in the SG mini case
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Fig. 13 Accuracy obtained by training the CNN with A-
R and AA-R methods.
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fully in the deterministic gradient schemes, to a stochas-
tic scheme, recently proposed by Bollapragada et al.
[2]. This SG method includes an adaptive subsampling
strategy, aimed to control the variance of the stochas-
tic directions. We observed that the theoretical prop-
erties of this approach hold under the assumption that
the steplength selection rule obeys to the assumption
αk ∈ (αmin, αmax], where αmax is proportional to the
inverse of the Lipschitz parameter of the objective func-
tion gradient. Consequently, we reformulate the proce-
dure for obtaining the Ritz-like values in the stochastic
framework, by using the stochastic gradients instead of
the standard gradients. It is required that these stochas-

tic directions, although based on different subsamples,
satisfy two conditions (the inner product test and the
orthogonality test), ensuring the descent property in
expectation. In particular, we proposed two different
ways to select the current steplength, by simply tog-
gling the Ritz-like values with the harmonic Ritz-like
values (A-R method) or using the harmonic Ritz-like
values only when the size of the subsample is increased
(AA-R method). The numerical experimentation high-
lighed that the proposed methods enable to obtain an
accuracy similar to the one obtained with SG mini-
batch with fixed best-tuned steplength. Although also
in this case it is necessary to carefully select a thresh-
olding range for the steplengths, the proposed approach
appears sligthly dependent on the bounds imposed on
the steplengths, making the parameters setting less ex-
pensive with respect to the SG framework. In conclu-
sion, the proposed technique provides a guidance on the
learning rate selection and it allows to perform simi-
larly to the SG approach equipped with the best-tuned
steplength.
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