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We present experimental and theoretical studies of spin-wave mode dynamics in artificial Kagome
spin ice vertices made of three identical 15-nm thick elongated Ni80Fe20 nano-islands (macrospins).
We consider several possible configurations, from completely disjointed macrospins (full dipolar
inter-element interactions) to fully jointed macrospins (full dipolar-exchange interactions). Using
angular-resolved magnetic field dependent broadband ferromagnetic resonance (FMR), we demon-
strate the occurrence of a mode localized in the vertex region as indicated by the distinct behavior
of the FMR spectra at different angles and configurations. Theoretical calculations using micromag-
netic simulations support the existence, origin, and behavior of this mode by interpreting it as a
localized, quasi-uniform Kittel mode. Our findings pave the way for designing the most appropriate
network consisting of ferromagnetic nanomagnets for specific application purposes in magnonics.

INTRODUCTION

Artificial spin ice (ASI) networks were introduced as
auxiliary model systems to simulate elementary atomic
spin arrangements at a larger scale. They have become
an independent research subject in the field of magnon-
ics – a research area that studies spin waves in magnetic
micro- and nanostructures – since they consist of peri-
odic arrangements of magnetic nanoelements, i.e., they
are the ideal framework for the study of spin wave Bragg
diffraction1–9.

These magnetic nanoelements are given an elongated
shape such as to facilitate a bi-stable magnetic behavior,
in analogy to the spin-up/spin-down behavior of atomic
spins. For this reason they are referred to as macro-
spins10. The macrospins mainly interact close to the ver-
tex region by dipolar interaction and, when in contact,
also by exchange interaction11–15. The detailed under-
standing of either their static magnetic configurations,
mimicking the frustrated state of a crystalline spin ice,
and particularly their dynamic behavior, with the ability
to control spin wave propagation channels, is currently
attracting increasing attention: In recent years, numer-
ous works on ASI have focused on different aspects of
either the statics (magnetic configurations)5,16,17 or the
dynamics (spin modes)18–20 in the networks. In these
most recent works, ASI have been realized by disjointed
macrospins or jointed macrospins. However, the main
focus of these previous works on jointed networks were
issues related to macrospin switching, and studies on the
dynamics the main findings were concerned with mag-
netization oscillations at the center of each macrospin.
Presumably, this can be attributed to the fact that the
largest signal in the experiments originates from this
‘bulk’-like mode, while the distinct dynamics at the ver-
tex when two or more lattice elements are put into con-
tact have mostly been overlooked so far. In terms of

contacted macrospins, Bhat et al. discussed the mode
dynamics and the importance of the links among the
macrospins, but no evidence (theoretical or experimen-
tal) for the existence of specific oscillations localized
at the vertices were found11. Other works on jointed
macrospin lattices mainly focused on the formation of

FIG. 1. (a) Sketch of experimental setup. Angular-resolved
magnetic field dependence of ferromagnetic resonance is
recorded using a coplanar waveguide. The vertex macrospins
are patterned directly on top of the signal line. The right
panel shows the different thin-film layers as described in the
text. Note that the thicknesses are not to scale. (b) Different
configurations for the vertex macrospins explored in experi-
ment and micromagnetics.
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domain walls leading to macrospin reversal across the
network and the involved statics, and less so on the spin-
wave dynamics.12–14 Furthermore, Montoncello et al. dis-
cussed the connection between the domain wall charge
drift and a localized soft spin-wave mode in the context
of magnetization reversal.15

Here, we show the existence of a specific mode relevant
to the contact area between two or more macrospins.
This mode is localized at the vertex center and con-
tributes to a distinct behavior in the ferromagnetic res-
onance (FMR) spectra, which allows us to deduce the
macrospin configuration just by inspecting the FMR
spectra. It is found that the existence of this peculiar
mode is critically dependent on the in-plane field orienta-
tion. We describe its behavior depending on the geomet-
ric features chosen either at the design stage (connecting
ASI elements in the fabrication) or operating stage (vari-
ation of the direction of the applied field). Our findings
reveal a guideline on how to design the most appropri-
ate network consisting of ferromagnetic nanomagnets for
specific magnonic device applications such as spin-wave
conduits or microwave filters.

SAMPLE GEOMETRY AND MICROMAGNETIC
SIMULATIONS

To interpret the experimentally acquired spectra, we
performed micromagnetic simulations using the graphic
processing unit (GPU) accelerated software mumax3 [21].
From a geometrical point of view, the samples consist
of three equivalent flat cylinders with a thickness of
15 nm and an elliptical cross section (500 × 200 nm2),
and were discretized into elemental cells of 5 × 5 × 15
nm3. In the magnonics and spin-ice community, these
elements are typically referred to as ‘islands’; in the
following, we call them macrospins. Standard mag-
netic parameters for permalloy (Ni80Fe20, Py) (satu-
rated magnetization Ms = 700 kA/m, exchange stiff-
ness parameter A = 10 pJ/m, gyromagnetic ratio γ =
185 rad GHz/T) were used. We studied five different
configuration/arrangements of macrospins as shown in
Fig. 1: in the first configuration the elements are com-
pletely separated (Type A). Three configurations (Type
B, C, D) have two out of three ellipses overlapping at
the inner edges, and in the last configuration all three
ellipses are overlapping at the inner edges (Type E), i.e.,
the elements are connected at the vertex.
To break any artificial symmetry due to the micromag-
netic approach and meet the realistic experimental con-
ditions, we considered a constant angular offset of +1◦

(hence, corresponding to the nominal angle of 0◦). The
calculations considered a magnetic field µ0H going from
−150 mT to 150 mT in steps of ∆H = 1 mT. For each
field value, a uniform magnetic field pulse:

b(t) = b
sin 2πf0(t− t0)

2πf0(t− t0)

with b = 10 mT and f0 = 15 GHz was applied in the out-
of-plane direction to excite the eigenmodes in the ASI
system. In a subsequent step, the dispersion relation was
obtained by the absolute value of the Fast Fourier Trans-
form for the time evolution of the out-of-plane average
magnetization. The spatial profiles that we will show in
the following are the real part of the Fast Fourier Trans-
form of each cell in the simulated area at a given combi-
nation of frequency and externally applied field.

EXPERIMENTAL METHODS

In the following, the sample fabrication and ferromag-
netic resonance (FMR) measurement technique are in-
troduced.

Sample fabrication

The samples were fabricated in the following fashion.
In the first step, a 50-Ω matched coplanar waveguide
(CPW) made of Ti/Au (5 nm/120 nm) was fabricated
by using electron beam evaporation and photolithogra-
phy on intrinsic Si substrates having a 300 nm SiO2 layer;
the latter insures electrical isolation from the CPW; see
Fig. 1. The signal line at the center of the CPWs has
a width of 20 µm, and the two ground lines are 40-µm
wide, while the spacing between the central line and each
ground line is 8 µm. Arrays of artificial Kagome spin ice
vertices (a distance of 1.39 µm between individual ver-
tices was chosen so that they do not interact) were de-
fined on the top of the signal line using electron beam
lithography22. A double layer positive resist of poly-
methyl methacrylate was spin-coated on the CPW prior
to electron beam exposure. After exposure and devel-
opment, thin Ti and Au adhesion layers were deposited
together with 15-nm of Py without capping layer using
electron beam evaporation followed by lift-off, thereby
creating three identical elongated islands to form artifi-
cial Kagome spin-ice vertices. A sketch of the thin-film
layer stack is shown as an inset in Fig. 1(a). The thick-
nesses of the deposited materials were monitored by a
quartz crystal microbalance during the evaporation: the
rates were 0.2 Å/sec for Ti, 1.4 Å/sec for Au, and 0.4
Å/sec for Py, respectively. The pressure in the chamber
during the metal depositions was 3 × 10−7 Torr.

Details on FMR measurements

The experimental data were obtained using a fully au-
tomated home-made microwave probe station that allows
for a variation of the in-plane magnetic field. A vector
network analyzer (Keysight N5225A) connected via pi-
coprobes to the CPW (Fig. 1) was used to record the
transmission parameter S21. A background signal at
a large magnetic field (above the measured field range)
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FIG. 2. Top illustrations: (A) - (D) various artificial Kagome spin-ice vertices studied by broadband ferromagnetic resonance
(FMR) and micromagnetic simulations. Middle panel: False color-coded images of the experimentally acquired FMR spectra
measured at θ = 0◦, see field direction µ0H with respect to the vertex in inset above top panel. In θ = 0◦ configuration, due to
symmetry, the vertex center mode (VCM) appears only in case E and D. Lower panel shows the results of the corresponding
micromagnetic simulations in color-coded images.

was taken and subtracted from the actual spectra. The
magnetic-field independent signal, visible as horizontal
lines at higher frequencies are due to the subtraction of
this background spectrum. However, we point out that
these field-independent traces do not affect the analysis
and interpretation of the experimental data.

RESULTS

The experimental FMR results at 0◦ are shown in
Fig. 2 (middle panel). In general, the main curves in
the spectra are due to the fundamental (F) modes of
each macrospin23,24, and depending on the orientation
of the macrospin with respect to the applied magnetic
field direction and the consequent demagnetizing fields,
the lowest frequency curve belongs to the macrospin that
is the least aligned with the field direction [i.e. the el-
liptical island with the largest angle of its major axes
with respect to the applied magnetic field, as can be seen
in Fig. 3(a) and (c)], while the highest frequency mode
corresponds to the most aligned one [Fig. 3 (b) and (d)].

In Ref. [24] we introduced the effective gyromagnetic
ratio as

γeff =
∂ω

∂B
=

2π

µ0

∂f

∂H
, (1)

which offers a practical way to analyzing the FMR spec-
tra, where ω is the angular frequency, f is the linear fre-
quency and H is the magnetic field. At any given H, the

slope ∂f
∂H of a FMR curve is an indication of the average

direction of the magnetic moment density <M > inside
a macrospin and its evolution as the field is varied. Due
to shape anisotropy, a larger slope γeff corresponds to a
more aligned <M > with respect to the macrospin long
axis. Depending on the vertex type (A, B, C, D or E in
Fig. 1), at special angles (θ = 0◦ and/or θ = ±N × 60◦

with integer N) two macrospins occur symmetrically with
respect to the given field direction and are hence indistin-
guishable (at least in principle) from each other: in such
cases (e.g., Figs. 2, A and E) there are only two curves
detectable in the FMR spectra, one being particularly
intense due to the larger magnetic area (two macrospins)
involved in the oscillation [i.e., modes in Figs. 3(a) and
(c)]. In the others cases, the spectra show three different
curves, corresponding to the three fundamental modes
localized in each of the three macrospins, being inequiv-
alent. In the FMR spectra of cases B and C (Fig. 2), the
splitting of the lowest curve is barely visible, which is con-
sistent with the fact that bulk modes must depend only
weakly on the condition of the macrospin edges. Other
differences in the measured spectra are due to unavoid-
able intensity variations caused by a change of the cou-
pling strength of the magnetization and the microwave
field generated by the different CPWs, and not due to
actual underlying physical effects.

In case E and D, a new curve appears, which is actually
the lowest frequency curve, and will not be interpreted
as a bulk mode. Comparison with the micromagnetic
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FIG. 3. Type A [insets (a) and (b)] and Type E [insets (c) and
(d)] bulk modes for the case θ=0◦. Being symmetric to the ap-
plied field direction, both the oblique macrospins oscillate at
the same frequency [insets (a) and (c)], while the macrospin
parallel to the field direction oscillates independently, at a
higher frequency [panel (b) and (d)]; when no symmetry is
present, each macrospin has a different frequency, so that
modes (a) or (c) split into two separate ones. The undula-
tion of the mode profile is the consequence of a hybridization,
an inherent effect in calculations, particularly evident in in-
sets (b) and (d). All these modes are fundamental in the sense
that the undulations never involve negative phases, and hence
are expected to give large FMR signals.

simulations (lower panel in Fig. 2) reveals that this curve
corresponds to a localized mode residing at the vertex
center. The reason why this mode is visible in D but not
in B or C will be given below, along with details on the
origin and behavior of this mode.

The simulated spectra show more curves aside from
the main ones, which must be considered as replica due
to higher order modes, i.e., modes having nodal lines,
and consequently lower intensity and strength: for this
reason, they are not detected in the experiments, though
in the simulations they seem to broaden the signal in-

FIG. 4. Comparison between experimental (gray scale) and
calculated (lines) f(µ0H) curves for separated (Type A, left)
and joint (Type E, right) configurations, for nominal θ = 0◦,
i.e. applied field parallel to the x -direction.

tensity [see for example Fig. 2(A), where two curves are
expected].

In the simulations, the tiny curves at the lowest fre-
quencies are end modes, localized in narrow regions close
to the ends of the macrospins, and that is why they have
a weak intensity (barely visible in simulations and not
detected at all in the experiments).

To demonstrate the agreement with the experimental
FMR data, we plot in Fig. 4 the superposition of the theo-
retically expected f(µ0H) curves (straight lines) and the
measured data (false-color coded images) for θ = 0◦ for
both systems A and E. At H = 0 the three macrospins
must be in their Ising-saturated condition (i.e., magne-
tization aligned with the macrospin axis) and the fun-
damental modes of the three macrospins should be at
the same frequency (at about 6 GHz). On average this
is confirmed by the experimental data. However, as far
as the simulations are concerned, at H = 0 the lower
curve [corresponding to the modes (a) or (c) in Fig. 3]
is not exactly crossing the upper curve [corresponding to
the modes (b) or (d) in Fig. 3]. This can be understood
as follows: the micromagnetic sample is not perfectly
symmetric for a rotation by 120◦, due to the intrinsic
incompatibility of this angle with underlying square-cell
micromagnetic mesh.

The lowest lying curve in the spectrum of system A
shown in Fig. 4(A) (left panel) corresponds to the bulk
mode shown in Fig. 3(a), while the upper curve corre-
sponds to Fig. 3(b). On the other hand, the spectrum of
system E shown in Fig. 4(E) (right panel) features three
dispersion curves, the one in the middle being particu-
larly intense and corresponding to the mode in Fig 3(c),
the upper curve corresponding to the mode in Fig 3(d),
and the low-lying frequency curve corresponding to a
mode localized at the vertex center. This vertex-center
mode is discussed in more detail below.

Variation with the applied magnetic field angle

The spectra were collected with the field at θ =
0◦, 15◦, 30◦, 45◦ (see Figs. 2, 5, 6, 7). Due to symme-
try, the cases B(−60◦), C(+60◦), and D(−180◦) would
be equivalent and indistinguishable in principle in FMR
spectra (apart from experimental errors due to pattern-
ing imperfections). In each spectrum, the specific behav-
ior of a frequency curve is an indication of the orienta-
tion of the corresponding macrospin (where the oscilla-
tion occurs) with respect to the applied magnetic field.
As remarked in Refs. [24] and [25], as far as the fun-
damental modes are concerned, the macrospins behave
largely independently of each other, and hence the full
FMR spectrum can be thought of as the superposition of
the single frequency curves of each single macrospin, as
taken alone. In particular, in those works it was demon-
strated that, when the field is applied at an angle lower
than 45◦ with respect to the macrospin axis, the corre-
sponding fundamental mode dispersion is almost linear.
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FIG. 5. FMR spectra for nominal θ = 15◦. Top illustrations: (A) - (D) various artificial Kagome spin-ice vertices studied
by broadband FMR spectra and micromagnetic simulations. Middle panel: False color-coded images of the experimentally
acquired FMR spectra. Lower panel shows the results of the corresponding micromagnetic simulations in color-coded images.
White arrows in middle panel E indicate the experimental evidence for a splitting of the curves discussed in the text and by
simulations shown in bottom panel E.

When the angle is around 75◦, the curve initially (i.e., at
high field values) shows a linear behavior and then (on
approaching zero field) reaches a plateau. When the an-
gle gets very close or equal to the critical value of 90◦,
the frequency curve displays a W -shape behavior24,25.

If the field is applied at 30◦, two of the three
macrospins will behave identically, and will be degen-
erate in frequency, while the other one will behave like a
macrospin with the field perpendicular to its axis (hence,
producing the typical W -shape curve). These observa-
tions are of great help in analyzing the FMR spectra
qualitatively by eye.

As far as the number of dispersion curves in the FMR
spectra are concerned (Figs. 2, 5, 6, and 7), we remark
that when the applied field is oriented at 0◦, in Type A,
E and D samples, two out of three macrospins are sym-
metric and their corresponding fundamental modes de-
generate, while the third macrospin is inequivalent and
gives its own particular curve, so that one can find two
main FMR curves; moreover, if at least two macrospins
are in contact (i.e., only for Type E and D) an additional
curve is found, relative to the vertex center mode (a lo-
calized mode, discussed in detail below). Similarly, at
30◦ (Fig. 6) two out of three macrospins are equivalently
tilted 30◦ with respect to the applied field, while the third
one is perpendicular to the field: limiting our discussion
to the fundamental modes only, this implies again two
main curves. At 15◦ (Fig. 5) and 45◦ (Fig. 7), the sym-
metry is broken and we see three curves corresponding

to the dispersions of the three independent fundamental
modes of the three macrospins, which in these configu-
rations are no longer equivalent. Details of the specific
shape of the curves (linear, sub-linear or reaching a min-
imum before increasing with field again in a “W-shape”)
are extensively discussed in Ref. [25]. These symmetry
considerations are also directly applicable to the experi-
mental data; however, in contrast to the micromagnetic
simulations, the effective coupling of the microwave mag-
netic field changes as the in-plane angle is rotated. This
stems from the fact that the direction of the microwave
magnetic field is fixed (in y-direction), while the direction
of H is changed.

The vertex center mode

The most important finding of this work is the exis-
tence of a spin-wave mode localized in the vertex region
of sample E (jointed macrospins) that is not present in
sample A (entirely separated macrospins), and can be
found in sample B, C, D only depending on special con-
ditions discussed below. Our interpretation is that this
new localized mode is the Type E counterpart of the in-
ner end mode [Fig. 8(c)] of sample A, but merged to
the vertex center as a consequence of the merging of the
macrospins.

What might have been the inner end mode in sam-
ple E has merged at the center into a new, single mode:
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FIG. 6. FMR spectra for nominal θ = 30◦. Top illustrations: (A) - (D) various artificial Kagome spin-ice vertices studied
by broadband FMR spectra and micromagnetic simulations. Middle panel: False color-coded images of the experimentally
acquired FMR spectra. Lower panel shows the results of the corresponding micromagnetic simulations in color-coded images.

FIG. 7. FMR spectra for nominal θ = 45◦. Top illustrations: (A) - (D) various artificial Kagome spin-ice vertices studied
by broadband FMR spectra and micromagnetic simulations. Middle panel: False color-coded images of the experimentally
acquired FMR spectra. Lower panel shows the results of the corresponding micromagnetic simulations in color-coded images.

the vertex center mode (VCM). Differently from ordi-
nary end modes localized in narrow regions close to the
macrospin ends, the VCM resides in a rather extended
region [(Fig. 8(c)], and this effect is a consequence of the
exchange interaction which prevails over the dipolar one.

The exchange interaction, indeed, increases the coherence
of the spin oscillation to a wider area, and allows the oc-
currence of a quasi-uniform mode localized at the vertex
center. This fact also explains the strong signal of VCM
in the FMR response, both in the calculations as well
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FIG. 8. 2D maps of the internal field profiles calculated
at µ0H = 80 mT (θ=0◦) for (a) Type A and (b) Type E
configurations: white corresponds to minimum value, black to
maximum value (arb. units); the black color is saturated to
allow the visualization of the profile of the minima. Note that
these minima correspond to the zone where the magnetization
is mostly misaligned to the applied field; in (b) minima at the
vertex center are shallower than in (a) and more uniform,
due to the action of exchange interaction which keeps the
magnetic moments less misaligned, and pushes the mode to a
higher frequency with a wider extension. The corresponding
spatial profiles of the dynamic magnetization for both cases
is shown in (c) and (d).

as in the experiments. Furthermore, the exchange inter-
action considerably raises the overall VCM frequency in
the jointed case E (around 8 GHz at µ0H = −100 mT),
compared to the frequency of the inner end mode in the
disjointed case A (around 6 GHz at µ0H = −100 mT).
Hence, differently from ordinary end modes of saturated
samples26, the VCM frequency is very close to the fre-
quency of the bulk modes.

The localization of the low frequency excitations can
be explained by the confinement that the magnetic oscil-
lations experience in the minima of the internal effective
field Heff (the sum of the applied field with the demag-
netizing and exchange fields). In Fig. 8, we illustrate the
strict correlation between Heff (x, y) [panel (a) and (b)]
and the low frequency profile of the dynamic magnetiza-
tion δm(x, y) [Fig. 8, panel (c) and (d)]. Note that in
panel (a) the internal field at the inner ends is strongly
varying from white to black, and is rather uniform only
very close to the ends, consistent with the non-zero am-
plitude of the mode in panel (c). Conversely, in panel (b)
the internal field is more uniform (the grayscale at the
inner ends is less varying), which is the reason why the
corresponding VCM profile (d) is considerably more ex-
tended. This mode was actually detected in the measured
spectra of sample E (Fig. 4), while completely absent in
sample A. As expected, the frequency at µ0H = −100
mT is very large (around 8 GHz) and close to the bulk
mode frequencies.

FIG. 9. Theoretical Kittel curve (dashed line) for the mode
localized at the vertex center on the experimental (grayscale)
FMR dispersion f(µ0H) in Type E configurations, for nom-
inal θ = 0◦, i.e. applied field parallel to the x -direction. A
similar scenario also applies to sample type B, C, and D pro-
vided that the existence conditions for this mode are met.

Interpretation of VCM as a localized Kittel mode

In order to corroborate the localized nature of the
VCM, we used the analytical formula for a fundamen-
tal Kittel mode27,28 with frequency f = ω/2π and:

f(H) =
γ

2π
µ0

√
Heff (H)[Heff (H) +Ms] (2)

using, for each applied field value H, the values of the in-
ternal effective field Heff calculated with mumax3 in the
region where the mode profile has the largest intensity,
again as calculated by mumax3. We found an almost per-
fect agreement with the experimental data. The results
are plotted in Fig. 9.

VCM existence conditions at different geometric
configurations

As remarked above, the basic existence condition for a
VCM is a contact between two macrospins, at least: this

FIG. 10. Internal field space profiles calculated at µ0H =
−80 mT (θ=0◦) for type B, C and D configurations [(a,d),
(b,e), and (c,f), respectively]: white corresponds to minimum
value, black to maximum value; the black color is saturated
to allow the visualization of the profile of the minima. Note
the extended white area in type D, minimum of Heff (x, y).



8

FIG. 11. Internal field Heff (x, y) space profiles for type E
configuration, calculated at µ0H = −80 mT directed at (a)
0◦, (b) 15◦, (c) 30◦, (d) 45◦; the black color is saturated to
allow the visualization of the profile of the minima. Note that
Heff (x, y) has a minimum at the vertex center only in (a), i.e.
when H0 is applied parallel to a macrospins.

favors an extended area for the minimum of Heff (x, y)
where the mode oscillates with significant amplitude and
consequently a strong FMR signal. In Fig. 10 we show
the correlation between the vertex configurations of B, C,
and D, Heff (x, y) minima [panel (a), (b), (c), respectively]
and the localized dynamic modes [end modes in panel
(d) and (e), VCM in panel (f)]: crucial to that is the
orientation of the disjointed macrospin with respect to
the applied field direction (θ = 0◦ in the figure).

If type E and D configurations are considered (the
same arguments can be made for type B and C, provided
the field orientation is rotated θ = ±120◦ to realize the
type D configuration), the applied field angle becomes
even more important for the VCM formation: we inves-
tigate the occurrence of VCM in type E at the applied
field angles θ = 0, −15◦, −30◦, −45◦, −60◦. The VCM
forms, and has significant strength, only when the ex-
ternal field is applied parallel to a macrospin in type E
configuration [Fig. 11(a)], or to the macrospin that is
separated from the others in type D configuration, Fig.
10(c). This can be understood again by considering the
internal effective field profiles: in Fig. 11 a minimum
effective field localized at the vertex center occurs only
in (a), where H is parallel to a macrospin; in Fig. 10
only in type D configuration, where H is parallel to the
separated macrospin. This effect is the largest when the
vertex has a mirror symmetry with respect to the field
direction. Even in the case when all three macrospins

FIG. 12. The two splitted modes Mode profiles calculated at
µ0H = −50 mT (θ=15◦) for type E configuration: frequency
of (a) is calculated at 5.1 GHz, (b) at 5.6 GHz. These modes
result from the splitting of the fundamental mode starting
above −70 mT. At such angle, the splitting starts above
−70 mT.

are in contact, the minimum occurs in a region belong-
ing to the ends of the macrospins oblique to the applied
field direction (see Fig. 8). Hence, the strength and thus
the FMR intensity of type D and type E for θ = 0◦ are
approximately the same (see Fig. 2).

Note that the fit of the VCM dispersion with the Kit-
tel curve is in excellent agreement for both cases E and
D (also compare to Fig. 9 for case E), and hence it is in-
sensitive to the macrospin parallel to the field that does
not contribute to the extension of the internal effective
field minima. On the other hand, increasing the in-plane
field angle from θ = 0◦ results in progressive distortion of
VCM mode and progressive displacements from the ver-
tex center towards the macrospin bulk. Eventually, the
VCM mode hybridizes with the bulk mode of the upper
macrospin, which gives rise to the lowest frequency curve
in the FMR spectra. This means that the VCM mode
is no longer an independent mode, but coupled to the
bulk mode of the neighboring macrospin. This can also
be seen from corresponding variation of the internal field
in Fig. 11.

To further support this interpretation, we focus the fol-
lowing discussion on Fig. 5, panel E. Experimentally, we
observe that up to around −70 mT only one, wide FMR
curve is present in the spectum, corresponding to a single
excitation. Below that field value, as highlighted by the
white arrows, the curve splits into two branches. We in-
terpret this effect as the splitting of the upper macrospin
fundamental mode into two modes localized within two
complementary halves of the same macrospin, i.e. one lo-
calized close to the vertex center (corresponding to VCM
at a virtual θ = 0◦) the other close to the outer end of
the macrospin (Fig. 12).

DISCUSSION AND CONCLUSIONS

We demonstrated how a direct contact among
macrospins at a vertex of a Kagome ASI affects the spin
dynamics, both by calculations and experiment. The
main finding of our work is the observation of a mode lo-
calized within the contact area – the vertex center mode
(VCM). The VCM arises when at least two macrospins
are in contact. This is a necessary but not sufficient con-
dition: in fact, the contact allows the possibility of an in-
ternal field well that is large enough and rather uniform
(see Fig. 10) to produce an extended localized oscillation
(and not pure end modes). Consequently, this leads to
a large intensity of the VCM. Another crucial degree of
freedom is the field orientation with respect to the vertex:
since minima occur in the region where the magnetiza-
tion is mostly misaligned with the applied field, the VCM
strength is the largest when the field is parallel to one of
the macrospins (i.e., the ASI vertex has a mirror plane
containing the applied field direction). The macrospin
parallel to the field plays a minor role in the VCM local-
ization, meaning that it is not important whether it is
in contact at the vertex or not. On the other hand, it is
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∆fΓM vg
µ0H = 0.08 T 8.0 MHz 6.2 m/s
µ0H = 0.1 T 5.0 MHz 3.9 m/s

TABLE I. Frequency bandwidth ∆fΓM and average spin-wave
group velocity vg of a propagating VCM in a periodic ASI at
different field values.

important that the other two macrospins (oblique with
respect to the field) are in contact with each other.

When considering dense arrays (with a larger number
of macrospins per fixed volume), we note that as the na-
noelement size is lowered, the internal field becomes so
inhomogeneous that the formation of a fundamental-like
mode is not possible anymore. This is because of a lack
of a plateau in the internal field distribution, and as a
result the mode is replaced by end modes which acquire
extension and intensity due to the increased spin oscilla-
tion coherence favored by the exchange interaction29,30.
Keeping the same micromagnetic elemental cell for di-
rect comparison, we tested this scenario and calculated
the modes of the Type E-like system at 0 degrees. We
did not find a “fundamental-like” mode when the lat-
eral size of the original macrospins is reduced to 20%
(100 × 40 nm2, i.e., a fifth of its original size), but we
do find end modes contributing with a large signal. The
inner end mode corresponds to the VCM, which is more
extended and hence it dominates even more the low fre-
quency dynamics than at a larger lateral macrospin size.

Our findings are particularly important when design-
ing a ASI geometry with the purpose of tailoring the
specific dynamic features (such as microwave filters or
magnonic crystals): in a fully periodic ASI, a collective
mode of the system is always of the Bloch form:

δmk(r) = δm̃k(r)eik·r,

where r is the position vector and k the wavevector. Any
of the modes described for the isolated vertex can be the
cell function δm̃k(r) of a Bloch wave in the vertex array,
and, depending on how strong the dynamic stray fields
created by the mode oscillation are, the dispersion band-
width can be small or large. Even a localized mode can
show an appreciable bandwidth, provided a significant
amplitude and considerable spatial extension31,32. As we
have demonstrated above, the VCM happens to fulfill all
of those conditions.

This means we can find a VCM profile as a cell function
δm̃k(r) depending on the following existence conditions:

• For geometry E, in order for us to be able to gener-
ate the VCM, the field can be applied along either
of the three independent directions, corresponding
to the central axis of each of the three (indistin-
guishable) macrospins.

• For geometries B, C, and D (one out of three
macrospins is disjointed): the field must be applied
only along one particular direction corresponding
to the central axis of the disjointed macrospin.

This becomes especially important in the context of
magnonic crystals, where information is encoded in prop-
agating spin waves, or magnons (e.g., Refs. [33–36]). An
example of a magnonic crystal is an ASI structure con-
sisting of periodic repetitions of the vertices we stud-
ied here. While it is outside the scopes of this paper,
we conducted preliminary calculations of the bandwidth
and average group velocity of a propagating VCM in a
fully periodic ASI, made of Type E macrospin triads as
unit cell using the primitive vectors d1=(0, 950 nm) and
d2=(775 nm, 470 nm): as illustrated in Tab. I, the VCM
Bloch wave has a group velocity of around 6.2 m/s if the
ΓM direction is selected in the reciprocal space (corre-
sponding to direction θ = 0◦). Note that the VCM band-
width is limited according to the limited dynamic stray
fields of the VCM, as a consequence of its peculiar local-
ization. As we have shown, it is possible to deterministi-
cally switch the VCM mode on/off simply by tuning the
magnetic field direction: as far as the full periodic ASI
is concerned, this implies the switch of the correspond-
ing SW propagation channel; even more, any variation
in oscillation (periodic or random) of the sample-to-field
angle would lead to a corresponding shift of the output
FMR signal, which is itself an original way to encode an
analog signal. In other words, one could design a sensor
that correlates an intensity variation of the VCM to a
misalignment of the angle between sample and field, and
implement a feedback loop that realigns the sample until
the original FMR intensity is recovered.
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