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Abstract
Background  Antagonistic adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) receptor–receptor interactions 
have previously been demonstrated in A2AR–D2R heteroreceptor complexes in the rat dorsal striatum. They mainly involve a 
reduction of affinity in the high-affinity component of the D2R agonist binding site upon activation in vivo of the A2AR by an 
A2AR agonist. Upon cocaine self-administration, this antagonistic A2AR–D2R interaction disappeared in the dorsal striatum.
Methods  In the current experiments, it was tested whether such modifications in the antagonistic A2AR–D2R receptor–
receptor interactions can develop also after an acute systemic injection of a low cocaine dose (1 mg/kg; sc).
Results  Microdialysis experiments indicated that acute cocaine did not significantly alter the extracellular dopamine levels 
in the dorsal striatum of the awake Wistar rats. Competition dopamine receptor binding experiments demonstrated that in 
the acute cocaine group, the A2AR agonist CGS-21680 produced significantly larger increases in the D2R Ki, High values 
(reduction of high-affinity) versus the saline-injected (i.e. control) group. Furthermore, in the dorsal striatum membrane 
preparation from acute cocaine-injected rats, CGS-21680 also produced significant increases in the D2R Ki, Low values 
(reduction of low-affinity) and in the proportion of D2Rs in the high-affinity state (RH). Such significant effects were not 
observed with CGS-21680 in the control group.
Conclusions  The molecular mechanism involved in the acute cocaine-induced increase in the antagonistic allosteric A2AR–
D2R receptor–receptor interactions may be an increased formation of higher-order complexes A2AR–D2R-sigma1R in 
which cocaine by binding to the sigma1R protomer also allosterically enhances the inhibitory A2AR–D2R interaction in 
this receptor complex.
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Introduction

It is established that there exist antagonistic adenosine A2A 
receptor (A2AR)-dopamine (DA) D2 receptor (D2R) inter-
actions in higher-order A2AR–D2R heteroreceptor com-
plexes in cellular models and in the rat dorsal striatum, as 

demonstrated with biochemical binding techniques using 
D2R radioligands and proximity ligation assay [1–16]. This 
is also in agreement with early behavioral findings in hemi-
parkinsonian rats [17]. The antagonistic modulation of the 
D2R recognition by the A2AR agonist mainly involved a 
reduction of affinity in the high-affinity component of the 
D2R agonist binding site. It is of interest that following 
cocaine self-administration, the A2AR agonist-induced 
antagonistic modulation of the dorsal striatal D2-likeR 
agonist high-affinity binding site no longer develops [7]. 
This dysfunction/disruption of the dorsal striatal A2AR–D2 
heteroreceptor complexes induced by cocaine self-admin-
istration might be involved in the development of either 
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habit-forming learning and/or compulsive drug-seeking or 
locomotor sensitization by enhanced D2R protomer signal-
ing [18]. From a mechanistic point of view, these effects 
may be related to a reorganization of the dorsal striatal 
A2AR–D2R heteroreceptor complexes and their balance 
with the D2R homoreceptor complexes upon the mainte-
nance of cocaine self-administration [13]. It may be pro-
duced by cocaine-induced rises in extracellular DA levels 
via cocaine-induced blockade of the DA transporter (DAT) 
that favours the formation of D2R homoreceptor complexes 
over A2AR–D2R heteroreceptor complexes [13, 19]. As a 
consequence, the antagonistic A2AR–D2R receptor–recep-
tor interactions become markedly and significantly reduced 
[7]. Other mechanism(s) can, however, also be involved. It 
has been reported that cocaine-self-administration produced 
a lowering in the density of D2R–Sigma1R heteroreceptor 
complexes in the dorsal striatum [13].

The sigma1R is an adaptor/chaperone protein that is 
present in part on the plasma membrane [20, 21] but also 
exists at the interface of the mitochondria and endoplasmic 
reticulum (ER), both targets for cocaine [21, 22]. Upon bind-
ing and activating the ER sigma1R, cocaine can translocate 
it to the plasma membrane. The unprotonated (base) form 
of cocaine is in equilibrium with its protonated form under 
physiological conditions. This form can pass the plasma 
membrane in view of its lipophilic and neutral properties 
[23]. Cocaine possesses a high affinity for the sigma1R [13, 
21, 24, 25]. In the plasma membrane, the sigma1R can inter 
alia form receptor complexes with D1Rs and D2Rs [26–28].

In the current study, we have, therefore, investigated if 
an acute systemic injection of cocaine, in a low dose that 
still binds to the sigma1R [21, 29] but does not increase 
extracellular DA levels in the dorsal striatum [30, 31], could 
affect the antagonistic A2AR–D2R receptor–receptor inter-
actions in rat dorsal striatum. The existence of a higher-order 
A2AR–D2R–Sigma1R heteroreceptor complex has recently 
been proposed [8].

Materials and methods

Animals

Animals arrived, were housed and tested according to the 
guidelines for the Care and Use of Laboratory Animals 
[32–34]. Adult male Wistar rats (250–300 g; Charles River 
S.R.L., Lecco, Italy) were used. The animals were housed 
in cages in groups of five animals at a temperature and rela-
tive humidity-controlled environment with a regular 12 h 
light–dark cycle and had free access to food and water. After 
arrival the animals were adapted to the environment for at 
least 1 week before the experiment. The experimental pro-
cedures performed in this study were in accordance with 

the European Communities Council Directive of September 
2010 (2010/63/EU) and were approved by the Italian Min-
istry of Health.

Microdialysis experiments

The surgery with the microdialysis probe implantation into 
the right or left striatum and microdialysis experiments were 
performed based on the methods described previously [35, 
36]. A microdialysis probe of concentric design (molecular 
weight cut-off, 20 kDa; CMA 12; outer diameter, 0.5 mm; 
length of dialysing membrane, 2 mm; Carnegie Medicine, 
Stockholm, Sweden) was used. The coordinates relative to 
the bregma were as follows: anterior (A) + 0.3 mm; lateral 
(L) + 3.1 mm; ventral (V) − 7.5 mm.

36 h from implantation, the microdialysis experiments 
were performed in awake freely moving rats. Perfusates were 
collected every 20 min in vials maintained at 4 °C and pro-
tected from the light with aluminum foils to prevent DA deg-
radation. After three stable basal DA values were obtained, 
cocaine [Cocaine HCl, Sigma Chemicals, St. Louis, MO, 
USA (dissolved in saline 0.9% Na Cl solution) was sub-
cutaneously injected at the dose of 1 mg/kg body weight, 
and further nine samples were collected (total experimental 
period = 240 min; 12 perfusate samples). Control rats were 
treated with a subcutaneous saline injection. Coronal sec-
tions were used to verify the position of the dialysis probe. 
Only those animals in which the probe was correctly located 
were included in the study [37].

Dopamine level was analyzed by high-performance liq-
uid chromatography (Ultimate 3000 System from Dionex, 
Sunnyvale, CA, USA) with coulo-chemical detection (Cou-
lochem III model 5300, ESA Inc., Chelmsford, MA, USA). 
The chromatographic data were analyzed by a Chromeleon 
v. 6.80 (Dionex) software. The values were not corrected for 
in vitro probe recovery, which was around 15% [35].

Binding experiments

For the binding experiments, adult male Wistar rats were 
subcutaneously injected with cocaine (1 mg/kg; sc) or saline 
solution. 1 h after the acute cocaine or vehicle administra-
tion, the rats were sacrificed, and the dorsal striatum was 
dissected out and immediately frozen on dry ice and stored 
at − 80 °C. The brain membrane preparation (0.15 mg/ml) 
and [3H]-raclopride competition assays with minor modifi-
cations were performed according to previously published 
methods [9, 28].

[3H]-raclopride (75 Ci/mmol, Novandi Chemistry AB, 
Sweden), a D2 receptor antagonist [7] competing with quin-
pirole for binding to D2-like receptors in dorsal striatal mem-
brane preparations was used to determine the percent D2R in 
the high-affinity state (RH), the D2R high affinity (Ki, High), 
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and D2R low affinity (Ki, Low) values. (+)-Butaclamol 
(100 μM, Sigma-Aldrich, Sweden) was used to determine 
the non-specific binding. As A2AR agonist, CGS-21680 
(100 nM, Sigma-Aldrich, Sweden) was used. The A2AR 
antagonist ZM-241385 (1 µM, Sigma-Aldrich, Sweden) was 
used as control. The amount of bound [3H]-raclopride was 
determined by liquid scintillation spectrometry.

Statistical analysis

The number of rats (n) in each group is indicated in fig-
ure legends. Microdialysis data were analyzed by two-way 
analysis of variance (ANOVA). Binding experiments data 
were obtained by nonlinear regression analysis employing 
GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, 
CA). The values from the control vehicle-treated group and 
acute cocaine group without CGS-21680 were compared by 
unpaired Student’s t-test. The absolute values of D2R Ki, High, 
Ki, Low and RH induced by A2AR agonist CGS-21680 or 
CGS-21680 + ZM-241385 were evaluated using one-way 
ANOVA followed by the Tukey post-hoc test. The percent 
changes in D2R Ki, High, Ki, Low and RH were analyzed with 
nonparametric Mann–Whitney U test. The P value 0.05 and 
lower was considered significant.

Results

Microdialysis

Basal extracellular DA levels in the rat dorsal striatum 
of control and cocaine groups were 2.88 ± 0.19 nM and 
3.09 ± 0.18 nM, respectively. As shown in Fig. 1, the subcu-
taneous injection of cocaine (1.0 mg/kg) did not significantly 
affect extracellular DA levels in the rat dorsal striatum.

Biochemical binding

D2 receptor antagonist [3H]-raclopride competition assays 
were performed ex-vivo. The effects of the A2AR agonist 
CGS-21680 on the affinity values of the D2-like receptor 
agonist quinpirole were examined in dorsal striatal mem-
branes from in vivo saline (i.e. control vehicle-treated group) 
and cocaine (1  mg/kg) injected rats (i.e. acute cocaine 
group). The proportion of D2Rs in the high-affinity state 
(RH), D2R high affinity (Ki, High) and the D2R low affinity 
(Ki, Low) values were determined.

Control vehicle-treated group As seen in Fig. 2a, a small 
shift to the right in the [3H]-raclopride competition curves 
with quinpirole did develop after adding the A2AR ago-
nist CGS-21680 (100 nM) to the striatal membrane prepa-
rations. Thus, the D2-like receptor agonist binding to the 

D2-like receptor high-affinity state was modestly, but sig-
nificantly, different compared to the control Ki, High from 
34.9 ± 12.5 nM to 152.6 ± 27.4 nM in the presence of the 
A2AR agonist (Fig. 2b). As expected, the A2AR antago-
nist ZM-241385 (1 µM) was able to significantly counteract 
the increase of the D2R-like Ki, High values induced by the 
A2AR agonist leading to values similar to controls (Fig. 2b). 
Instead, no significant effects were induced by CGS-21680 
of the Ki, Low and RH values (Fig. 2b).

Acute cocaine group In striatal membranes from cocaine-
injected rats, the quinpirole binding value to the D2-like 
receptor high-affinity state (Ki, High value) was 96.2 ± 52.8 nM 
and did not significantly differ from that observed in the 
control vehicle-treated group (34.9 ± 12.5 nM); p = 0.3017; 
F, DFn, Dfd = 17.76, 3, 3) by unpaired Student’s t-test 
(graph not shown). However, in the presence of the A2AR 
agonist CGS-21680 (100 nM) a marked right-shift of the 
[3H]-raclopride competition binding curve was observed 
(Fig. 3a). Under these experimental conditions, the D2R 
Ki, High value was significantly increased from 96.2 ± 52.8 
to 1343 ± 224 nM (Fig. 3b). It demonstrated a strong nega-
tive allosteric modulation induced by the A2AR agonist on 
the quinpirole binding to the D2R high-affinity state. Fur-
thermore, in membranes from cocaine-treated rats also the 
Ki, Low value and RH value were markedly and significantly 
affected by the presence of CGS-21680 (Fig. 3b).

In the cocaine group, the A2AR antagonist ZM-241385 
(1 µM) was able to significantly counteract the increase 
of the D2R Ki, High, Ki, Low and RH values induced by the 
A2AR agonist. However, the A2AR antagonist was not 

Fig. 1   Effects of cocaine (1.0  mg/kg; sc) on extracellular dopamine 
(DA) levels in the rat dorsal striatum. Vehicle treated rats were treated 
with a subcutaneous saline (i.e. cocaine–vehicle) injection. The arrow 
indicates cocaine or saline administration. The results are expressed 
as a percentage of the mean of the three basal values before treat-
ment. Each point represents the means ± SEM of four animals/group
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able to fully block the effect of the CGS-21680 (100 nM) 
on the Ki, Low and RH values (Fig. 3b).

Control vehicle-treated group vs. acute cocaine group The 
percent changes induced by the treatment with the CGS-
21680 (100 nM) in [3H]-raclopride/quinpirole competition 
conditions on dorsal striatal membranes from control and 
cocaine groups have been compared. As shown in Fig. 4, 
CGS-21680 was significantly more effective in lowering the 
affinity of D2Rs for their agonist in the cocaine group than 
in the control group. In fact, the CGS-21680 induced percent 
changes of the measured Ki, High, Ki, Low and RH values which 
were significantly higher in the cocaine group versus the 
control group (*p < 0.05; Mann Whitney U-test).

Discussion

The major result from the current experiments is the dem-
onstration that acute cocaine in the low dose of 1 mg/kg 
which does not increase the dialysate dorsal striatal DA 
levels, significantly enhances the antagonistic allosteric 
A2AR–D2R interactions in the rat dorsal striatum. Bio-
chemical binding studies using the D2-like receptor radi-
oligand [3H]-raclopride in competition with the D2-like 
receptor agonist quinpirole demonstrated that the per-
cent increases of Ki, High and Ki, Low values induced by the 
A2AR agonist CGS-21680 were significantly more marked 
in membrane preparations from cocaine-injected rats.

Fig. 2   [3H]-raclopride/quinpirole competition binding experiments 
to determine changes in D2R affinities induced by adenosine A2AR 
agonist in control (vehicle treated) group. Competition assays were 
performed in dorsal striatal membrane preparations from the control 
group with/without the adenosine A2A receptor agonist (CGS-21680) 
or A2A receptor agonist (CGS-21680) plus antagonist (ZM-241385) 
as indicated. (+)-Butaclamol 100  μM was used to determine the 
non-specific binding. a The curves based on the values of four rats 
with each determination performed in duplicates or triplicates are 
presented in percent of specific binding. The specific binding of the 
[3H]-raclopride without quinpirole was defined as one hundred per-

cent. b The induced changes in the D2R affinities values by A2AR 
agonist CGS-21680 are presented in absolute values (means ± SEM; 
n = 4, each determination performed in duplicates or triplicates). 
Statistical analysis was performed by one-way ANOVA followed by 
the Tukey post-hoc test (F = 8.482). **(p < 0.01): the group of rats 
treated with CGS-21680 is significantly different compared to the 
group receiving saline solution (vehicle). &(p < 0.05): the group of 
rats treated with CGS-21680 + ZM-241385 is significantly different 
compared to the group receiving CGS-21680 alone. Abbreviations: 
RH, proportion of D2Rs in the high-affinity state; Ki, High, D2R high-
affinity value and Ki, Low, D2R low-affinity value
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Looking into more details of the observed antagonistic 
A2AR–D2R interactions, it is also clear that in agreement 
with previous work [2, 4, 7] the A2AR agonist in control 
rats only produced a significant increase in the Ki, High values 
with no effects on the Ki, Low values and on the proportion of 
D2R in the high-affinity state (RH). However, in the acute 
cocaine group, the A2AR agonist produced a significant 
enhancement of the Ki, Low and RH values. This is of inter-
est since these actions did not develop in the vehicle-injected 
group. When comparing the percent changes induced by the 
A2AR agonist on Ki, High, Ki, Low and RH values in controls 
and acutely treated cocaine rats, we found that these three 
parameters were all significantly enhanced in the cocaine 
group vs. the control group.

Thus, the enhanced A2AR-mediated allosteric inhibition 
involves both the high and low-affinity D2R agonist binding 
sites in the cocaine treated group. There is an increase in the 
proportion of D2R receptors in the high-affinity state after sc 
cocaine 1 mg/kg injection, but the D2R in the high-affinity 
state shows a significantly reduced affinity for quinpirole under 
these experimental conditions as seen from the Ki, High values.

The present findings are in sharp contrast to the results 
obtained in the experiments on cocaine self-administration 
in which the antagonistic A2AR–D2R interactions induced 
by CGS-21680 in yoked saline rats were not present in dorsal 
striatum of cocaine-exposed rats. This discrepancy can be 
the results of the different experimental conditions (i.e. acute 
vs. chronic treatment involving in addition also drug-seeking 

Fig. 3   [3H]-raclopride/quinpirole competition binding experiments 
to evaluate the allosteric modulation produced by adenosine A2A 
agonist on the D2R binding in the acute cocaine group. Competi-
tion assays were performed in dorsal striatal membrane preparations 
from the acute cocaine group with/without the adenosine A2A recep-
tor agonist (CGS-21680) or A2A receptor agonist (CGS-21680) plus 
antagonist (ZM-241385) as indicated. (+)-Butaclamol 100  μM was 
used to determine the non-specific binding. a The curves based on the 
values of four rats with each determination performed in duplicates 
or triplicates are presented in percent of specific binding. The spe-
cific binding of the [3H]-raclopride without quinpirole was defined 

as one hundred percent. b The induced changes in the D2R affinities 
values by A2AR agonist CGS-21680 are presented in absolute values 
(means ± SEM; n = 4, each determination performed in duplicates or 
triplicates). Statistical analysis was performed by one-way ANOVA 
followed by the Tukey post-hoc test (F = 29.47). ***(p < 0.001) and 
*(p < 0.05): significant differences compared to the group receiving 
only acute cocaine. &&&(p < 0.001): the group of rats treated with 
CGS-21680 + ZM-241385 is significantly different compared to the 
group receiving CGS-21680 alone. Abbreviations: RH, proportion of 
D2Rs in the high-affinity state; Ki, High, D2R high-affinity value and 
Ki, Low, D2R low-affinity value
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aspects) as well as to the different doses of cocaine admin-
istered in the present and in the cocaine self-administration 
studies. As demonstrated and in line with previous studies 
[30], cocaine in the dose used in the present experiments 
(1 mg/kg, sc), did not significantly increase dialysate dor-
sal striatal DA levels. Therefore, it seems unlikely that the 
enhancement of the antagonistic allosteric receptor–recep-
tor within A2AR–D2R interactions observed in the cocaine 
group in the rat dorsal striatum is mediated by the binding 
of the drug to the DAT. Thus, this DAT-independent action 
of cocaine at the low dose may instead involve another target 
for the drug, namely the sigma1R [21].

Previous in vitro studies demonstrated that cocaine in 
nanomolar concentrations appear to alter the allosteric 
sigma1–D2 receptor–receptor interactions in the cellular 
model and in the striatal sigma1–D2R heterocomplexes caus-
ing an increase of Gi/o mediated D2R signaling [38, 39]. The 
sigma1R is recruited to the plasma membrane by cocaine 
where it inter alia interacts with D1R and D2R [21, 26, 27]. 
The mechanism may, therefore, be an increased and rapid 
formation of A2AR–D2R–sigma1R heteroreceptor com-
plexes [8] due to an increased recruitment of sigma1Rs to 
the plasma membrane induced by cocaine at low concentra-
tions/doses. The increase in sigma1R bound to D2R in the 
plasma membrane may, in turn, increase the affinity of A2AR 
to bind to the D2R. Increased formation of A2AR–D2R–sig-
ma1R heterocomplexes can, therefore, take place after acute 
cocaine injection, not increasing extracellular DA levels.

Furthermore, cocaine by binding to sigma1Rs may enhance 
the allosteric inhibition exerted by the A2AR agonist on D2R 
recognition site as observed in the current experiments through 
the enhanced inhibitory A2AR–D2R interactions in putative 

A2AR–D2R–Sigma1R complexes. The A2AR–D2R–sigma1R 
heterocomplexes are mainly located in the dorsal striato-palli-
dal GABA pathway mediating motor inhibition [40]. Thus, the 
enhancement of the antagonistic allosteric A2AR–D2R inter-
actions in the rat dorsal striatum, and the consequent reduction 
of the inhibitory actions of the D2R protomer in this state, 
should lead to enhancement of motor inhibition with low con-
centrations of cocaine lacking effects on the DAT and targeting 
the sigma1R. Further studies are necessary to establish this 
intriguing hypothesis.

Taken together, the current results indicate that a low 
acute dose of cocaine, not associated with an increase in 
dorsal striatal extracellular DA levels, enhances the allos-
teric inhibitory A2AR–D2R receptor–receptor interactions in 
the rat dorsal striatum. The enhancement of A2AR-induced 
inhibition on D2R protomer recognition is marked both for 
the Ki, High and Ki, Low which becomes strongly increased in 
the cocaine group. In such a state, increased motor inhibi-
tion may develop since enhanced A2AR-induced inhibi-
tion of D2R protomer recognition develops in a putative 
A2AR–D2R–sigma1R complex in which cocaine likely binds 
to the sigma1R. This heteroreceptor complex is located in the 
dorsal striato-pallidal GABA neurons that mediates motor 
inhibition and increases its activity due to reduced inhibitory 
D2R function involving reduced D2R protomer recognition. 
This finding is of substantial interest since in maintenance of 
rodent cocaine self-administration the antagonistic A2A–D2 
receptor–receptor interactions in dorsal striatum are blocked 
[7]. This suggests that differential changes develop in the 
antagonistic allosteric A2A–D2 receptor–receptor interac-
tions in the dorsal striatum after acute cocaine treatment in 
low doses versus cocaine self-administration.

Fig. 4   A2A agonist CGS-21680 (100  nM) induced changes in D2R 
binding, comparing the cocaine group and the control (vehicle 
treated) group given in percent of values in the absence of CGS-
21680 with regard to the RH, Ki, High and Ki, Low values. Means ± SEM 
are given for four independent experiments performed in tripli-

cate. Statistical analysis was performed by Mann–Whitney U test. 
*(p < 0.05): the group of acute cocaine is significantly different com-
pared to the control group with regard to Ki, High, Ki, Low, and RH val-
ues. Abbreviations: RH, proportion of D2Rs in the high-affinity state; 
Ki, High, D2R high-affinity value and Ki, Low, D2R low-affinity value
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