
Expectation Maximization in Deep Probabilistic
Logic Programming

Arnaud Nguembang Fadja1, Fabrizio Riguzzi2 and Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[arnaud.nguembafadja,fabrizio.riguzzi,evelina.lamma]@unife.it

Abstract. Probabilistic Logic Programming (PLP) combines logic and
probability for representing and reasoning over domains with uncertainty.
Hierarchical probability Logic Programming (HPLP) is a recent language
of PLP whose clauses are hierarchically organized forming a deep neural
network or arithmetic circuit. Inference in HPLP is done by circuit eval-
uation and learning is therefore cheaper than any generic PLP language.
We present in this paper an Expectation Maximization algorithm, called
Expectation Maximization Parameter learning for HIerarchical Proba-
bilistic Logic programs (EMPHIL), for learning HPLP parameters. The
algorithm converts an arithmetic circuit into a Bayesian network and
performs the belief propagation algorithm over the corresponding factor
graph.

Keywords: Hierarchical Probabilistic Logic Programming, Arithmetic Circuits,
Expectation Maximization, Factor Graph, Belief Propagation.

1 Introduction

Due to it expressiveness and intuitiveness, Probabilistic Logic Programming
(PLP) has been recently used in many fields such as natural language pro-
cessing [17,13], link prediction [9] and bioinformatics [10,3]. Hierarchical PLP
(HPLP) [12] is a type of PLP where clauses and predicates are hierarchically or-
ganized forming deep neural networks or arithmetic circuits (AC). In this paper
we present an algorithm, called ”Expectation Maximization Parameter learn-
ing for HIerarchical Probabilistic Logic programs” (EMPHIL), that performs
parameter learning of HPLP using Expectation Maximization. The algorithm
computes the required expectations by performing two passes over ACs.

The paper is organized as follows: Section 2 describes PLP and hierarchical
PLP. Sections 3 presents EMPHIL. Related work is discussed in Section 4 and
Section 5 concludes the paper.

2 Probabilistic Logic Programming and hierarchical PLP

PLP languages under the distribution semantics [18] have been shown expressive
enough to represent a wide variety of domains [2,16,1]. A program in PLP under
the distribution semantics defines a probability distribution over normal logic
programs called instances. We consider in this paper a PLP language with a
general syntax called Logic Programs with Annotated Disjunctions (LPADs) [19]
in which each clause head is a disjunction of atoms annotated with probabilities.
Consider a program T with p clauses: P = {C1, . . . , Cp}. Each clause Ci takes
the form:

hi1 : πi1; . . . ;hini : πini :− bi1, . . . , bimi

where hi1, . . . , hini
are logical atoms, bi1, . . . , bimi

are logical literals and
πi1, . . . , πini are real numbers in the interval [0, 1] that sum up to 1. bi1, . . . , bimi

is indicated with body(Ci). Note that if ni = 1 the clause corresponds to a non-
disjunctive clause. We denote by ground(T) the grounding of an LPAD T . Each
grounding Ciθj of a clause Ci corresponds to a random variable Xij with values
{1, . . . , ni}. The random variables Xij are independent of each other. An atomic
choice [15] is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution that grounds
Ci and k ∈ {1, . . . , ni} identifies one of the head atoms. In practice (Ci, θj , k)
corresponds to an assignment Xij = k.

A selection σ is a set of atomic choices that, for each clause Ciθj in ground(T),
contains an atomic choice (Ci, θj , k). A selection σ identifies a normal logic pro-
gram lσ defined as lσ = {(hik :− body(Ci))θj |(Ci, θj , k) ∈ σ}. lσ is called an
instance of T . Since the random variables associated to ground clauses are in-
dependent, we can assign a probability to instances: P (lσ) =

∏
(Ci,θj ,k)∈σ Πik.

We write lσ |= q to mean that the query q is true in the well-founded model
of the program lσ. We denote the set of all instances by LT . Let P (LT) be the
distribution over instances. The probability of a query q given an instance l is
P (q|l) = 1 if l |= q and 0 otherwise. The probability of a query q is given by

P (q) =
∑
l∈LT

P (q, l) =
∑
l∈LT

P (q|l)P (l) =
∑

l∈LT :l|=q

P (l) (1)

In the hierarchical PLP language [12], clauses are restricted to the following
form:

C = p(X) : π :− φ(X,Y), b1(X,Y), . . . , bk(X,Y)

where p(X) is the single atom in the head annotated with the probability π,
φ(X,Y) is a conjunction of input literals (that is their definitions are given in
input and are non-probabilistic) and bi(X,Y) for i = 1, . . . , k literals for are
hidden predicate. This means that clauses and predicates are hierarchically orga-
nized forming a tree that can be translated into a neural networks or Arithmetic
Circuit (AC). Inference can be performed with HPLP programs by generating
their groundings that, similarly to clauses, form a tree. Such a tree can be used
for inference by translating it into an Arithmetic Circuit (AC). The AC has a ×
node for each clause computing the product of the values of its children, and a

⊕
node for each clause head, computing the function

⊕
i pi = 1 −

∏
i(1 − pi).

Moreover, ¬ nodes are associated with negative literals in bodies, computing the
function 1− p where p is the value of their only child, Each leaf is associated to
the Boolean random variable Xi of a clause and takes value π. The AC can be
evaluated bottom-up from the leaves to the root. Because of the constraints that
HPLP programs must respect, literals in bodies are mutually independent and
bodies of different clauses are mutually independent as well, so the value that is
computed at the root is the probability that the atom associated with the root is
true according to the distribution semantics. Let us call v(N) the value of node
N in the arithmetic circuit. Circuits generation and inference are described in
[12].

Example 1. Consider the UW-CSE domain [7] where the objective is to predict
the “advised by” relation between students and professors. An example of an
HPLP program for advisedby/2 may be

C1 = advisedby(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B),
r11(A,B,C).

C2 = advisedby(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

C111 = r11(A,B,C) : 0.2 :−
publication(D,A,C), publication(D,B,C).

where project(C,A) means that C is a project with participant A, ta(C,A)
means that A is a teaching assistant (TA) for course C and taughtby(C,B)
means that course C is taught by B. publication(A,B,C) means that A is
a publication with author B produced in project C. student/1, professor/1,
project/2, ta/2, taughtby/2 and publication/3 are input predicates and r11/3 is
a hidden predicate.

The probability of q = advisedby(harry, ben) depends on the number of joint
courses and projects and on the number of joint publications from projects. The
clause for r11(A,B,C) computes an aggregation over publications of a projects
and the clause level above aggregates over projects. Supposing harry and ben
have two joint courses c1 and c2, two joint projects pr1 and pr2, two joint
publications p1 and p2 from project pr1 and two joint publications p3 and p4
from project pr2, the AC of such ground program is shown in Figure 1.

3 EMPHIL

EMPHIL performs parameter learning of HPLP using Expectation Maximization
(EM). The parameter learning problem is: given an HPLP P and a training set of
positive and negative examples, E = {e1, . . . , eM ,not eM+1, . . . ,not eN}, find
the parameters Π of P that maximize the log-likelihood (LL):

arg max
Π

M∑
i=1

logP (ei) +

N∑
i=M+1

log(not P (ei)) (2)

p

⊕

× × × ×

⊕
0.3

⊕
0.6

× × × ×

0.2

Fig. 1: Arithmetic circuit.
.

where P (ei) is the probability assigned to ei by P. EMPHIL alternates between
Expectation (E) and Maximization (M) steps. For a single example e, the Ex-
pectation step computes E[ci0|e] and E[ci1|e] for all rules Ci where cix is the
number of times a variable Xij takes value x for x ∈ {0, 1} and for all j ∈ g(i)
i.e

E[cix|e] =
∑
j∈g(i)

P (Xij = x|e)

where g(i) = {j|θj is a substitution grounding Ci}. These values are aggregated
over all examples obtaining E[ci0] =

∑
e∈E

∑
j∈g(i) P (Xij = 0|e) and E[ci1] =∑

e∈E
∑
j∈g(i) P (Xij = 1|e).

Then the Maximization computes

πi =
E[ci1]

E[ci0] + E[ci1]

For a single substitution θj of clause Ci we have that P (Xij = 0|e) + P (Xij =
1|e) = 1. So E[ci0] + E[ci1] =

∑
e∈E |g(i)|

Therefore to perform EMPHIL, we have to compute P (Xij = 1|e) for each
example e. We do it using two passes over the AC, one bottom-up and one top-
down. In order to illustrate the passes, we construct a graphical model associated
with the AC and then apply the belief propagation (BP) algorithm [14].

A Bayesian Network (BN) can be obtained from the AC by replacing each
node with a random variable. The variables associated with an

⊕
node have

a conditional probabilistic table (CPT) that encodes an OR deterministic func-
tion, while variables associated with an × node have a CPT encoding an AND.
Variables associated with a ¬ node have a CPT encoding the NOT function.
Leaf nodes associated with the same parameter are split into as many nodes

Xij as the groundings of the rule Ci, each associated with a CPT such that
P (Xij = 1) = πi. We convert the BN into a Factor Graph (FG) using the stan-
dard translation because BN can be expressed in a simpler way for FGs. The
FG corresponding to the AC of Figure 1 is shown in Figure 2.

P

for

Q1 Q2 Q3 Q4

fand fand fand fand

P11 X12 X21 P22 X31 X41

for forf12 f21 f31 f41

Q111 Q112 Q221 Q222

fand fand fand fand

X1111 X1121 X2211 X2221

f1111 f1121 f2211 f2221

Fig. 2: Factor graph.
.

After constructing the FG, P (Xij = 0|e) and P (Xij = 1|e) are computed by
exchanging messages among nodes and factors until convergence. In the case of
FG obtained from an AC, the graph is a tree and it is sufficient to propagate the
message first bottom-up and then top-down. The message from a variable N to
a factor f is [14]

µN→f (n) =
∏

h∈nb(N)\f

µh→N (n) (3)

where nb(X) is the set of neighbor of X (the set of factors X appears in). The
message from a factor f to a variable N is.

µf→N (n) =
∑
qN

(f(n, s)
∏

Y ∈nb(f)\N

µY→f (y)) (4)

where nb(f) is the set of arguments of f . After convergence, the belief of each
variable N is defined as follows:

b(n) =
∏

f∈nb(N)

µf→N (n) (5)

that is the product of all incoming messages to the variable. By normalizing
b(n) we obtain P (N = n|e). Evidence is taken into account by setting the cells
of the factor that are incompatible with evidence to 0. We want to develop an
algorithm for computing b(n) over the AC. So we want the AC nodes to send
messages. We call cN the normalized message, µf→N (N = 1), in the bottom-up
pass and tN the normalized message, µf→N (N = 1), in the top-down pass. Let
us now compute the messages in the forward pass. Different cases can occur: the
leaf, the inner and the root node. For a leaf node X, we have the factor graph
in Figure 3b From Table 1d, the message from fx to X is given by:

Fig. 3: Examples of factor graph

1

cN ↑

↓ tP

↓ tN

P

f

N

(a) Factor graph of not node.

X

fx

(b) Factor graph for a leaf node.

. . .

cP ↑ ↓ tP

cN ↗

↙ tN

P

f

N S1 Sm

(c) Factor graph for inner or root node.

µfx→X = [π(x), 1− π(x)] = [v(x), 1− v(x)] (6)

Note that the message is equal to the value of the node. Moreover, because of
the construction of HPLP, for any variable node N

µf→P (p) = µP→f (p) (7)

where P is the parent of N .
Let us consider a node P with children N ,S1 . . . Sm as shown in Figure 3c. We

define S = S1 . . . Sm and s = s1 . . . sm. We prove by induction that cP = v(P).

Table 1: Cpts of factors

(a) P is an or node

p n = 1 n = 0, S = 0 n = 1, ¬ (S = 0)

0 0 1 0

1 1 0 1

(b) P is an and node

p n = 0 n = 1, S = 1 n = 1, ¬ (S = 1)

0 1 0 1

1 0 1 0

(c) P is a not node

p n = 0 n = 1

0 0 1

1 1 0

(d) Leaf node fx = π(x)

x fx
0 1-π(x)

1 π(x)

For leaf nodes it was proved above. Suppose that cC = v(C) for all children
N,S1, ...Sm:

If P is an × node, the cpt of P given its children is described in Table 1b
and µC→f (c) = v(c) for all children C. According to equation 4 we have:

µf→P (1) =
∑
qP

f(p, n, s)
∏

Y ∈nb(f)\P

µY→f (y)

=
∑
n,s

(f(p, n, s)
∏

Y ∈{N,S}

µY→f (y) (8)

= µN→f (1) ·
∏
Sk

µSk→f (1)

= v(N) ·
∏
sk

v(Sk) = v(P)

In the same way, from Equation 8 we have:

µf→P (0) = 1− µN→f (1) ·
∏
Sk

µSk→f (1)

= 1− v(N) ·
∏
sk

v(Sk) = 1− v(P)

So cP = v(P)

If P is an
⊕

node, the cpt of P given its children is described in Table 1a.
From Equation 8 we have:

µf→P (1) =
∑
n,s

f(p, n, s)
∏

Y ∈{N,S}

µY→f (y)

= 1− µN→·(0) ·
∏
Sk

µSk→f (0) = 1− v(N) ·
∏
Sk

v(Sk)

= 1− (1− v(N)) ·
∏
Sk

(1− v(Sk)) = v(P)

In the same way we have:

µf→P (0) = µN→f (0).
∏
Sk

µSk→f (0) = v(N = 0) ·
∏
Sk

v(N = 0)

= 1− [1− (1− v(N) ·
∏
Sk

v(Sk)] = 1− v(P)

If P is a ¬ node with the single child N , its cpt us shown in table 1c and we
have:

µf→P (1) =
∑
n

f(p, n)
∏

Y ∈{N}

µY→f (y)

= µN→f (0) = 1− v(N)

and

µf→P (0) = µN→f (1) = v(N)

Overall, exchanging message in the forward pass means evaluating the value of
each node in the AC. This leads to Algorithm 20.

Now let us compute the messages in the backward pass. Considering the
factor graph in Figure 3c, we consider the message tP = µP→f (1) as known and
we want to compute the message tN = µf→N (1).

If P is an inner
⊕

node (with children N,S1, ...Sm), its cpt is shown in table
1a. Let us compute the messages µf→N (1) and µf→N (0):

µf→N (1) =
∑
qN

(f(p, n, s)
∏

Y ∈nb(f)\N

µY→f (y))

= [
∑
p,s

(f(p, n, s)
∏
S

v(s)] · [µP→f (1)]

= µP→f (1) = tP (9)

In the same way

µf→N (0) =
∑
p,s

f(p, n, s)
∏
S

v(s)[µP→f (p)] (10)

= [1−
∏
S

(1− v(S))] · [µP→f (1)] +
∏
S

(1− v(S))[µP→f (0)]

= v(P)	 v(N) · tP + (1− v(P)	 v(N)) · (1− tP)

Algorithm 1 Function Forward

1: function Forward(node) . node is an AC
2: if node = not(n) then
3: v(node)← 1− Forward(n)
4: return v(node)
5: else
6: . Compute the output example by recursively call Forward on its sub AC
7: if node =

⊕
(n1, . . . nm) then .

⊕
node

8: for all nj do
9: v(nj)← Forward(nj)

10: end for
11: v(node)← v(n1)⊕ . . .⊕ v(nm)
12: return v(node)
13: else . and Node
14: if node = ×(πi, n1, . . . nm) then
15: for all nj do
16: v(nj)← Forward(nj)
17: end for
18: v(node)← πi · v(n1) · . . . · v(nm)
19: return v(node)
20: end if
21: end if
22: end if
23: end function

where the operator 	 is defined as follows:

v(p)	 v(n) = 1−
∏
s

(1− v(s)) = 1− 1− v(p)

1− v(n)
(11)

So we have

tN =
tP

tP + v(P)	 v(N) · tP + (1− v(P)	 v(n)) · (1− tP)
(12)

If P is a × node, its cpt is shown in table 1b and we have:

µf→N (1) =
∑
qN

(f(p, n, s)
∏

Y ∈nb(f)\N

µY→f (y))

= µP→f (P = 1) ·
∏
S

µS→f (1) + µP→f (0) · (1−
∏
S

µS→f (1))

= tP ·
∏
S

v(S) + (1− tP) · (1−
∏
S

v(S))

= tP ·
v(P)

v(N)
+ (1− tP) · (1− v(P)

v(N)
)

In the same way,

µf→N (0) = µP→f (0) ·
∑
S

(f(p, n, s)
∏
S

µS→f (s)) = 1− tP

So we have

tN =
tP .

v(P)
v(N) + (1− tP) · (1− v(P)

v(N))

tP .
v(P)
v(N) + (1− tP).(1− v(P)

v(N)) + (1− tP)
(13)

If P is a ¬ node, its cpt is shown in Table 1c and we have:

µf→N (1) =
∑
p

f(p, n)
∏

Y ∈{P}

µY→f (y) = µP→f (0) = 1− tP

Equivalently

µf→N (0) =
∑
p

f(p, n)
∏

Y ∈{P}

µY→f (y) = µP→f (1) = tP

And then

tN =
1− tP

1− tP + tP
= 1− tP (14)

To take into account evidence, we consider µP→f = [1, 0] as the initial messages
in the backward pass (where P is the root) and use Equation 12 for

⊕
node.

Overall, in the backward pass we have:

tN =


tP

tP +v(P)	v(N).tP +(1−v(P)	v(N)).(1−tp) if P is a ⊕ node

tP .
v(P)
v(P)

+(1−tP).(1− v(P)
v(N)

)

tP .
v(P)
v(N)

+(1−tP).(1− v(P)
v(N)

)+(1−tP)
if P is a × node

1− tP if P is a ¬ node

(15)

Since the belief propagation algorithm (for AC) converges after two passes, we
can compute the unnormalized belief of each parameter during the backward pass
by multiplying tN by v(N) (that is all incoming messages). Algorithm 2 perform
the backward pass of belief propagation algorithm and computes the normalized
belief of each parameter. It also counts the number of clause groundings using
the parameter, lines 17–18.

We present EMPHIL in Algorithm 3. After building the ACs (sharing pa-
rameters) for positive and negative examples and initializing the parameters, the
expectations and the counters, lines 2–5, EMPHIL proceeds by alternating be-
tween expectation step 8–13 and maximization step 13–17. The algorithm stops
when the difference between the current value of the LL and the previous one is
below a given threshold or when such a difference relative to the absolute value
of the current one is below a given threshold. The theory is then updated and
returned (lines 19–20).

Algorithm 2 Procedure Backward

1: procedure Backward(tp, node,B,Count)
2: if node = not(n) then
3: Backward(1− tp, n,B,Count)
4: else
5: if node =

⊕
(n1, . . . nm) then .

⊕
node

6: for all child ni do
7: tni ←

tp
tp+v(node)	v(ni).tp+(1−v(node)	v(ni)).(1−tp)

8: Backward(tni , ni, B,Count)
9: end for

10: else
11: if node = ×(n1, . . . nm) then . × node
12: for all child ni do

13: tni ←
tp.

v(node)
v(ni)

+(1−tp).(1−
v(node)
v(ni)

)

tp.
v(node)
v(ni)

+(1−tp).(1−
v(node)
v(ni)

)+(1−tp)

14: Backward(tni , ni, B,Count)
15: end for
16: else . leaf node πi
17: B[i]← B[i] +

πitp
(πitp+(1−πi)(1−tp)

18: Count[i]← Count[i] + 1
19: end if
20: end if
21: end if
22: end procedure

4 Related Work

EMPHIL is related to Deep Parameter learning for HIerarchical probabilistic
Logic programs (DPHIL) [4] that learns hierarchical PLP parameters using gra-
dient descent and back-propagation. Similarly to EMPHIL, DPHIL perfoms two
passes over the ACs: the Forward pass evaluates the AC, as EMPHIL, and the
backward pass computes the gradient of the cross entropy error with respect
to each parameter. A method for stochastic optimization, Adam [6], is used to
update the parameters (shared over the ACs). Since EMPHIL is strongly related
to EMPHIL we plan in our future work to implement EMPHIL and compare
the performance of both algorithms.

Hierarchical PLP is also related to [8,5,11] where the probability of a query
is computed by combining the contribution of different rules and grounding of
rules with noisy-Or or Mean combining rules. In First-Order Probabilistic Logic
(FOPL), [8] and Bayesian Logic Programs (BLP), [5], each ground atoms is
considered as a random variables and rules have a single atom in the head and
only positive literals in the body. Each rule is associated with a CPT defining the
dependence of the head variable given the body ones. Similarly to HPLP, FOPL
and BLP allow multiple layers of rules. Differently from FOPL and HPLP, BLP
allows different combining rules. Like FOLP, BLP and hierarchical PLP, First-
Order Conditional Influence Language (FOCIL) [11], uses probabilistic rules

Algorithm 3 Function EMPHIL.

1: function EMPHIL(Theory, ε, δ,Max)
2: Examples← BuildACs(Theory) . Build the set of ACs
3: for i← 1→ |Theory| do
4: Π[i]← random;B[i], Count[i]← 0 . Initialize the parameters
5: end for
6: LL← −inf ; Iter ← 0
7: repeat
8: LL0 ← LL,LL← 0 . Expectation step
9: for all node ∈ Examples do

10: P ← Forward(node)
11: Backward(1, node,B,Count)
12: LL← LL+ logP
13: end for . Maximization step
14: for i← 1→ |Theory| do
15: Π[i]← B[i]

Count[i]

16: B[i], Count[i]← 0
17: end for
18: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > Max
19: FinalTheory ← UpdateTheory(Theory,Π)
20: return FinalTheory
21: end function

for compactly encoding probabilistic dependencies. The probability of a query is
computed using two combining rules: the contributions of different groundings of
the same rule with the same random variable in the head are combined by taking
the Mean and the contributions of different rules are combined either with a
weighted mean or with a noisy-OR combining rule. HPLP instead uses the noisy-
OR combining rule for both cases. FOPL, BLP and FOCIL implement parameter
learning using gradient descent, or Expectation Maximization, as EMPHIL. In
this paper we specialized the results of [8,5,11] for the HPLP language obtaining
formulas that can be easily implemented into an algorithm.

5 Conclusion

We present in this paper the algorithm EMPHIL for learning the parameters of
hierarchical PLP using Expectation Maximization. The formula for expectations
are obtained by converting an arithmetic circuit into a Bayesian network and
performing belief propagation algorithm over the corresponding factor graph.
We plan in our future work to implement and compare EMPHIL with DPHIL,
an algorithm that performs parameter learning of HPLP using gradient descent.
We also plan to design an algorithm for learning the structure of hierarchical
PLP in order to search in the space of HPLP the program that best described
the data using EMPHIL or DPHIL as sub-procedures.

References

1. Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: Prob-
abilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017)

2. Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on the
web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS,
vol. 10037, pp. 351–363. Springer International Publishing (2016)

3. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: Veloso, M.M. (ed.) IJCAI 2007. vol. 7, pp.
2462–2467. AAAI Press/IJCAI (2007)

4. Fadja, A.N., Riguzzi, F., Lamma, E.: Learning the parameters of deep probabilistic
logic programs. In: Bellodi, E., Schrijvers, T. (eds.) Probabilistic Logic Program-
ming (PLP 2018). CEUR Workshop Proceedings, vol. 2219, pp. 9–14. Sun SITE
Central Europe, Aachen, Germany (2018)

5. Kersting, K., De Raedt, L.: Basic principles of learning bayesian logic programs.
In: Institute for Computer Science, University of Freiburg. Citeseer (2002)

6. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

7. Kok, S., Domingos, P.: Learning the structure of Markov Logic Networks. In: ICML
2005. pp. 441–448. ACM (2005)

8. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI.
pp. 1316–1323 (1997)

9. Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inference with contextual vari-
able elimination and comparison to BDD based inference methods. In: De Raedt,
L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 96–109. Springer (2010)

10. Mørk, S., Holmes, I.: Evaluating bacterial gene-finding hmm structures as proba-
bilistic logic programs. Bioinformatics 28(5), 636–642 (2012)

11. Natarajan, S., Tadepalli, P., Kunapuli, G., Shavlik, J.: Learning parameters for
relational probabilistic models with noisy-or combining rule. In: Machine Learn-
ing and Applications, 2009. ICMLA’09. International Conference on. pp. 141–146.
IEEE (2009)

12. Nguembang Fadja, A., Lamma, E., Riguzzi, F.: Deep probabilistic logic program-
ming. In: Theil Have, C., Zese, R. (eds.) PLP 2017. CEUR-WS, vol. 1916, pp. 3–14.
Sun SITE Central Europe (2017)

13. Nguembang Fadja, A., Riguzzi, F.: Probabilistic logic programming in action. In:
Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine
Learning and Knowledge Extraction, LNCS, vol. 10344. Springer (2017)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

15. Poole, D.: The Independent Choice Logic for modelling multiple agents under
uncertainty. Artif. Intell. 94, 7–56 (1997)

16. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-
gramming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (10 2016)

17. Riguzzi, F., Lamma, E., Alberti, M., Bellodi, E., Zese, R., Cota, G.: Probabilistic
logic programming for natural language processing. In: Chesani, F., Mello, P., Mi-
lano, M. (eds.) Workshop on Deep Understanding and Reasoning, URANIA 2016.
CEUR Workshop Proceedings, vol. 1802, pp. 30–37. Sun SITE Central Europe
(2017)

18. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)

19. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated
Disjunctions. In: ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)

	Expectation Maximization in Deep Probabilistic Logic Programming

