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Leopard complex spotting is inherited by the incompletely dominant locus,

LP, which also causes congenital stationary night blindness in homozygous

horses. We investigated an associated single nucleotide polymorphism in the

TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleisto-

cene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP
spotting in Europe dates back to the Pleistocene. We tested for temporal

changes in the LP associated allele frequency and estimated coefficients of

selection by means of approximate Bayesian computation analyses. Our

results show that at least some of the observed frequency changes are con-

gruent with shifts in artificial selection pressure for the leopard complex

spotting phenotype. In early domestic horses from Kirklareli–Kanligecit

(Turkey) dating to 2700–2200 BC, a remarkably high number of leopard

spotted horses (six of 10 individuals) was detected including one adult

homozygote. However, LP seems to have largely disappeared during the

late Bronze Age, suggesting selection against this phenotype in early dom-

estic horses. During the Iron Age, LP reappeared, probably by

reintroduction into the domestic gene pool from wild animals. This picture

of alternating selective regimes might explain how genetic diversity

was maintained in domestic animals despite selection for specific traits at

different times.
1. Introduction
Leopard complex spotting has been a popular coat colour phenotype of dom-

estic horses since ancient times (figure 1). In Europe, horses with these

phenotypes were most likely highly regarded, as they are depicted carrying roy-

alty and noblemen from early medieval times onwards [3]. Today, leopard

complex spotting phenotypes are frequently found in a range of breeds from

Asia (Altai Horses, Mongolian Pony), America (Appaloosa, American Minia-

ture Horse, Colorado Ranger Horse, Falabella, Pony of the Americas, Spanish

Mustang) and Europe (British Spotted Pony, Knabstrupper, Noriker, Karaba-

ier). Leopard complex spotting (LP) is inherited in an autosomal incomplete

dominant mode. Despite its popularity, the underlying genetics of this pheno-

type was, for a long time, unknown. LP was mapped to horse chromosome 1
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Figure 1. Examples of leopard complex horses in human artefacts and culture. Pictures from left to right: (a) the panel of the dappled horses—‘Le panneau des
Chevaux ponctués’, Cabrerets, Lot, France (Photo from P. Cabrol, Centre de Préhistoire du Pech Merle). (b) There are several examples of spotted horses in the art of
ancient Egypt dating from 1500 to 1300 BC (http://www.spanishjennet.org/history.shtml). (c) The mosaics from North Africa are from the Dominus Iulius at Carthage
[1]. (d ) This Persian plateau was passed from conqueror to conqueror until the arrival of the Muslims from the south in 640 AD. Persian art objects from that time to
the present show spotted horses, suggesting that spotted horses were common in Persia since before the Muslim conquest ( picture from http://www.spanishjennet.
org/history.shtml). (e) Chinese horse sculptures dating to 600 – 900 AD. ( f ) The mosaic (Spain 975 AD) is from the Beato de Gerona Codex, dating to 975 and
attributed to the Abad Domenicus [2]. (g) The famous eighteenth century painting from John Wootton titled ‘Lady Conaway’s Spanish Jennet’ is owned by
the Marquees of Hertford. (h) Modern Knabstrupper horse from the famous horse breeding farm ‘Aus der schützenden Hand’ (Werpeloh, Germany) showing leopard
complex spotting (Photo: Thomas Hackmann). (Online version in colour.)
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and several associated single nucleotide polymorphisms

(SNPs) in transient receptor potential cation channel subfamily
M, member 1 (TRPM1) have been identified [4–7]. Recently,

a 1378 bp long terminal repeat (LTR) of an endogenous retro-

virus insertion in intron 1 of the TRPM1 gene has been

identified as the cause of leopard complex spotting [8].

HomozygosityforLPhasalsobeenassociatedwithcongeni-

tal night blindness (CSNB) in several horse breeds (e.g.

Appaloosa and Miniature) [8–12]. In addition to other

senses (e.g. olfaction), vision is important for communication,

localization and characterization of prey, orientation and pred-

ator avoidance [13]. Therefore, individuals affected by CSNB

are more susceptible to predation than unaffected individuals

in natural environments. Under domestic conditions, affected

individuals are known to be nervous, apprehensive and some-

times difficult to handle in dim or dark environments [14]. For

these reasons, it seems likely that homozygotes were selected

against in wild populations and potentially also in early dom-

estic populations. Recently, genetic evidence for the leopard

complex spotted phenotype has been found in pre-domestic

Pleistocene and Holocene populations [8,15]. Although these

genetic data are supported by Palaeolithic cave paintings

where dappled horses are portrayed (figure 1), the intention

of the Palaeolithic artists is still under discussion [16,17].

Here, we extend these analyses to early domestic horses by

typing a SNP in the TRPM1 gene (ECA1 : 108,249,293 C . T)

that was found to be associated with both LP and CSNB in

Appaloosa horses [7,8]. We typed this SNP in 96 horses from

19 localities from Siberia, China, Middle and Eastern

Europe, and the Iberian Peninsula dating from the Late Pleis-

tocene to medieval times and analyse the pattern of allelic

fluctuation discovered.
2. Material and methods
(a) Samples
Overall, we included 96 horse (Equus caballus) bone and tooth

specimens from 31 different localities from Siberia, Middle and

Eastern Europe, China and from the Iberian Peninsula (figure 2

and the electronic supplementary material, table S1). These

samples cover a time span from the Late Pleistocene to medieval

times and are all dated either by archaeological context or 14C

dates (electronic supplementary material, table S2). Except

those from Kirklareli–Kanligecit (n ¼ 10) and Chicha (n ¼ 6),

all samples were previously genotyped for eight other coat

colour loci [18] (electronic supplementary material, table S3).
(b) Ancient DNA extraction and amplification
Approximately 250 mg of bone material was used per extraction.

External surfaces of bones were removed by abrasion to minimize

environmental contamination. Each sample was ground to powder

with a freezer mill and incubated in 0.45 M EDTA (pH 8.0) and

0.25 mg ml 21 proteinase K overnight at room temperature under

rotation. After centrifugation for 5 min at 4000 r.p.m. in a Universal

320 centrifuge (Hettich), DNA was purified from the supernatant

using a silica-based method as previously described [19,20].

LP primers were designed based on one of the associated

SNPs previously reported [7,10] and added to our primer set

for detecting coat colour SNPs. Amplifications were performed

in two steps using multiplex PCR combined with a singleplex

PCR as previously described [18,21]. PCR products varied in

length between 52 and 78 bp (including primers; see the elec-

tronic supplementary material, table S4). Four microlitres of

extract were used for each multiplex PCR. Negative extraction

controls and negative PCR controls were used in each PCR.

Amplification products were visualized on agarose gels.
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Figure 2. Geographical origin of samples (1. Maliy Lyakhovsky Isl., North Siberia; 2. Bol’shoy Lyakhovsky Isl., North Siberia; 3. Oyagosskiy Yar, Kondrat’evo R., mouth,
Siberia; 4. Kotel’niy Isl., Anisiy Cape, Siberia; 5. Fengtai, Qinghai; 6. Tartas1, West Siberia; 7. Denisova-Pescera, Siberia (Altai); 8. Chicha, West Siberia; 9. Om-1, Siberia
(Altai); 10. Arzan1, South Siberia (Tuva); 11. Arzan2, South Siberia (Tuva); 12. Barsucij Log, South Siberia (Tuva); 13. Olon-Kurin-Gol 10, Siberia (Mongolia);
14. Barsucij Log, South Siberia (Tuva); 15. Petersfels, South Germany; 16. Kniegrotte, Germany (Thuringia); 17. Span-Koba, Ukraine (Peninsula Crimea);
18. Mayaki, Ukraine; 19. Molyukhov Bugor, Ukraine; 20. Pietrele, Romania; 21. Vitanesti, Romania; 22. Cascioarele, Romania; 23. Garbovat, Romania; 24.
Kirklareli – Kanligecit, Turkey; 25. Lori-Berd, North Armenia; 26. Shirakavan, Armenia; 27. Miciurin, Moldova; 28. Atxoste, Spain; 29. Cueva Fosca-Valencia-Cartellon,
Spain; 30. Cueva Rubia-Valmayor/Madrid, Spain; 31. El Acequion, Spain; 32. Soto de Medinilla-Valladolid, Spain; 33. Mucientes-Valladolid, Spain).
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(c) Authentication
DNA sampling, extractions and pre-PCR preparations were

carried out in laboratories dedicated to ancient DNA at the

Leibniz Institute for Zoo and Wildlife Research (Ludwig

Laboratory) in Berlin, Germany, following the standard procedures

to avoid contamination. Independent replications were carried

out in a different laboratory at the University of York (Hofreiter

Laboratory), UK for seven bones positive for the SNP allele

associated with LP.

(d) Mutation analysis
LP locus: in order to avoid false-positive detection of mutation

owing to postmortem DNA degradation (cytosine deamination),

we used two different primer pairs for sequencing both strands

to detect the point mutation in the TRPMI gene. These primers

are designed for the pyrosequencing technology.

(i) Other coat colours gene
As previously described, we used a set of eight SNPs in six genes

for detecting basic colours (bay, black and chestnut), diluted phe-

notypes (silver and cream) and spotted or painted phenotypes

(overo, tobiano and sabino) in addition to leopard spotting. Pri-

mers are listed in the electronic supplementary material, table S3.

(ii) Pyrosequencing
Biotinylated PCR products were prepared at the PyroMark

vacuum prep workstation according to the manufacturer’s

instructions. Amplicons for each SNP were sequenced using

pyrosequencing technology on a PSQ 96MA (Biotage). The

SNPs were identified using PSQ 96MA and automatically

edited by the PSQ 96MA SNP software. The results for the

colour determination are summarized in electronic supplemen-

tary material, table S3 and in detail for leopard in electronic

supplementary material, table S5.

(e) Allelic dropout
The probability (P) of a false heterozygote individual is calcu-

lated after n replicates as: P ¼ K(K/2)n21, where K is the

observed number of allelic dropouts divided by all heterozygous

individuals. For all genes, we did a minimum of four replications
except for ASIP and TRPM1 (six replications minimum) which

reduced the risk of non-detection of a heterozygote individual

to an average of 0.3% ( p ¼ 0.0078 for KIT13, 0.0015 for KIT16
and MATP, and 0.00012 for MC1R).
( f ) Estimating the allele frequency of missed alleles
We computed the upper bound of the allele frequency of a coat

colour allele that was present in the pre-domestic population,

but not observed in our samples assuming a binomial distri-

bution. Given n samples, we calculated the likelihood that we

did not detect a colour allele with a frequency of less than or

equal to 5% (electronic supplementary material, table S6). This

likelihood was taken into account for the simulation analysis

(see §2g below).
(g) Testing temporal changes and estimating selection
coefficients

We investigated the temporal change in the frequency of the LP
allele between each consecutive pair of samples by means of a

Bayesian simulation test [22], in order to determine the periods

when the changes observed cannot be attributed to genetic drift

and sampling error alone. Considering that selection pressure

owing to CSNB could be present, this test was also applied with

weak negative selection (selection coefficient of 20.01) exclusively

on LP homozygotes. This additional test was performed in order

to appreciate how significant the frequency changes would be in

those periods when horses shifted from their natural environment

to captivity. Afterwards, an approximate Bayesian computation

(ABC) [23] analysis was employed for obtaining the joint posterior

probability distribution of two parameters: (i) a coefficient of

selection owing to CSNB, which affected the survival of the LP
homozygotes and (ii) a coefficient of artificial selection that

increased/decreased LP alleles in the effective population (as if

it affected the reproductive success). Both selection coefficients

were simulated from uniform priors (21.0 to 1.0), and no assump-

tions regarding selection were taken; the estimates of selection

coefficients were fully determined by the fit of the simulations

in relation to the observed allele frequencies. The employed sum-

mary statistic (SuS) was the Euclidean distance between allele

frequencies, and rejection was stated whenever the simulated
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SuS was different from the observed one, so the posterior is exact

and no regression adjustments were necessary (as in reference

[24]). As Eurasian horse populations have increased since pre-

domestication times [25], the census population size before the

Copper Age was set to 10 000 diploid individuals and after

those times (3600 BC) an exponential population growth was

set, which resulted in a population of 80 000 individuals by the

last sampling time (late Iron Age). A variable number of simu-

lations (between 500 000 and 10 million) were run in order to

yield at least 10 000 non-rejected iterations per comparison.

Owing to the patchy nature of our sampling, the entire analysis

was also repeated only with the samples from Eastern Europe,

in order to rule out that an overspread sampling is a source of

bias (if our results were too reliant on differences observed

among samples too separated to be assumed as belonging to a

single panmictic population, then the Eastern European analysis

should disagree with the overall analysis). Additional runs were

performed for optimization of the runs, to check the robustness

of the results to variation of fixed parameters and for exploring

alternative scenarios.

The program used was a modification of the software TAFT

v. 2.3 [22] where initial allele frequencies were simulated from

a Dirichlet distribution conditional on the observed frequencies.

Considering a Wright–Fisher population model, the intermedi-

ate generations had a multinomial distribution, but the

sampling and the separating of the effective population from

the total population had a hypergeometrical distribution,

which is more appropriate [26].
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Figure 3. Distribution of the LP-allele during archaeological times in different
regions.
3. Results
Overall, genotypes from 96 ancient samples were considered

for LP (TRPM1 SNP ECA1 : 108,249,293 C . T) as well as for

eight other coat colour SNPs in six genes (MC1R, ASIP, SILV,

MATP, EDNRB, KIT). These SNPs included the basic coat col-

ours (bay, black, chestnut), dilution phenotypes (cream,

silver) and white spottings (in addition to LP also tobiano,

sabino and overo; electronic supplementary material, tables

S3 S5 and S7). The LP associated allele was discovered in

eight early domestic horses. In addition to LP, the tobiano

and sabino alleles were previously identified in eight and

three of the early domestic samples, respectively [18].

Our results show that the presence of leopard complex

spotted horses continues into early domestic times (figure 3).

At the archaeological site of Kirklareli–Kanligecit (Turkish-

Thrace) dating to the early Bronze Age (2700–2200 BC),

six of 10 horses investigated shared the LP associated SNP

including one homozygous individual. Compared with the

pre-domestic European horses examined in this study,

the difference in the LP frequency (from 0.0556 to 0.350) rep-

resents a statistically significant increase ( p ¼ 0.0151) that

becomes even more significant ( p ¼ 0.0019) if a small negative

selection coefficient (20.01) is introduced to account for

CSNB, which is thought to be caused by the same mutation

[8,10–12]. This test was used only to emphasize how signifi-

cant the difference would be under the likely scenario that

CSNB affected reproductive success of carriers, even to a min-

uscule extent. Consequently, our estimate of an artificial

selection coefficient accounting for the observed increase in

LP frequency, as obtained by the ABC analysis, is positive

and high (0.3652, 95% CI ¼ 0.0–0.85). The high positive

value for the estimated selection coefficient suggests that the

horses from Kirklareli–Kanligecit were domestic horses. This

conclusion is further supported by their archaeological context
and the fact that there is no archaeological evidence for wild

horses in Turkish-Thrace during the Mid Holocene [27].

LP is not present in our domestic horse samples dating

to the middle and late Bronze Age. This difference is also sig-

nificant ( p ¼ 0.0081), whereas the estimate of the artificial

selection coefficient becomes negative (figure 4; electronic

supplementary material, table S8 and text S9). The phenotype

reappears in our sample set during the early Iron Age, with

the first evidence originating from a single sample from the

fortified settlement of Chicha (1400–1300 BC), one of the

most important archaeological sites of the transitional

period between the late Bronze Age and the early Iron Age
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in the forest steppe region of western Siberia. We also found

evidence for another leopard complex spotted horse from

Arjan (800 BC), an Iron Age Scythian grave from the Tuva

region in western Siberia (figure 3). The horses from Chicha

are morphologically separated into two groups: mainly

large and strongly built horses in period 1 where wild species

dominate the faunal assemblage, and smaller horses in

period 2 where domestic animals are clearly prevailing [28].

The Chicha bones analysed here represent both large, prob-

ably wild horses from period 1 (CIC1, CIC2, CIC3) and

small, probably domestic horses from period 2 (CIC4, CIC6,

CIC8). Based on morphological traits of the skeleton, the LP
horse from Chicha was likely a wild-caught animal,

suggesting that this phenotype could have been reintroduced

into the domestic gene pool from a wild population.

Although apparently present in the domestic gene pool

during the Iron Age, with only two of 33 individuals, leopard

complex spotted horses seem to remain rather rare during

this period.
4. Discussion
Here, we show that LP is not only the most common spotting

pattern identified among the 96 ancient samples analysed so

far, but also the only one which has so far been found in both

pre-domestic and early domestic horses. Considering the

archaeological record [27], the high allele frequency of LP
and the positive selection coefficient for the LP allele found

for the horses from Kirklareli–Kanligecit (Turkey), these

horses almost certainly belonged to a domestic population.

Given that no wild horse remains have been reported from

this region from the time to which the investigated samples

date [27], it is reasonable to assume that these horses were

not only domesticated, but also imported to this region.
Previous studies on the population structure of pre-domestic

horses indicate that they existed as a panmictic population

ranging from the French Pyrenees to Siberia, with a second

isolated subpopulation inhabiting the Iberian Peninsula

since glacial times [25,29]. Given such a population structure,

it is not unlikely that leopard spotted horses were also present

in Siberia. However, until now, this phenotype has only been

found in pre-domestic horses from Western and Eastern

Europe.

It has previously been suggested that the genetic diversity

of domestic animal species has been augmented through

backcrossing with their wild ancestors [29], and a replace-

ment of the original domestic mtDNA genomes with those

from local wild boar populations has been demonstrated in

early domestic pigs from Europe [30]. After their initial dom-

estication, probably around 3500 BC in the North Caspian

region [31], domestic horses were distributed very rapidly

all over Eurasia, allowing incorporating of local genetic diver-

sity of the respective wild populations into the domestic gene

pool. For example, the high mtDNA diversity found in dom-

estic horses is explained by assimilation of local wild-caught

mares into the domestic gene pool [25,32]. It is therefore

plausible that the geographical origin of the LP allele in the

domestic horses from Kirklareli–Kanligecit lies in Europe.

Assuming that the horse from Chicha indeed represented a

wild-caught horse, the LP allele in domestic horses may

have originated from multiple interbreeding of domestic

horses with local wild-caught mares. Our results also add

further evidence that horses already displayed a high diver-

sity of coat colour phenotypes during the earliest stages of

the domestication process.

Although we did not find any evidence for it, we cannot

exclude that LP persisted at low frequency in the domestic

population during the late Bronze Age. Considering only the

Bronze Age samples in our dataset, the probability that the



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130386

6
LP allele frequency was lower than 0.15 is 95%, and 99% for a

frequency below 0.22. Given these numbers and considering

the patchy set of samples, it is of course possible that the LP
allele had been retained in part of the Bronze Age domestic

horse population at low frequency and thence reintroduced

into others. However, when analysing archaeological materials,

sampling is often patchy because of the nature of the archaeolo-

gical record. In our sample set, the phenotype reappears around

1400 BC in a horse sample from Chicha (West Siberia).

Although, based on its skeletal morphology, this horse prob-

ably represents a wild horse [28], a second LP positive Iron

Age sample, originating from a Scythian grave dating to

800 BC, clearly represents a domestic animal [21,33]. Together,

these results are thus ambiguous on the origin of the LP allele in

Iron Age and later domestic horse populations.

As we could only analyse horses from a single early

Bronze Age site, we cannot draw any conclusions whether

the high frequency of the LP allele observed at Kirklareli–

Kanligecit was a general feature of domestic horses at this

time or specific to the breeding practices and population of

this specific site. However, the LP phenotype seems likely

to have been rare or even absent from the gene pool of dom-

estic horses later during the Bronze Age, as we found no

evidence for it in later Bronze Age horses. It is possible that

once farmers became aware of the difficulties of rearing

night blind animals, which may have been easy targets for

predation and theft as well as difficult to handle under low

light conditions, they selected against them. This argument

is supported by two facts: (i) genetic drift alone is unlikely

to explain the absence of the LP allele during the late

Bronze Age ( p ¼ 0.0081; see the electronic supplementary

information); and (ii) the estimated selection coefficient in

addition to negative selection owing to CSNB was also

strongly negative for this time period (20.5176, 95%

CI ¼ 21.0 to 20.05). Both factors argue for active human-

mediated selection against the LP phenotype during the

later Bronze Age, in the opposite direction of the selection

coefficient suggested for the early Bronze Age. However,
LP was almost certainly selected for again at some point

after the Iron Age, suggesting another swing in the selective

preferences of horse breeders with regard to phenotype. Our

modelling results further support this notion as the major

shifts in allele frequency at the TRPMI gene over time

almost certainly reflect changes in the selective regime

(figure 4), owing to a combination of the negative effect of

CSNB and fluctuating artificial selection on the colour pheno-

type. Thus, the phenotypic and breeding preferences of early

horse breeders seem to have changed over time, just as the

preferences of animal breeders change today.

We did not investigate any medieval samples, but

leopard complex spotted phenotypes become increasin-

gly abundant in texts and iconographies from this time

onward, indicating its increased prestigious value. From

early medieval times onwards, there are many paintings

showing noblemen on such horses [3]. There is also a docu-

mented increase in the frequency of the leopard complex

phenotype in the breed Noriker during the Baroque Age,

which was achieved by crossbreeding with Spanish horses

[34], with the goal to breed exotic coloured gala horses.

During the following centuries, the LP phenotype went out

of fashion and became very rare again, along with all other

white spotted phenotypes [34]. Today, breeding efforts have

intensified again in favour of white spotted phenotypes

owing to a growing interest in their restoration, and LP phe-

notypes are found in many breeds testifying to their

popularity [35]. Assuming that this picture of alternating

selective regimes holds also true for other loci, it might

explain how genetic diversity was maintained in domestic

populations at all times despite extensive selection for specific

traits during certain time periods.
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Española de Estudios Medievales (in Spanish).

4. Terry RB, Archer S, Brooks S, Bernoco D, Bailey E.
2004 Assignment of the appaloosa coat colour
gene (LP) to equine chromosome 1. Anim. Genet.
35, 134 – 137. (doi:10.1111/j.1365-2052.2004.
01113.x)

5. Bellone RR, Brooks SA, Sandmeyer L, Murphy BA,
Forsyth G, Archer S, Bailey E, Grahn B. 2008
Differential gene expression of TRPM1, the potential
cause of congenital stationary night blindness and
coat spotting patterns (LP) in the Appaloosa horse
(Equus caballus). Genetics 179, 1861 – 1870.
(doi:10.1534/genetics.108.088807)
6. Bellone RR et al. 2010 Fine-mapping and mutation
analysis of TRPM1: a candidate gene for leopard
complex (LP) spotting and congenital stationary
night blindness in horses. Brief Funct. Genomics 9,
193 – 207. (doi:10.1093/bfgp/elq002)

7. Bellone RR, Archer S, Wade CM, Cuka-Lawson C,
Haase B, Leeb T, Forsyth G, Sandmeyer L, Grahn B.
2010 Association analysis of candidate SNPs in
TRPM1 with leopard complex spotting (LP) and
congenital stationary night blindness (CSNB) in
horses. Anim. Genet. 41(Suppl. 2), 207. (doi:10.
1111/j.1365-2052.2010.02119.x)

8. Bellone RR et al. 2013 LTR driven premature poly-
adenylation in TRPM1 causes congenital stationary
night blindness and leopard complex spotting in
horse: an ancient example of balancing selection.
PLoS ONE 8, e78280. (doi:10.1371/journal.pone.
0078280)

9. Sandmeyer LS, Breaux CB, Archer S, Grahn BH. 2007
Clinical and electroretinographic characteristics of
congenital stationary night blindness in the
Appaloosa and the association with the leopard
complex. Vet. Ophthalmol. 6, 368 – 375. (doi:10.
1111/j.1463-5224.2007.00572.x)

10. Sandmeyer LS, Bellone RR, Archer S, Bauer BS,
Nelson J, Forsyth G, Grahn BH. 2012 Congenital
stationary night blindness is associated with the
leopard complex in the miniature horse. Vet.
Ophthalmol. 15, 18 – 22. (doi:10.1111/j.1463-5224.
2011.00903.x)

11. Cieslak M, Reissmann M, Hofreiter M, Ludwig A.
2011 Colours of domestication. Biol. Rev. 86, 885 –
899. (doi:10.1111/j.1469-185X.2011.00177.x)

12. Reissmann M, Ludwig A. 2013 Pleiotropic effects of
coat-colour associated mutations in human, mice
and other mammals. Semin. Cell Dev. Biol. 24,
376 – 386. (doi:10.1016/j.semcdb.2013.03.014)

13. Murphy J, Hall C, Arkins S. 2009 What horses and
humans see: a comparative review. Int. J. Zool.
2009, 721798. (doi:10.1155/2009/721798)

http://dx.doi.org/10.1111/j.1365-2052.2004.01113.x
http://dx.doi.org/10.1111/j.1365-2052.2004.01113.x
http://dx.doi.org/10.1534/genetics.108.088807
http://dx.doi.org/10.1093/bfgp/elq002
http://dx.doi.org/10.1111/j.1365-2052.2010.02119.x
http://dx.doi.org/10.1111/j.1365-2052.2010.02119.x
http://dx.doi.org/10.1371/journal.pone.0078280
http://dx.doi.org/10.1371/journal.pone.0078280
http://dx.doi.org/10.1111/j.1463-5224.2007.00572.x
http://dx.doi.org/10.1111/j.1463-5224.2007.00572.x
http://dx.doi.org/10.1111/j.1463-5224.2011.00903.x
http://dx.doi.org/10.1111/j.1463-5224.2011.00903.x
http://dx.doi.org/10.1111/j.1469-185X.2011.00177.x
http://dx.doi.org/10.1016/j.semcdb.2013.03.014
http://dx.doi.org/10.1155/2009/721798


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130386

7
14. Rebhun WC, Laratta LJ, Loew ER, Riis RC. 1984
Clinical manifestations of night blindness in the
Appaloosa horse. Compendium Contin. Educ. 6,
S103 – S106.

15. Pruvost M et al. 2011 Genotypes of pre-
domestic horses match phenotypes painted in
Paleolithic works of cave art. Proc. Natl Acad. Sci.
USA 108,
18 626 – 18 630. (doi:10.1073/pnas.1108982108)

16. Hodgson D. 2014 The significance of the Pech Merle
spotted horses. Arts 3, 207 – 212. (doi:10.3390/
arts3020207)

17. Alpert BO. 2013 The meaning of the dots on the
horses of Pech Merle. Arts 2, 476 – 490. (doi:10.
3390/arts2040476)

18. Ludwig A et al. 2009 Coat colour variation at the
beginning of horse domestication. Science 324, 485.
(doi:10.1126/science.1172750)

19. Rohland N, Hofreiter M. 2007 Ancient DNA
extraction from bones and teeth. Nat. Protoc. 2,
1756 – 1762. (doi:10.1038/nprot.2007.247)

20. Rohland N, Hofreiter M. 2007 Comparison and
optimization of ancient DNA extraction. Biotechniques
42, 343 – 352. (doi:10.2144/000112383)

21. Pruvost M, Reissmann M, Benecke N, Ludwig A.
2012 From genes to phenotypes - evaluation of two
methods for the SNP analysis in archaeological
remains: pyrosequencing and competitive allele
specific PCR KASPar. Ann. Anat. 194, 74 – 81.
(doi:10.1016/j.aanat.2011.10.007)

22. Sandoval-Castellanos E. 2010 Testing temporal
changes in allele frequencies: a simulation
approach. Genet. Res. Camb. 92, 309 – 320. (doi:10.
1017/S0016672310000339)

23. Bertorelle G, Benazzo A, Mona S. 2010 ABC as a
flexible framework to estimate demography over space
and time: some cons, many pros. Mol. Ecol. 19,
2609 – 2625. (doi:10.1111/j.1365-294X.2010.04690.x)

24. Beaumont MA, Zhang WY, Balding DJ. 2002
Approximate Bayesian computation in population
genetics. Genetics 162, 2025 – 2035.

25. Cieslak M, Pruvost M, Benecke N, Hofreiter M,
Morales A, Reissmann M, Ludwig A. 2010 Origin
and history of mitochondrial DNA lineages in
domestic horses. PLoS ONE 5, e15311. (doi:10.1371/
journal.pone.0015311)

26. Pollak E. 1983 A new method for estimating the
effective population size from allele frequency
changes. Genetics 104, 531 – 548.

27. Benecke N. 2009 On the beginnings of horse
husbandry in the Southern Balkan Peninsula: the
horses from Kırklareli – Kanlıgeçit (Turkish Thrace).
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