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ABSTRACT

Carbonate platforms grow through the precipitatteemsport, and final deposition of carbonate sedim
out of seawater. Quantifying the relative contribg of initial production versus subsequent tranisin
determining the growth rates and geometries ofglais remains a significant challenge. In this gfud
stratigraphic forward modeling is used to quantify roles of sediment production, transport, and

deposition during each growth stage of a Permiaas$ic carbonate platform with a complex growth
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history. Parameter optimization and sensitivitylgsia show that, within the range of reasonablietes
values, the morphology of the platform is most g&&mesto sediment transport, moderately sensitove t
maximum carbonate production rate, and least $emsit the productivity-depth curve. The ramp-tgHhi
relief, steep-sloped platform transition duringlgdiriassic time can be explained by any factot tha
limits sediment transport from shallow water arefisigh production to the slope and basin. Reefg ma
play a role in limiting sediment transport on mantgtforms but other processes, such as early marine
cementation, or carbonate production along thesslomy be equally capable of yielding this shift in
platform geometry. In this particular case, eaithification of ooid and skeletal shoals on thetfolan
margin, perhaps facilitated by unusually high cadie saturation state of seawater, may have iekibit
sediment transport into the basin prior to the tmraent of a reef on the platform margin. Laterjstam
progradation of the platform margin can be expldibg the development of a slope factory rather than
requiring increased sediment transport from théfqia top. The development of an escarpment margin
in the Ladinian is mainly influenced by accommodatin the slope profile created by antecedent
topography. A general implication from the modelulés is that the growth of steep-sloped carbonate
platforms lacking slope microbial factory may oftem limited by transport of sediment from the piati
top to accommodation on the slope rather than éyrittinsic production capacity of the platform top

factory.

Keywords: carbonate platform; geometry; sediment producti@nsport; carbonate saturation;

carbonate factory

1. INTRODUCTION

Carbonate platform architecture is influenced legyittierplay of physical, chemical, and
biological factors that cause complex variationplatform morphology (e.g., ramp, steep-sloped
platform, or bypass escarpment) and internal fadiitsibution (Bergmann et al., 2013; Halfar et a004;

Higgins et al., 2009; Lukasik and Simo, 2008; Varefal., 2013). One important approach to assgssin
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the influences of physical, chemical, and biologpracesses on carbonate platform development has
been the analysis of modern and ancient systeragghroutcrop or subsurface stratigraphic methods an
on-site oceanographic measurements (Harris &Q@l5; Lehrmann et al., 1998; Lukasik and Simo, 2008
Purkis et al., 2015; Reeder and Rankey, 2008; Reighal., 2009; Swart et al., 2009; Verwer et al.,
2013). A complementary approach is the applicabfomumerical stratigraphic forward modeling. To
date, stratigraphic forward modeling has been afpb carbonate systems in order to (1) test coemon
sedimentary patterns, such as sedimentary cyc(i8ipgncer and Demicco, 1989) and the origin and
distribution of hiatuses (Burgess and Wright, 2003) create conceptual models of platform geometry
and internal architecture (Bosence and WalthamQ;1Bfisson et al., 2019; Williams et al., 2011); &d
predict sediment distribution and reservoir aratitee for hydrocarbon applications (Bassant andisiar
2008; Gervais et al., 2018; Liechoscki de Paul@aFetral., 2017; Warrlich et al., 2008). Most of th
carbonate platforms that have been simulated byigitaphic forward modeling display a single stagki
pattern throughout their entire growth history [eaggradation (Barrett and Webster, 2017), pragiad
(Berra et al., 2016; Castell et al., 2007; Saui.eR013), retrogradation and drowning (Searal.et

2013; Warrlich et al., 2002)] and one morphotypg.[eaamp or steep-sloped platform (Berra et QL&
Busson et al., 2019; Castell et al., 2007; Koloelkal., 2015; Liechoscki de Paula Faria et al., 7201
Richet et al., 2011; Warrlich et al., 2008)]. Poaig studies have modeled the roles of various fa.cto
carbonate platform evolution such as subsidenes,raediment production rates, sea-level fluctoatio
and sediment redistribution (Warrlich et al., 20@4lliams et al., 2011). However, a significant
challenge remains to quantitatively assess whiohgsses play dominant roles and interact to govern

large changes in platform morphology through time.

The Great Bank of Guizhou (GBG), an isolated caab@platform of Permian-Triassic age in the
Nanpanjiang Basin of south China (Figs. 1 and<2yni ideal test case for assessing and quantifying
causes of variation in platform morphology acraset(Kelley et al., 2020; Li et al., 2012; Minzaatial.,

2013). The stratigraphic architecture of the GB@Gnfits inception to its demise, is exceptionallgiiw
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exposed along intact platform-to-basin transeath s1$ the Bianyang syncline (Fig. 3). In additiits,
lithostratigraphy, biostratigraphy, and chemosgratphy have been well established for correlatiomf
platform to basin (Kelley et al., 2020; Lehrmanrakt 2015b, 1998; Meyer et al., 2011; Payne et al.

2004).
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Figure 1. Tectonic map of south China block. (A) Locatidrttee Nanpanjiang Basin and Precambrian massifs tha

border the basin and potentially provide terrigensediments into the Nanpanjiang Basin: Khamdidd)(K
Jiangnan (JN), Yunkai (YK), and Cathaysian (CY)utboChina block comprises the Yangtze craton amthso
China fold belt. A red box denotes the area shawfigure 2A. (B) Global plate reconstruction anciltions of
south China block (SC), north China block (NC), &mdioChina block (IC) in Early Triassic time. Moidifl after
Minzoni et al. (2013).

The GBG experienced substantial changes in morgka@oross its accumulation history. The
platform initiated as a low-relief ramp during Ist&ermian time. It continued to accumulate asrgpra
with ooid shoals during earliest Triassic time thén developed a steep-sloped platform morphology

with significant relief above the adjacent basininiy the Early Triassic (Kelley et al., 2020, 201The
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86  platform evolved into a high-relief, prograding id@m geometry with a reef on the margin and slope

87  during Middle Triassic (Anisian) time before devgilty a bypass escarpment morphology in the northern
88  margin and a collapsed escarpment in the southargimlater in the Middle Triassic (Ladinian) prior

89  drowning early in the Carnian (Fig. 3; Kelley et 2020; Lehrmann et al., 2020, 1998; Li et al120

90 The transitions in platform geometry were accomgaiy distinctive changes at the platform margith an
91 along the slope from a tropical to a microbial éagt Consequently, the GBG offers an unusual

92  opportunity to test if and how transitions in camnhte factory types contributed to coeval shifts in

93  platform architecture (Pomar, 2001).

94 In order to advance understanding of the dominarigkiles governing the evolution of platform

95  morphology (ramp, steep-sloped platform, bypasarpstent, etc.), it is necessary to model facies

96 architecture at the scale of exceptional outcropeismic-scale subsurface analogues rather than

97 attempting to model the small-scale facies andafacies distributions. By exploring the parameter

98 combinations required to mimic the evolution of ghatform morphology of the GBG along the

99  platform-to-basin transect of the Bianyang synctimeugh stratigraphic forward modeling, the gazls
100 this study are: (1) to quantify the factors thadtded the ramp to steep-sloped platform geometric
101 transition in the Early Triassic in the absenca aficrobial or metazoan reef framework at the ptatf
102  margin and without synsedimentary tectonic modiftaaof the margin; and (2) to assess sensitivity o
103  overall platform morphology of the GBG to patteoisediment production and transport that is
104  generally most poorly constrained or non-explicitifroduced in previous modeling studies (e.g.,
105 Kolodka et al., 2015; Liechoscki de Paula Fariale2017; Saura et al., 2013) within the constsadr

106  local subsidence, global sea-level fluctuation, geadlogic setting.

107 2. GEOLOGIC SETTING

108 The Nanpanjiang Basin formed an embayment to ththgourrent coordinates) of an attached

109 carbonate platform, the Yangtze Platform (Fig.D)ring the latest Permian, a local marine transjoes
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forced the south-facing Changhsingian Yangtze &atfmargin to backstep approximately 100 km, from
near the present city of Luodian to the Guiyang dFég. 2). Antecedent topography inherited from a
Late Permian shelf-margin reef complex along thimér Changhsingian Yangtze Platform margin and a
series of patch reefs in the former platform irtte(Fig. 2B) served as nuclei for the growth ofisoiated

carbonate platform, the GBG (Fig. 3; Lehrmann gt1#198; Li et al., 2012).

The western sector of the GBG is dissected by t&thending faulted Bianyang syncline (Fig.
2C) that exposes a continuous 2-D platform-to-besigs-section of the architecture and preserved
bathymetric profile through the platform and itsthern and southern flanks (Fig. 3). Strata ofdiwess-
section dip at approximately 65° to the southwEgg.(3A). Details of the facies composition, texand
sedimentary structures of the GBG are documentddtiil in previous studies (Kelley et al., 2020;

Lehrmann et al., 2007, 1998; Li et al., 2012; Minizet al., 2013).

Here, the overall platform evolution of the GBGsisnmarized with a focus on the evolution of
the platform morphology and facies architecturdloong initiation on antecedent topography inhexit
from the Late Permian (Figs. 2B and 3B), the GB@etlgped a ramp morphology with ooid shoals in the
earliest of the Induan. The GBG evolved into atdeped, high-relief platform with ooid shoaldla
margin by the Olenekian of the Early Triassic (F8B and 4; Kelley et al., 2020). During the Anisia
the GBG developed a steep, prograding morpholotly mvargin and slope composedTabiphytes
boundstone (Kelley et al., 2020). In-situbiphytes boundstone grew on the upper two-thirds of theeslop
In the Ladinian the platform locked into an aggtasl mode, developing a high-relief bypass
escarpment morphology on the north flank, and Epséd margin that includesteep convex-bankward
embaymenbn the south flank (Lehrmann et al., 2020). The3G&as drowned and buried with

siliciclastic turbidites in the Carnian (Fig. 3;Hrenann et al., 2007, 1998).
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133 Figure 2. Detailed view of the Nanpanjiang Basin and theaBBank Guizhou (GBG). (A) Position of the GBG is
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139 The earliest deposits of the GBG were composeg@aige-microbial boundstone and open-

140  marine skeletal packstone-grainstone composedighabiodiversity, open-marine biota that nucleated
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on top the antecedent topography inherited frombger Permian (Figs. 2B and 3B; Lehrmann et al.,
1998; Li et al., 2012). Upon initiation, the platiohad some relief, likely a few hundred metergyvab
the pre-existing Nanpanjiang Basin to the southgoite limited relief, likely tens of meters, ababe

drowned Yangtze Platform to the north (Fig. 3B).

In the beginning of the Induan, the GBG had a rangfile with ooid shoals at the margin (the
slope angle is ~1.5° in Fig. 3B; Lehrmann et #98). The GBG developed an aggradational
accretionary margin stabilized by early marine cetsvith progressively steepening slopes during the
Induan (Kelley et al., 2020). By the end of thedad, approximately 1.5 Myr after the Permian/Tiiass
transition, the GBG had evolved into a high-rel@&ep-sloped (17° to 21°) platform where the rerth
margin stood approximately 300 m above the adjdeasin (Fig. 3; Kelley et al., 2020). Facies in the
platform interior change upward from microbial bdatone to thin-bedded lime mudstone, to
dolomitized oolite, and next to peritidal thromielbearing cyclic limestone (Figs. 3 and 5), repnéiag
shallow subtidal to peritidal environments. A lowetsity fauna dominated by gastropods and bivalves
in the platform interior suggests a restricted mmvinent, likely due to the presence of shoalseat th
margin. Marginal shoal facies, approximately 0.8.# km wide, comprise oolitic grainstone with
subordinate molluscan packstone (Lehrmann et298;1Rongling section in Figs. 3B and 5). Coeval
slope facies are composed of shale, punctuated bpward-increasing occurrence of carbonate debris-
flow breccia, carbonate turbidites, and lime mudst(Figs. 3B and 5). Carbonate debris flows and
carbonate turbidites contain oolite clasts, ooitt$ lsivalve fragments primarily sourced from oolitic
shoals at the platform margin (Lehrmann et al. 8 9. 5). Lime mudstone along the slope resulted

from export of lime mud from the platform margindainterior to the slope as periplatform ooze.

The aggradational accretionary margin was stakilimeearly marine cement during the
Olenekian, generating a high-relief (~900 m) cagterplatform with a steep slope (Kelley et al.,202
Oolitic shoals continued to dominate at the platfonargin (Rongling section in Figs. 3 and 5), whsre

the platform interior consists of dolomitized pigld facies (Figs. 3 and 5; Lehrmann et al., 19¢8ley
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et al., 2020). Steep slope facies (23° to 31°)inaetto be composed of carbonate debris-flow bagcci
carbonate turbidites containing oolite clasts, s@dd bivalve fragments and periplatform lime moist

sourced from the margin and interior (Fig. 5; Kelké al., 2020).

The northern margin of the GBG at Bianyang develapsteep-sloped (23° to 27°) prograding
morphology during Anisian time (Fig. 3B; Kelleyat, 2020). Slope deposits are mainly composed of
Tubiphytes boundstone with abundant early marine cements,dstane-derived breccia, and lime
mudstone, packstone, and grainstdndiphytes boundstone dominates the platform margin and upper
two-thirds of the slope (Fig. 3B) whereas boundstdarived debris-flow breccia, carbonate turbidite
packstone-grainstone and peri-platform pelagic imglstone dominate in the lower slope and extend to
the basin margin along with subordinatgiphytes boundstone (Lehrmann et al., 1998; Kelley et al.,
2020). The Anisian slope deposits of the GBG congdiarge proportion (~60%) of in-sifubiphytes
boundstone indicating that carbonate productiotherslope promoted progradation of the platform,
analogous to Middle Triassic slope facies in thkaS&eim and Schlager, 2001) and Latemar (Marangon
et al., 2011) carbonate platforms. As the nortmeangin of the GBG prograded, the interior deposited
peritidal cyclic carbonate composed of meter-scaiealing upward cycles with burrowed, molluscan-
peloidal packstone at the base and fenestral laeng@gs (Fig. 5)Tubiphytes boundstone also formed at
the southern margin during this time; however,arahitecture is unknown because of collapse and

truncation of the margin during the Ladinian (R3&, Li et al., 2012; Lehrmann et al., 2020).
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Figure 3. Satellite image and stratigraphic architecturthefGBG along the Bianyang syncline (A) Satellitage
of the GBG. The GBG stands out in the satellitegenbecause of the difference in topography of trstled
carbonates of the platform and the stream-erodiettkistics in the basin. Dashed white curve defithe outline
of scalloped southern margin near Bangeng. Coude&pogleEarth. (B) Platform architecture and pipal
lithofacies of the GBG through time. The architeetaf the northern margin comes from Lehrmann .e18198)
and Kelley et al. (2020). The architecture withie platform interior is from Lehrmann et al. (1998he southern
margin architecture originates from Lehrmann e{2020). Detailed facies features and descriptrerr@ported in
Lehrmann et al. (1998 and 2020) and Kelley et24120). For interpretation of the references to icwidhis figure
legend, the reader is referred to the web versidhis article.
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Figure4. A polished slab of Lower Triassic oolite from Rding section at the northern margin of the GBG. (A)
The slab without annotation. (B) The same slab waithotation. Note several generations of radidlaaate fans
stack upon each other. The radial carbonate fassilgg grew on the seafloor (Woods et al., 1999)ere likely
preserved within sheet cracks in oolite. Coatedpmsite grains that contain multiple ooids are gadrthy white
arrows. See Figures 3 and 5 for more details aRoungling section.
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During the Ladinian, the northern margin of the G&8&veloped a high-relief bypass escarpment
morphology while the southern margin was truncégdatastrophic collapse (Fig. 3B; Lehrmann et al.,
1998 and 2020; Li et al., 2012; Minzoni et al., 2DFacies along the northern escarpment marginlynai
contain skeletal-peloidal packstone-grainstone Isheigh local Tubi phytes-sponge-coral patch reefs
(Lehrmann et al., 1998). Lehrmann et al. (1998¢ddhat breccia debris at the foot of the northern
escarpment contains clasts composetubiphytes-sponge-coral boundstone indicating erosion froen th
escarpment; however, the relatively small volumghefdebris at the foot of the northern escarpment
shows that the shedding was not extensive. In ashtthe southern margin at Bangeng shows a concave
up geometry recognizable in satellite images (B49.that is interpreted to result from margin fadwand
collapse (Lehrmann et al., 2020; Li et al., 20@)llapse truncated the Lower Triassic through Lizdin
facies along the escarpment, and slope brecciaiosntlasts eroded from the collapsed margin @ig.

Li et al., 2012; Lehrmann et al., 2020). During taglinian, the platform interior developed an iiti
atoll-like morphology with subtidal molluscan-onitial packstone in the central lagoon grading ldkgra
and seaward to peritidal limestone closer to th&@m margins (Figs. 3B and 5; Lehrmann et al98)9
Later in the Ladinian, peritidal limestone extendedoss the entire platform, yielding a flat-topped

profile (Figs. 3B and 5; Lehrmann et al., 1998).

Near the end of the Ladinian, a shift to subtidaids indicates a deepening event in the platform
interior (Lehrmann et al., 1998), followed by drang of the platform in the beginning of the Late
Triassic (Carnian) due to accelerated subsidenglerthann et al., 2007, 1998). The drowning event is
reflected by an upward shift to dark grey, noduagillaceous oncolitic wackestone containing deep-
marine Neogondolellid conodonts followed by budkthe platform by siliciclastic mudrock (Lehrmann
et al., 1998 and 2007; Fig. 5). Subsequently, tB&®@as buried by a thick succession of siliciclasti

turbidites in the Carnian (Lehrmann et al., 202847, 1998).

12
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3. MODELING PROCESSES AND CONSTRAINTS

The GBG was used as a reference platform for thetoaction of stratigraphic forward models
exploring the combinations of parameter values aibfe with the observed platform evolution.
Numerical models were constructed using the DION8S0Oftware (Granjeon and Joseph, 1999) on an 80
km-long by 2 km-wide transect, using an initialagpaphy equivalent to that of the 2-D cross-section
exposed along the Bianyang syncline (Figs. 2B gnB&cause (1) the GBG has a long growth history
(252.2 — 237 Ma), (2) its area of simulation is k&, and (3) this study mainly aims to investigate
sensitivity of platform morphology, rather thanaikgtd stratigraphic architecture and internal facie
distribution, to different controls, the models wéuilt at a spatial resolution of 0.5 km and terapo
resolution of 25,000 yr with a reasonably accegt@bimputational duration of running models (~1.7
hours per model), spanning from 252.2 to 237 M&(12013). In addition, the average duration of a
single peritidal cycle on the platform interiortbe GBG is less than 22,000 yr (Yang and Lehrmann,
2003); therefore, the temporal resolution is nqadde of reflecting such detail as peritidal cycdesl

their variations in space and time.
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3.1 Accommodation

The initial topography (latest Permian) of the G&&s mainly controlled by the antecedent
topography of the shelf-margin reef complex nearfttmer Permian platform margin and associated
patch reefs to the north (Figs. 2B and 3; Lehrrmetrad., 1998; Li et al., 2012). In the model, thitial
bathymetry of the platform interior was assumed@smeters below sea level based on the diversa biot
including calcareous algae, fragmented fossils,grathstone texture of the uppermost Permian rocks

indicating an open-marine, shallow-subtidal, motidyaagitated environment (Lehrmann et al., 1998).

The initial topography for model runs was basedield constraints on the antecedent
topography inherited from the Upper Permian whieenhargin reef complex and associated patch reefs
generally confine the initial nucleation locatiointlee GBG (Figs. 6 and 7A). In the south, the shelf
margin reef complex faced the deeper waters oféméral Nanpanjiang Basin (Figs. 2B and 7A). A
water depth of 250 m and a clinoform slope angl@5ofvere used to approximate the initial topography
of the southern margin (Fig. 7A). Moving northwaodhe former Permian platform interior, the assdme
water depth near the patch reefs increases fromid23t m below sea level across 2500 m laterally. (F
7A). Perched above the Upper Permian margin, th& @&Bnferred to have developed with
approximately 10 m elevation above the substraith, ahhange across a lateral distance of 500 men th

south and north edges of the platform (Fig. 7A).

In DIONISOS, simulation of accommodation duringlesime step includes the effects of
sediment compaction/dissolution, eustatic sea lelvahge, local subsidence, and sediment erosign §Fi
Granjeon and Joseph, 1999). In the model runghtblenesses from measured stratigraphic sections we
used without correction for differential compactiamd dissolution as the data for comparison because
existing data do not allow precise correction fase effects. Furthermore, early marine cementation
filled a large portion of the depositional porossyabilizing the Early Triassic and Middle Triassi
platform margin and limiting the effect of compaction the overall platform architecture (Kelleyakt

2020; Lehrmann et al., 2012; Payne et al., 2006).
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BASIC SETTING SEDIMENT PRODUCTION

(1). Single time step (1). Carbonate lithofacies
(2). Simulated period of time types

(3). Single grid size (2). Maximum production
(4). Initial bathymetry (Fig. rate of each carbonate
7A) lithofacies (Table 1)

(3) Productivity-depth
curve (Fig. 7D; Table 1)

ACCOMMODATION + SEDIMENT TRANSPORT

(1). Local subsidence Only carbonate factory at
(Fig. 7B) platform margin was

(2). Eustasy (Fig. 7C) assigned with transport
(3). Sediment dissolution and (see Table 1 for details)
compaction: not included
(4). Sediment erosion: not (1). Transport
included coefficient (Table 1)

' Sensitivity analysis (Figs. 9

— —_— e to 20): reset the three
~ parameters in shade

Ve G . ,
eometric constraints to |
MODEL & select the best-fit models FIELD

RESULTS (Section3.4;Fig.8) _,~ |OBSERVATION |
~

—~— -

— —

Select

BEST-FIT
MODELS

Evaluate*

Relative role of different controls (maximum
production rate, productivity-depth curve,
sediment transport) on platform geometry

Figure 6. Workflow used to build models and assess theivelabntribution of sediment production and seditnen
transport on the platform morphology of the GBGaS#vity analysis was performed through changimg t
maximum production rate, productivity-depth curaed transport coefficient of a carbonate lithofaggray arrows
and shade). Simulations are compared to field thataigh geometric constraints.
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274 Figure 7. Model input parameters. (A) Initial bathymetrytecedent topography inherited from the latest Pammi
275 (also see Figure 2B). (B) Local subsidence ratendithe simulation period (Minzoni et al., 2013}) 3%order of
276 eustasy fluctuations during the simulation periddd et al., 1987). (D) Productivity-depth curveddferent

277 carbonate factories. Fair-weather wave base i®d®t at 10 m. Note a turning point on the proditgtidepth curve
278 of peri/subtidal carbonates represent its own marinproductivity depth (MPD). Periplatform carbonated is
279 parameterized to reflect density cascading desttygWilson and Roberts, 1995, 1992).

280 Local subsidence calculated from measured stratigecasections in the platform interior and at
281  the margin (Minzoni et al., 2013; Fig. 5) was inpata constant value as shown in Figure 7B. Stratal
282  thickness for each modeled stage was constrairied as established chemostratigraphic,

283  biostratigraphic, chronostratigraphic, and lithasgraphic framework (Kelley et al., 2020; Lehrmagin

284  al., 2015b, 1998; Payne et al., 2004).
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Model input used global®order sea level fluctuations following the cunfeHaq et al. (1987;
Fig. 7C) that is integrated into DIONISOS. Higheftency sea-level fluctuations affect facies
distributions at the high-frequency cycle scalg.(dBusson et al., 2019) but have little influence
platform morphology in large carbonate platformeg@nce et al., 1994; Williams et al., 2011); tlhs,
use of the Haq et al. (1987) is sufficient for fneposes of this study. The rates Gf@der eustatic
fluctuations are one to two orders of magnitudeeio@2 m/Myr during the Induan; ~2.5 m/Myr during
the Olenekian; ~1.5 m/Myr during the Anisian; ~&818Myr during the Ladinian) than the subsidence
required for the sediment accumulation of each neatdetage (~330 m/Myr during the Induan; ~142.5
m/Myr during the Olenekian; ~32.3 m/Myr during thrisian; ~240 m/Myr during the Ladinian;
Minzoni et al., 2013). In this context the roleXSforder sea level variation on gross trends in

accommodation is much less important than thaba#llsubsidence.

Subaerial diagenetic features are present in th® GBhrmann et al., 1998; Li et al., 2012).
However, the lack of major biostratigraphic andmbstratigraphic gaps confirms that the GBG did not
undergo subaerial erosion at a scale that woulddtgme broad objectives of this study (Lehrmanal et
2015b, 1998; Meyer et al., 2011; Payne et al., RBar this reason, sediment loss related to siddaer

exposure was not incorporated into subsidence carnes.

Aside from 25,000 yr, models of the Induan withden (125,000 yr) and shorter (5,000 yr)
temporal resolutions were also initially conducéed compared in order to find the one for satigfytime
main purpose of this study with acceptable comparat duration of running models. The main
differences among the models relate to variatidrsbope thickness at a scale of tens of meterslying
that the modeled overall platform morphology is sesitive to temporal resolutions in a significant
manner. Therefore, 25,000 yr was selected dus teligvant duration of running a model (~1.7 hours)

and properly mimicking the overall platform morpbgy.
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308 3.2 Sediment production

309 DIONISOS simulates carbonate sediment productiosgegifying a maximum production rate

310  (MPR in m/Myr) for a given lithofacies type, andethmultiplying this rate at each grid celljrand time

311  step (Myr) by coefficients (unitless) that depemdemvironmental parameters (water depth, wave gherg
312  or geologic time (Granjeon and Joseph, 1999). Exdisiediment accumulation situ is the result of

313  sediment production deducting the amount of seditmansport (see Section 3.3). Based on Lehrmann et
314  al.’s (1998) facies description and Payne et &096) point counting results, we used five lithtuiés

315 types to model carbonate sediment production: @it€) (2) Peritidal-subtidal carbonates; (3)

316  Periplatform carbonate mud; (#biphytes boundstone; and (5) Peloidal-skeletal packstoagigione

317 (Fig. 7D; Table 1).

318 The lower bound of MPR of each carbonate lithofateapproximated by the measured

319 thickness of a carbonate lithofacies divided bydheation of time over which it was deposited (long
320 term accumulation rates; Schlager, 2003), neglgamrection for compaction and dissolution. A sibs
321  of carbonate lithofacies was included in the mddekach stage based on the observed distribufion o
322  facies through the platform. For the Induan anch@kéan models, the lithofacies included are peaitid
323  subtidal carbonates, oolite, and periplatform caate mud (Fig. 3B; Table 1). For the Anisian

324  simulations, the carbonate lithofacies modeledherplatform margin and upper slope was the

325  Tubiphytes boundstone, while peritidal-subtidal carbonatesavieept on the platform interior (Fig. 3B;
326  Table 1). During the Ladinian, peloidal-skeletatkstone-grainstone was the carbonate lithofaciéseat
327 platform margin (Fig. 3B; Table 1). The depositibclaaracteristics and the tested parameter range of
328 each carbonate lithofacies are summarized in Thl#f®r the simulations presented herein, the depth
329 dependence of sediment production in each litheftipe was modeled by specifying a depth above
330  which productivity is still at its highest valueig-7D; e.g., Bosence et al., 1994; Bosence andhafal,
331  1990), herein termed maximum productivity depth WPThe productivity of a lithofacies, except for

332  the periplatform carbonate mud, was assumed toineand 00% from sea level to the MPD. Below this
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depth, productivity for the factories was assuneedecline linearly to zero over an interval of Stbm
depending on the type of carbonate lithofacies. (AR). Currently, no studies have established alyid
accepted productivity-depth curve for microbiabiphytes boundstone and criteria to precisely
determine the productivity at a given depth is lagkThe influence of the productivity-depth cunfe

Tubiphytes boundstone on model output was explored via seitgianalysis.

Because there is no field evidence showing abundwasitu carbonate mud production on the
slope during the Early Triassic, most of the fimakged carbonate mud accumulated on slope and basin
during the growth of the GBG is interpreted to hagen sourced from the platform top and margin.
Although periplatform mud may originate from thatfbrm top, it is transported to the slope andrbasi
through a vertical settling process in which muduspended across different water depths (c.fityens
cascading in Wilson and Roberts, 1995, 1992). Tleakthe vertical settling process and suspensfon
fine-grained sediments across different water degériplatform carbonate mud was parameterized
differently, with a high rate of sediment produatiand accumulation in deeper water (up to hundoéds
meters) depending on the coeval estimated maximathyinetry in the deep basin (Bosence and
Waltham, 1990; Fig. 7D). During sensitivity analysmultiple MPD values were tested. No siliciclasti
sediment supply was included in the model runs teeeailiciclastic turbidites did not reach the faah
in the Bianyang syncline area until the Late Ti@élsehrmann et al., 2015a). Lateral facies vaoiain
the output was achieved through differences ingrdege of simulated facies, water depth,

hydrodynamic energy, and salinity (e.g., Kolodkalet2015).

3.3 Sediment transport

DIONISOS simulates transport and downslope re-dgépof platform-margin carbonates by a
slope-driven transport equation that approximateetive transport of sediments as a function ef th
local slope angle, thickness of produced sediniemhéters; see Section 3.2 for sediment produgtion)
and a transport coefficient {fkyr) in each grid cell after each time step (Mfm) each carbonate

lithofacies (Granjeon and Joseph, 1999). The temspefficient controls the capacity of each caudte

20



358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

lithofacies to be transported for a given sloptedmating influences of sediment size, densitypshand
degree of syndepositional cementation to the satestSlope deposits of the GBG are primarily salirce
from (1) the platform margin in the Induan, Olersgkiand Ladinian and (2) the platform margin and
upper slope in the Anisian. Periplatform mud wasia®ed to be exported from the margins to the slope,
and the volume shed from the interior to the shyps assumed to be negligible as the interior hast
depositional area in comparison to the slope. titaah, the flat platform interior lacks any slofeat

would drive sediment transport basinward in DIONE&Oherefore, peritidal carbonates in the platform
interior were assumed to remain on the platformwithout significant erosive transport to the basin
(Table 1). A wide range of transport coefficienbas was examined in model runs to assess thetf@ten
impact of sediment transport on platform geometmjrd) different stages of platform accumulation

(Table 1).

3.4 Geometric constraints used to select bestddeats

Sediment production of the shallow-water platfontefior carbonate lithofacies for a given stage
was set to be equal to or slightly greater (ievesal hundred m/Myr more) than the coeval subsielen
rate in order to avoid drowning within the modehble 1). Sensitivity analysis was conducted by inary
the MPR, MPD, and transport coefficient for the giamand slope factories. Simulation outcomes were
compared to observed field data through geometopgrties of the simulated carbonate platforms (see

details below).

Because (1) the Permian to Middle Triassic lowepsland basin facies to the south of the GBG
at Bangeng is not exposed (Li et al., 2012; Lehmretral., 2020; Fig. 3) and (2) limited data isikade
about the stratigraphic thicknesses of differehbliacies prior to catastrophic margin collapsthat
southern margin, model-data comparison was conducting observations from the platform interior,
northern margin, and northern slope. The geomptdperties used to compare model output to field
observation are: (1) difference in thickness betwthe models and field measurements at each & thre

stratigraphic sections (Figs. 3B and 5; true thédehdifference for Dajiang section in the platfanterior,
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Rungbao section nearby the platform margin, anchise difference for Guandao section at the slope)
for each simulated time interval; (2) progradatitistance of the platform margin relative to the &agmo
section (platform margin is defined as the pointked by abrupt decline from the platform top to the
slope); (3) migration distance of the toe of slogative to Guandao section (the toe of slope fdé as

the point at which the slope angle drops below(Hdezen et al., 1959); and (4) maximum slope angle.
Because simulated 3D morphologies of the GBG &tdift stages do not vary along the platform margin
within the 2 km-wide model and because the geoldgigposure along the Bianyang syncline is
effectively two-dimensional, 2D transects throulge model output were used for model-data comparison

and are displayed for simplicity.
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Table 1. Characteristics and tested value range of diftecarbonate lithofacies used to reconstruct the

morphology of the GBG and conduct sensitivity asisy

Carbonate Gross depositional Tested range Best-fit Tested range of Best-fit Tested rangeof  Best-fit transport
factory type environment of maximum maximum maximum maximum transport
production production productivity depth productivit coefficient
rate (m/Myr)  rate(m/Myr) (m) y depth (m) (km?/kyr)
Oolite High energy, shallow 200 to 5000 500 (Induan), 1 to 15 (Fig. 10, 10 (Induan 0.001to0 0.32 0.004 (Induan),
water, platform margin (Induan, Fig. 200 Induan), and (Induan, Fig. 0.001 (Olenekian)
9), (Olenekian) 1to 15 (Fig. 13, Olenekian) 11), 0.001 to
100 to 4400 Olenekian; Harris et 0.25 (Olenekian,
(Olenekian, al., 2018; Hatrris, Fig. 14)
Fig. 12) 1979)
(Harris,
1979)
Peri/subtidal Low to moderate Fixed: 15 (fixedin 0
carbonates  energy, platform 600 (Induan), all ages of
interior, shallow water 200 the Early
(Olenekian), Triassic)
300 (Anisian
and Ladinian)
Periplatform  Low energy, slope and 20 (from 400 0
carbonate basin margin, moderate Induan to
mud to deep water Ladinian)
Tubiphytes Independent on light, 100to 1800 300 10 to 1000 (Fig. 16; 350 0.0004 to 0.032 0.0004
boundstone low to high energy, (Anisian, Fig. Marangon et al., (Fig. 17)
shallow to deep water, 15; Enos, 2011; Preto et al.,
platform margin and 1991) 2017)
upper slope
Peloidal- High energy, shallow  100to 5000 650 1to 14 (Fig. 19) 10 0.0001 to 0.0032.0001
skeletal water, platform margin (Ladinian; (Fig. 20)
packstone Fig. 18)
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4. RESULTS

4.1 Maximum production rate of Induan oolite

The modeled Induan platform morphology is very giasto the MPR of the oolite at the
platform margin (Fig. 9). Increasing the MPR in@esthe amount of sediment accumulated on the slope
and therefore increases the isochore thicknesedlope in model runs (Guandao section in Fig, 9A)
which results in basinward movement of the todayfes (Fig. 9B) and decrease of the maximum
clinoform angle from 21.@&0 8.9 (Fig. 9C). Meanwhile, the sediment accumulatiothia distal basin

increases by tens of meters.

All criteria used for model-data comparison disglasensitivity of the platform morphology to
two value ranges of MPR of oolite (600 to 1500 mfMgd 2000 m/Myr onward; Fig. 9A to C) aside
from increased sediment accumulation in the matldbasin at a scale of several meters. Valuedagre
than 2000 m/Myr are at or beyond the greatest vaperted from modern Bahamian oolite (2740 m/Myr
from Harris, 1979), while the corresponding simethinargin and toe of slope positions are strikingly

fixed (Fig. 8A and Fig., 9B, H, and I).
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Figure 9. Control of maximum production rate (MPR) of tinellan oolite on platform geometry. (A) Thickness
difference of Dajiang, Rungbao, and Guandao sexti@tween field measurement and models with ineteBtPR.
Capital D to I in (A) through (C) corresponds téfelient MPR of oolite that are included from Fig@@ to I. (B)
Platform margin progradation distance relative tmgbao section (~1200 m from field observationjzuntal
black dashed line) and toe of slope migration distarelative to Guandao section (~1150 m from fidddervation,
horizontal red dashed line) as a response to thieased MPR. (C) Maximum clinoform slope angle wiitreased
MPR of oolite. Note a gray horizontal bar (17° & Ris the range of maximum clinoform slope angtaf field
measurement. (D) to (I) Simulated platform morplglavhen the MPR is at 200, 500, 600, 1500, 2000,5000
m/Myr. Stratigraphic section locations shown: DDa&iang, RB = Rungbao, GD = Guandao. Gray area show

modeled sediment accumulation during model runraaditing platform morphology.

26




424

425

426

427

428

429

430

431

4.2 Maximum productivity depth of Induan oolite

The Induan platform morphology is less sensitivheoMPD of oolite within the value range
examined (Fig. 10). Shallower values of the MPDdygmulated slopes that accumulate less sediment
than observed in the field; deeper values genematglated slopes with sediment accumulation shghtl
higher than observed (Fig. 10A). The position aftioirm margin and toe of slope does not vary across
this range of parameter values (Fig. 10B), andihgimum clinoform slope angle is relatively invaria
decreasing from 21.6o 20 with increasing MPD, very close to the measuregimam clinoform slope

angle of 17to 21 (Fig. 10C).
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Figure 10. Control of maximum productivity depth (MPD) ofethnduan oolite on platform geometry. (A)
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slope angle from field measurement. (D) to () Saed platform morphology when the MPD is at 1537, 10,
and 15 m. Stratigraphic section locations shown=Mhjiang, RB = Rungbao, GD = Guandao. Gray ahesvs
modeled sediment accumulation during model runraaditing platform morphology.
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4.3 Transport coefficient of Induan oolite

Sediment transport has a pronounced impact onviealb platform geometry (Fig. 11). The
platform morphology shifts from a high-relief, gegloped platform to a more ramp-like bank when the
transport coefficient increases from the lowestusired value (0.001 Kitkyr) to the highest simulated
value (0.32 krftkyr) (Fig. 11C to I). With low but increasing trsport coefficients, from 0.001 to 0.02
km?Kkyr, the platform margin retreats while the toesloipe moves towards the basin (Fig. 11B and D to
G). In contrast, for transport coefficients gredkam 0.02 krfikyr, the simulated toe of slope and
platform margin both step back because the retfetaie platform margin rapidly decreases the afea o
highest sediment production and thus the overdlhsent production of the platform (Fig. 11B, H dind

Meanwhile, the sediment accumulation in the disein increases at a scale of tens of meters.

The difference in thickness between simulated dsgived slope sediment accumulation at the
Guandao section increases from -75.7 m to 24.1 enwle transport coefficient increases by an aofler
magnitude, from 0.001 to 0.01 kfkyr (Fig. 11A, D to F). When the modeled transparéfficient is
increased by another order of magnitude, from @132 kni/kyr, the difference between modeled and
observed slope sediment accumulation at the Gudondation decreases from 24.1 to -5.6 m to reflect
the lower overall productivity on the platform digeretreat of the margin (Fig. 11A). The Induan
platform morphology is more sensitive to changimg transport coefficients of ooids than to MPR or

MPD over the range of values examined.
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Figure 11. Control of transport coefficient of the Induarliteoon platform geometry. (A) Thickness differerafe
Dajiang, Rungbao, and Guandao sections betweehrfieasurement and models with increased transport
coefficient. Capital D to | in (A) through (C) cesponds to different transport coefficient of aothat are included
from Figure 11D to I. (B) Platform margin progradatdistance relative to Rungbao section (~120@amffield
observation, horizontal black dashed line) andofag#ope migration distance relative to Guandadiee¢~1150 m
from field observation, horizontal red dashed liag)a response to increased transport coeffigi€@htviaximum
clinoform slope angle with increased transport ficieht of oolite. Note a gray horizontal bar (16°21°) is the
range of maximum clinoform slope angle from fieldasurement. (D) to (I) Simulated platform morphgladen
the transport coefficient is at 0.001, 0.004, 0@@2, 0.16, and 0.32 Kkyr. Stratigraphic section locations shown:
DJ = Dajiang, RB = Rungbao, GD = Guandao. Gray sheavs modeled sediment accumulation during madel r
and resulting platform morphology.
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4.4 Maximum production rate of Olenekian oolite

The carbonate factory type at the platform margiesdnot change between the Induan and
Olenekian. The response of Olenekian platform malggy to the MPR of the oolite at the platform
margin is similar to that of the Induan. The Olaaalplatform morphology is sensitive to the MPRud
oolite at the platform margin (Fig. 12). Increasthg MPR increases the amount of sediment
accumulated on the slope and therefore increasdsdbhore thickness of the slope in model runs
(Guandao section in Fig. 12A), which results initnaard movement of the toe of slope and platform
margin (Fig. 12B) and decrease of the maximum ino angle from 26to 17 (Fig. 12C). Meanwhile,

sediment accumulation in the distal basin increasasscale of tens of meters.

Notably, all criteria used for comparing simulati@sults to observed field data display
insensitivity of the platform morphology to maximuroduction rate for values ranging from 800 to
4400 m/Myr (Fig. 12A to C), while the correspondsigiulated margin and toe of slope positions
together are nearly fixed (Fig. 12B). Coeval dis@éinal sediment accumulation increases sligiitig.
mismatch of platform margin position between fidita and best-fit models (Fig. 8B) is most likely
caused by limitations of the model grid size, whicavents the model from effectively simulating the

transport of ooids from the shoals or the moveméshoals over distances smaller than the gricescal
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Figure 12. Control of maximum production rate (MPR) of thee@ekian oolite on platform geometry. (A)
Thickness difference of Dajiang, Rungbao, and Gaarsgctions between field measurement and modgis wi
increased MPR. Capital D to | in (A) through (Cyresponds to different MPR of oolite that are imigd from
Figure 12D to I. (B) Platform margin progradatidstdnce relative to Rungbao section (~1200 m friehd f
observation, horizontal black dashed line) andofcg#ope migration distance relative to Guandadiee¢~2500 m
from field observation, horizontal red dashed liag)a response to the increased MPR. (C) Maximimaform
slope angle with increased MPR of oolite. Noteaydrorizontal bar (23° to 31°) is the range of maxin
clinoform slope angle from field measurement. @}l} Simulated platform morphology when the MPRxisL00,
200, 500, 800, 2600, and 4400 m/Myr. Stratigrageiction locations shown: DJ = Dajiang, RB = Runglazid =
Guandao. Gray area shows modeled sediment acciummuttring model run and resulting platform mormigy.
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4.5 Maximum productivity depth of Olenekian oolite

The Olenekian platform morphology is less sensitivthe MPD of oolite within the value range
examined (Fig. 13). Shallower values of the MPDdygmulated slopes that accumulate less sediment
than observed in the field; deeper values genematglated slopes with sediment accumulation shghtl
greater than observed (Fig. 13A). The positionthefplatform margin and toe of slope do not varpss
this range of parameter values (Fig. 13B), andihgimum clinoform slope angle is relatively invaria

decreasing from 2@o 23 with increasing MPD (Fig. 13C).
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Figure 13. Control of maximum productivity depth (MPD) ofeti®lenekian oolite on platform geometry. (A)
Thickness difference of Dajiang, Rungbao, and Gaarsgctions between field measurement and modgis wi
increased MPD. Capital D to | in (A) through (Cymsponds to different MPD of oolite that are imtgd from
Figure 13D to I. (B) Platform margin progradatidstdnce relative to Rungbao section (~1200 m friehd f
observation, horizontal black dashed line) andofcg#ope migration distance relative to Guandadiee¢~2500 m
from field observation, horizontal red dashed liag)a response to increased MPD. (C) Maximum admofslope
angle with increased MPD of oolite. Note a grayizmmtal bar (23° to 31°) is the range of maximuimafiorm
slope angle from field measurement. (D) to () Saed platform morphology when the MPD is at 1548, 10,
and 15 m. Stratigraphic section locations shown=Mhjiang, RB = Rungbao, GD = Guandao. Gray ahesvs
modeled sediment accumulation during model runraaditing platform morphology.
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4.6 Transport coefficient of Olenekian oolite

The Olenekian platform morphology is more sensitivehanging the transport coefficients of
ooids than to MPR or MPD over the range of valuesreéned (Fig. 14). The platform morphology shifts
from a high-relief carbonate platform to a more palike bank when the transport coefficient increase
from the lowest simulated value (0.001%kyr) to the highest simulated value (0.25Kkgr) (Fig. 14C
to I). Meanwhile, the sediment accumulation indistal basin increases at a scale of tens of mététk
low but increasing transport coefficients, from@LQo 0.016 krfikyr, the platform margin retreats while
the toe of slope moves towards the basin (Fig.4ddD to G). In contrast, for transport coefficgent
greater than 0.016 Kkyr, both the toe of slope and platform margirpdtack (Fig. 14B, H and I).
Meanwhile, as the platform margin retreats (Fid3)14he thickness difference of all three sections
decreases as more sediments are transporteddistélebasin (Fig. 14A). The maximum slope angle
increases slightly when the transport coefficiemeeds 0.032 kftkyr (Fig. 14C). This increase occurs
because the simulated maximum slope angle in taeeRian is inherited from the antecedent Induan

shelf break as sediments bypass the steep shak anel move towards the basin.

35



532

533
534
535
536
537
538
539
540
541
542
543

E J
E < A A\ Dajiang
S o1+ M0 . ——————————————— X Rungbao
9] A e | @ Guandao
52004 X A
A X A
g-4001 X, A »
S D F X X X Q
2600211, 4 . : ] .
= oOE G H 0.1 | 02 03
iggg IE /\ Toe of slope
— A4 A& QO Platform margin
E o We— = =, Eoossammsma s A
3 0 2 A A
§-2000 °
2-4000 o
= o (o)
6000 4 - | Fo | o
-8000 11 1 1 | L | :
oE G H 0.1 0.2 0.3
—~ 354
o 30 C
2 25 il
g W41 o
2 151 o
@ 10 o o
X 54 Oo
©
= oD ¢ I 1 '
oE G H 0.1 0.2 0.3
Transport coefficent of oolite (km?/kyr)
D DJ RB GD S km E DJ RB GD

| ~ 10.5km =y

Transport coefficient = 0.001 ky?/kyr,
best-fit model

ﬂ DJ RB GD g DJ RB GD

Transport coefficient = 0.004 ky?/kyr

Transport coefficient = 0.008 ky/kyr Transport coefficient = 0.016 ky/kyr
H DJ RB GD I DJ RB GD
| | ||
Transport coefficient = 0.032 ky?/kyr Transport coefficient = 0.128 ky?/kyr

Figure 14. Control of transport coefficient of the Olenekiwiite on platform geometry. (A) Thickness diffece
of Dajiang, Rungbao, and Guandao sections betwelkhmeasurement and models with increased trahspor
coefficient. Capital D to | in (A) through (C) cesponds to different transport coefficient of amotitat are included
from Figure 14D to I. (B) Platform margin progradatdistance relative to Rungbao section (~120@amffield
observation, horizontal black dashed line) andofcg#ope migration distance relative to Guandadice¢~2500 m
from field observation, horizontal red dashed liag)a response to increased transport coeffigi€htviaximum
clinoform slope angle with increased transport ficieht of oolite. Note a gray horizontal bar (28°31°) is the
range of maximum clinoform slope angle from fieldasurement. (D) to (I) Simulated platform morphgladen
the transport coefficient is at 0.001, 0.004, 0,@816, 0.032, and 0.128 kfkyr. Stratigraphic section locations
shown: DJ = Dajiang, RB = Rungbao, GD = Guandaay@rea shows modeled sediment accumulation during
model run and resulting platform morphology.
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4.7 Maximum production rate of Anisidiubiphytes boundstone

The Anisian platform morphology is very sensitieghie MPR of th& ubiphytes boundstone
(Fig. 15). Increasing the MPR ®tibi phytes boundstone at the platform margin and upper shape 100
to 1800 m/Myr increases the difference between lsited and observed slope thickness from -99.6 to
644.1 m (Fig. 15A) and increases the simulated mami clinoform angle from 18.20 35 (Fig. 15C).
The toe of slope and platform margin both move axiprately linearly basinward with increasing MPR
(Fig. 15B). Notably, the available vertical acconttation at the Guandao location is entirely fillekdem
the maximum production rate exceeds 900 m/Myrtireowords, at production rates above 900 m/Myr
the platform margin progrades beyond the positicth@® Guandao section (Fig. 15G to I). Meanwhile,

the sediment accumulation in the distal basin imees at a scale of tens of meters.
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Figure 15. Control of maximum production rate (MPR) of theigian Tubiphytes boundstone on platform geometry.
(A) Thickness difference of Dajiang, Rungbao, anth@lao sections between field measurement and awitél
increased MPR. Capital D to | in (A) through (Cyresponds to different MPR dlbiphytes boundstone that are
included from Figure 15D to I. (B) Platform margirogradation distance relative to Rungbao secti@s@0 m

from field observation, horizontal black dashee)iand toe of slope migration distance relativ&tmndao section
(~2450 m from field observation, horizontal rediteline) as a response to increased MPR. (C) Maxim
clinoform slope angle with increased MPRTabiphytes boundstone. Note a gray horizontal bar (23° tg &rthe
range of maximum clinoform slope angle from fieldasurement. (D) to (I) Simulated platform morphgladen

the MPR is at 100, 300, 600, 900, 1200, and 180@ym/Stratigraphic section locations shown: DJ ji&ray, RB

= Rungbao, GD = Guandao. Gray area shows modetfishaet accumulation during model run and resulting
platform morphology.
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4.8 Maximum productivity depth of AnisiaFubiphytes boundstone

The Anisian platform morphology is also very sewmsito the MPD of th@ubiphytes
boundstone, which appears to have been activevewadéhundreds of meters of water depth (Fig. 16;
Keim and Schlager, 2001; Kelley et al., 2020; Mg@anet al., 2011; Preto et al., 2017). Therefdre, t
MPD of theTubiphytes boundstone was varied from 50 to 1000 m in the kitimns (Fig. 16). Both the
platform margin and toe of slope migrate basinwarder all values of the MPD (Fig. 16B). The
difference in slope thickness between simulationtbthe measured section at the Guandao locatite at
slope shows a positive correlation with the MPgiag from -155 to 655.1 m (Fig. 16A). The
maximum slope angle is less sensitive to the variatof the MPD, changing from 1716 26.8across
the simulations (Fig. 16C). The northern margiraarethe basin is entirely filled when the MPD is

greater than 1000 m (Fig. 161).
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Figure 16. Control of maximum productivity depth (MPD) of tiaisian Tubiphytes boundstone on platform
geometry. (A) Thickness difference of Dajiang, Rio@g, and Guandao sections between field measuremnént
models with increased MPD. Capital D to | in (Ajabgh (C) corresponds to different MP DTafbi phytes
boundstone that are included from Figure 16D {8).Platform margin progradation distance relativ&kungbao
section (~2500 m from field observation, horizorigick dashed line) and toe of slope migrationadise relative

to Guandao section (~2450 m from field observatimrizontal red dashed line) as a response toaseceMPD. (C)
Maximum clinoform slope angle with increased MPDrabiphytes boundstone. Note a gray horizontal bar (23° to
27°) is the range of maximum clinoform slope arfgben field measurement. (D) to (I) Simulated platfio
morphology when the MPD is at 10, 150, 350, 45@, &hd 1000 m. Stratigraphic section locations shdw =
Dajiang, RB = Rungbao, GD = Guandao. Gray area shoadeled sediment accumulation during model rgh an
resulting platform morphology.
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4.9 Transport coefficient of AnisiaFubiphytes boundstone

The Anisian platform morphology is also sensitiwatte transport coefficient assigned to the
Tubiphytes boundstone (Fig. 17). As the transport coefficniubi phytes boundstone increases from
0.0004 to 0.002 kfkyr, the modeled slope thickness increases, ekogéde measured isochore value at
Guandao by 3.3 to 420.1 m (Fig. 17A). The locatibthe platform margin does not change appreciably
across this range of transport coefficients, betttie of slope migrates farther basinward at higher
transport coefficients (Fig. 17B) while the maximalimoform slope angle decreases from 260612.9
(Fig. 17C). When the transport coefficientTabiphytes boundstone further increases from 0.002 to 0.032
km?Kkyr, the platform margin steps back conspicuousijle the toe of slope moves several kilometers
basinward (Fig. 17B) and the maximum slope angteadeses from 12.90 3.7 (Fig. 17C). Consistent
with field evidence for mostlin situ sediment production, the best fit is obtained il lowest

transport coefficient (Fig. 17D).
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Figure 17. Control of sediment transport coefficient of theigian Tubiphytes boundstone on platform geometry.
(A) Thickness difference of Dajiang, Rungbao, anth@lao sections between field measurement and awitél
increased transport coefficient. Capital D to (A) through (C) corresponds to different sedimeahsport
coefficient of Tubiphytes boundstone that are included from Figure 17D {8).Platform margin progradation
distance relative to Rungbao section (~2500 m flietd observation, horizontal black dashed line) &re of slope
migration distance relative to Guandao section $02# from field observation, horizontal red dasliee) as a
response to increased transport coefficient. (Cyiiviam clinoform slope angle with increased transpoefficient
of Tubiphytes boundstone. Note a gray horizontal bar (23° tg &7the range of maximum clinoform slope angle
from field measurement. (D) to (I) Simulated platiomorphology when the transport coefficient i® &004,
0.0005, 0.002, 0.004, 0.016, and 0.03Z/kyr. Stratigraphic section locations shown: DJajiBng, RB = Rungbao,
GD = Guandao. Gray area shows modeled sedimentatation during model run and resulting platform
morphology.
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4.10 Maximum production rate of Ladinian peloidiéketal packstone

DIONISOS does not simulate an escarpment margie.bEst-fit model in Sections 4.10 to 4.12
show a high-relief carbonate platform with an atoreary margin. However, it reasonably resembles th
features of the Ladinian escarpment from the aspEc¢hickness of platform-top and slope sediment
accumulation as well as distance of platform matgiRungbao section (Fig. 8D) while lacking a scefa

of non-deposition upon which slope strata onlap.

The Ladinian platform morphology is sensitive te tMPR of the peloidal-skeletal packstone at
the platform margin and the platform morphologysits from a pinnacle nucleating over the pre-
existing Anisian platform interior (Fig. 18C and 89 the MPR increases from 100 to 350 m/Myr (Fig.
18E-H). The simulated platform morphology beconsseatially fixed when it exceeds 350 m/Myr (Fig.
18A and B) and the overall morphology does not \exgept for an increase of tens of meters in

thickness of basinal accumulation in more distahar
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Figure 18. Control of maximum production rate (MPR) of thadinian peloidal-skeletal packstone on platform
geometry. (A) Thickness difference of Dajiang, Rio@g, and Guandao sections between field measuremnént
models with increased MPR. Capital C to H in (Aii&B) corresponds to different MPR of peloidal-kal
packstone that are included from Figure 18C toB) Rlatform margin progradation distance relativé&kungbao
section (~1700 m from field observation, horizotialck dashed line) as a response to the incrédB&l (C) to
(H) Simulated platform morphology when the MPRtid@0, 200, 350, 650, 1850, and 5000 m/Myr. Strafibic
section locations shown: DJ = Dajiang, RB = Rungléd = Guandao. Gray area shows modeled sediment
accumulation during model run and resulting platfenorphology.
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4.11 Maximum productivity depth of Ladinian peldigkeletal packstone

The Ladinian platform morphology is less sensitivéhe MPD of oolite within the value range
examined (Fig. 19). All the models with differeasted MPD shows slightly thicker slope accumulation
(Fig. 19A). Shallower values of the MPD (less tivam) still can form a high-relief platform, but its
platform margin retreats approximately 250 m mbentobserved in field data. The position of platfor
margin does not migrate when the MPD is greater $hin (Fig. 19B) and other geometric constraings ar

also fixed (Fig. 19A). Basinal sediment thicknasséases slightly when the MPD is greater than 5 m.
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Figure 19. Control of maximum productivity depth (MPD) ofetthadinian peloidal-skeletal packstone on platform

geometry. (A) Thickness difference of Dajiang, Rio@g, and Guandao sections between field measuremneént
models with increased MPD. Capital C to H in (AldB) corresponds to different MPD of peloidal-stal
packstone that are included from Figure 19C toB) Rlatform margin progradation distance relativé&kungbao
section (~1700 m from field observation, horizotialck dashed line) as a response to the incrédb&l (C) to
(H) Simulated platform morphology when the MPDti2a4, 6, 10, 12, and 14 m. Stratigraphic sedtigations
shown: DJ = Dajiang, RB = Rungbao, GD = Guandaay@rea shows modeled sediment accumulation during
model run and resulting platform morphology.
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4.12 Transport coefficient of Ladinian peloidal-ktal packstone

Sediment transport has a pronounced impact onviealb platform geometry (Fig. 20). The
platform morphology shifts from a high-relief cartage platform (Fig. 20A) to a drowned platform (Fig
20H) when the transport coefficient increases ftbenlowest simulated value (0.0001 ¥kyr) to the
highest simulated value (0.0032 ¥#kyr) (Fig. 20C to H). With increasing transporefficients, the
platform margin retreats (Fig. 20B to H). The diffece in thickness between simulated and observed
slope sediment accumulation at the Guandao settioreases from 23 to -1000 m when the transport

coefficient increases from 0.0001 to 0.003Z/kyr (Fig. 20A, D to F).
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661 Figure 20. Control of sediment transport coefficient of thedinian peloidal-skeletal packstone on platform

662 geometry. (A) Thickness difference of Dajiang, Rio@mg, and Guandao sections between field measuremeént
663 models with increased transport coefficient. Cajiitéo H in (A) and (B) corresponds to differerdrisport

664 coefficient of peloidal-skeletal packstone thatiacuded from Figure 20C to H. (B) Platform margirogradation
665 distance relative to Rungbao section (~1700 m fiiefd observation, horizontal black dashed linepassponse to
666  the increased transport coefficient. (C) to (H) &imed platform morphology when the transport dogfht is at
667 0.0001, 0.0002, 0.0004, 0.0008, 0.0016, and 0.&@&8%yr. Stratigraphic section locations shown: DJ ajiéng,
668 RB = Rungbao, GD = Guandao. Gray area shows modeltichent accumulation during model run and resgilti
669 platform morphology.
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5. DISCUSSION

5.1 Controls on Early Triassic ramp to high-rel&gep-sloped platform transition of the

GBG

The Lower Triassic morphology of the GBG is unusoaxhibiting a transition from a low-
relief ramp to a high-relief, steep-sloped platfdifelley et al., 2020) as ooids continued to depeio
high-energy hydrodynamic environments during thagition while lacking any evidence of a metazoan
or microbial reef margin or modification of the rgiar by synsedimentary tectonics. Similar ramp-to-
shelf transitions in the rock record are typicadgociated with the development of a skeletal orahial
reef framework on the platform margin and/or slfgg., Cambrian Shady Dolomite carbonate platform
in the US (Barnaby and Read, 1990); Permian Gupddipuntains in west Texas and New Mexico
(Kerans et al., 2013; Tinker, 1998); Jurassic Dj8m& Dahar platform in Morocco (Della Porta et al.
2013; Merino-Tomé et al., 2012; Verwer et al., 2008iocene platform in the Balearic Islands of $pai
(Pomar, 2001)], and reef development is often jpmited as playing a causal role in this transition
(Barnaby and Read, 1990; Pomar, 2001; Merino-Tamaé,£2012; Kerans et al., 2013). In contrast, the
Early Triassic margin of the GBG is an accretionatgepening margin primarily composed of oolite

stabilized and lithified by early marine cementgéi-4 and 5; Kelley et al., 2020).

To form a high-relief Early Triassic carbonate fdain within the model, enough sediment must
have been produced and stabilized on the platfopmia compensate for the high rate of tectonic
subsidence, while at the same time only a smalluatnaf sediment produced on the platform top was
transported to and accumulated on the slope. Ialtkence of a metazoan or microbial reef in thé/Ear
Triassic, enhanced early marine cementation caywgrtgal lithification of grainy sediments can exjol
the limited transport of carbonate grains frompleform top to the slope. The high prevalence of
precipitated primary fabrics in Lower Triassic aambte accumulations, such as carbonate microlsialite

ooids, and seafloor crystal fans (Fig. 4; Lehrmd@®9; Li et al., 2019; Woods et al., 1999), points
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toward unusually high levels of carbonate saturatiat would also have promoted syndepositional

lithification and stabilization of the margin andlower slope (Van Der Kooij et al., 2010).

5.2 Implication of the Induan, Olenekian and Amsgeometry

The types of carbonate factories at the platformgimaand upper slope in the Early Triassic
(Induan and Olenekian) and Anisian are differehie Early Triassic platform margin is predominantly
composed of ooids, whereas the Anisian margin apeétuslope compristubiphytes boundstone. If the
transport coefficient is small (Fig. 11D to F), d®ican initially develop within a ramp geometry but
continue to form and accumulate on the platformgimawhile a transition from a ramp to a high-relief
steep-sloped platform occurs. Under this scentrépverall platform growth rate does not scaledity
with sediment production potential (i.e., MPR).teed, the platform growth rate asymptotes (Fig. 21;
also see Figs. 9D to G, 12D to G, and 18C to FHabse accommodation is filled in the area where the
platform-top factory would otherwise be active (F2d; also see Figs. 9H and I, 12G to I, and 18F to
where platform morphology does not change withéased MPR). Interestingly, for carbonate platforms
whose sediments are mainly produced on the platfopngrowth can also be limited by extremely
efficient transport of sediments from the platfamargin to the slope and basin. When such transport
outpaces sediment production on the platform margagauses an ongoing reduction in the area of the
platform-top carbonate factory, reducing the furgm@duction of sediment and leading to furthereat
(Figs. 11, 14, and 20). The Anisidnobiphytes boundstone on the slope does not experience similar
growth limitation at low transport coefficient valsibecause the lithofacies produces sedimentlgirect
into the basin along the slope and therefore doebetome limited by accommodation at the site of
sediment production (Della Porta et al., 2004; Kaimd Schlager, 2001; Playton and Kerans, 2018;
Verwer et al., 2009), consistent with the slopedsliveg model (Kenter et al., 2005). Low subsiderates
during the Anisian (Fig. 7B) would further favorogradation in response to any shedding of sediment

from the platform top during this time.
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Figure 21. Platform growth rate responds differently to thexmrum production rate depending on the location of
the carbonate factory contributing sediment tosliope and the transport coefficient for the platfenargin factory.
The Induan, Olenekian, and Ladinian platform groticomes limited by the transport coefficient witen
maximum production rate becomes much larger thheidance, such that accommodation on the platfopnist
completely filled and further sediment productiequires the transport of sediment from the platforargin to the
slope and basin. Anisian platform geometry is nyagaintrolled by the maximum production rate (praéhre

limited regime; dashed blue line in the gray shdmrausdubiphytes boundstone grew into available
accommodation directly on the slope and did notiregany transport between the site of sedimerdystion and
the site of available accommodation.

Limited transport of ooids after production duestsly lithification by marine cementation can
explain why the GBG was able to evolve from a l@lief ramp to a high-relief platform in the Early
Triassic even in the absence of a metazoan or hiareef at the platform margin and upper slogas T
situation contrasts with the distribution of ooatdd slope steepening of ancient and modern camdonat
platforms. Ooids typically occur in either low-grant carbonate ramp systems where ooids are
dominantly developed near fair-weather wave bagenier/middle ramp area and muddy sediments
become dominant distally (Gischler and Lomando5208archionda et al., 2018; Pierre et al., 2010) or
on steep-sided carbonate shelf systems where deiddop at the platform margin but are perched on a
pre-existing antecedent topography that was nofimkomtly constructed by oolite accumulation [e.qg.
Carboniferous Sierra del Cuera (Bahamonde et@04;2Della Porta et al., 2004), Jurassic Djebel Bou
Dahar (Della Porta et al., 2013; Scheibner andnieij 1999; Verwer et al., 2009), and Quaternary

Bahamas (Harris et al., 2018; Rankey and Reedgf,)2Blowever, these classic depositional models are
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only partly compatible with the GBG, where the ofaidtory dominated the platform margin during the
transition from a low-relief bank to a high-rel@hatform. Furthermore, there was no syndepositional
tectonic modification of the northern margin white GBG steepened in the Early Triassic (Kellegigt

2020; Lehrmann et al., 1998).

The Lower Triassic example of the GBG offers amepde of accretionary steepening margin,
which is composed mainly of oolite, without the iseeht-stabilizing influence of metazoan and
microbial reef builders (Kelley et al., 2020). S&miy analysis of the simulated Induan and Oleiaek
morphology to transport coefficient demonstrated #ithough reefs may be important in causing
transitions of carbonate systems from ramps to-tegjbf steep-sloped platforms, other mechanisrmohsu
as early marine cementation, can result in a sirtrdasition and the impact of early marine cemigoma
must have been, quantitatively, of a similar magieétto that of a metazoan or microbial reef in oty
the transport coefficient. Using the same appraachodel other platforms will enable quantitative
comparison of the parameters that best fit the @G those that best fit platforms that developexirf

ramps to high-relief, steep-sloped platforms inghesence of a metazoan reef.

5.3 Inevitability of the Ladinian high-relief margi

The best-fit Ladinian model reasonably resemblestieval escarpment observed in the field
(Fig. 8D), even though DIONISOS cannot strictly slate a surface of non-deposition upon which slope
strata onlap (Fig. 18F). The Ladinian high-reliftform develops in the model largely independeafly
the chosen values for MPR and MPD. The high reli¢he platform top above the basin floor durinig th
stage of growth constrained the possibilities totHer progradation of the margin. As the GBG aette
in the Induan and Olenekian, shallow-water sedirpemtiuction and transport to the slope in the Aamisi
was sufficient to cause progradation because tigHeof the slope was more limited and lower slope
angles reduced the transport of sediment (Fig. BB}the Ladinian, the slope height was 1000 m and
sediment production from shallow water and redéajmrsbn the steep slope were not sufficient totffié

much larger accommodation. Models for the Ladimikatform geometry with accretionary margin
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indicate that when a carbonate platform continaexggrade to form a high-relief topography, if
carbonate sediment production is still dominantiyrsed from shallow water and downslope transggort i
not enough to fill the slope profile, the carborgitform would be highly prone to continue itshrig
relief steep geometry. Model simulations for thelibéan demonstrate that steep-sided, high-relief
platforms lacking slope factories are unlikely tograde substantially under any conditions dué¢o t

vast amount of sediment required to enable progjadérigs. 18 and 19).

Although numerical modeling results can generagerinsition from a high-relief, steep-sloped
platform back to a ramp by increasing the carbosatiment transport rate while the platform dods no
drown (Fig. 17H and I), outcrop and subsurface@ smprovide very few examples showing such a
transition, and only in circumstances where basitinsent fills in the slope and basin environments,
decreases slope height, and offers substratedadjacent platforms to prograde (Eberli et al0420
Enos et al., 1997; Lehrmann et al., 2015a) or whgreunger ramp inherits and develops above the
platform interior of an underlying steep-slopedbcarate platform (Phelps et al., 2015). Schlage®%20
implies that cold-water factories mostly producesie sediment that can be relatively easily retisteid,
but they have low sediment production rates. Irtresh, tropical factories can have high sediment
production rates, but they have more potentiaktinuenced by early marine cementation that would
limit sediment transport. Therefore, in the geatafjrecord, very high sediment production and arts
rates in carbonate depositional environments niigtdbsent or rarely co-occur to form the transition

from a high-relief, steep-sloped platform to a ramp

5.4 Production- versus transport-limitation in grewth of carbonate platforms

Overall, modeling of the growth history of the GBGggests that it grew under production-
limited and transport-limited regimes in differestdges (Fig. 21). For the Induan, Olenekian, and
Ladinian, sediments are mainly sourced from platféop carbonate factories. Given the local subsiden
(Fig. 7B), platform growth rate was initially lineitl by intrinsic production capacity (MPR) of the

platform interior and platform margin factoriescieasing MPR can increase growth rate of platform
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(dashed blue line and red line in the gray shadégf21) and cause variations of platform morphglo
(e.g. Figs. 9D to G, 12D to F, and 18C to E). Hosveincreasing MPR does not continuously lead to
coupled constant variations of platform growth liitee coeval transport coefficient does not iace
(Figs. 9H and |, 12G to |, and 18F to H; red lindghie orange shade of Fig. 21). This change in\ieha
occurs because accommodation on the platform topnbes filled and transport of sediment into
available accommodation in the adjacent basin besdhe factor limiting further sediment production
and platform growth. The most likely explanationtiois transport limitation in the Early Triassicthat
early cementation limited the transport of sediradérdm the platform interior and platform margirdan
that by Ladinian time enormous slope height impeatedfurther progradation. By contrast, the platfor
growth during Anisian time is only related to agwetion-limited regime (blue dashed line in theygra
shade of Fig. 21), when sediments are accumulaigd@mented on slope and grew into available
accommodation in the adjacent basin and the rgpatfborm growth was determined by the production
capacity of the slope factory (e.g., Fig. 15). Pheserved stratigraphic thickness of the platfarmarior
section was used for model-data comparison witbonsidering the effects of compaction and
dissolution. The simplification indicates that timcommodation on platform-top in reality might bere
quickly filled. Therefore, a transition from prodion-limited to transport-limited regime would be

achieved more promptly.

6. CONCLUSIONS

The GBG displays variations of platform morpholompgluding ramp, steep-sloped platform, and
bypass escarpment from the latest Permian to ttmiaa of the Middle Triassic. Because many
potential controls on platform morphology are weghstrained from previous studies (e.g., local
subsidence, global sea-level fluctuation, and ggolsetting), the sensitivity of platform morphojoip
carbonate sediment production (sediment producéitenand productivity-depth curve) and sediment
transport can be investigated in detail througlvéod modeling. The Early Triassic transition from a
ramp to a high-relief, steep-sloped platform ocedinvithout the emplacement of a skeletal or miaibobi
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reef framework and or modification by synsedimentactonics in the northern margin of the GBG. It
has been interpreted to be caused by low sedimarggort related to stabilization of the margireayly
marine cementation through simulation. Modelingtbfer platforms using the same approach can
provide an avenue for comparing the magnitudegptifal values for the GBG versus platforms that

developed from ramps to high-relief, steep-slopgatfgrms in the presence of a metazoan reef.

Caution is therefore needed during seismic faciespretation on high-relief geometries.
Sensitivity analysis on the GBG suggests that thfqgum morphology is most sensitive to sediment
transport, moderately sensitive to maximum productate and least sensitive to maximum productivity
depth for the same type of carbonate factory aptiigiorm margin and/or on the slope. Models fa th
Ladinian platform geometry indicate that when @oagate platform continues to aggrade to form a-high
relief topography, if carbonate sediment producisostill dominantly sourced from shallow water and
downslope transport is not enough to fill the slppefile, the carbonate platform would have to
continually maintain its high-relief. For carbonglatforms whose sediments predominantly originate
from carbonate factories on the platform top amdfpim-top sediment production can catch up or even
exceed accommodation created by subsidence ahevetahange (like the GBG), platform growth rate
is initially limited by production-capacity and sdguently limited by transport-capacity with inea
maximum production rate of sediment. In contralsitfprm growth rate may be limited by the
production-capacity when the majority of sediméstsourced from a carbonate factory that can extend

its growth depth to deep slope facies.
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Highlight:

» High carbonate saturation can promote a ramp to steep-sloped platform transition
e Carbonate platform growth is limited by production-capacity and transport-capacity

e Carbonate platform geometry is more sensitive to transport than sediment production
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