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Modulational instability in passive optical resonators, the triggering mechanism of frequency comb
and pulse train generation, is shown to exhibit transitions between regimes involving period-one (P1)
versus period-two (P2) dynamical evolutions. The latter is a signature of parametric resonance occurring
in the system, which can arise either from intrinsic cavity periodicity or from spatial modulation of the
cavity parameters. We characterize the P1-P2 transition for both cases, employing a fiber resonator
where the intracavity fiber can be either uniform or dispersion modulated. The key element of our setup
is a time lens which we exploit to resolve the temporal dynamics over successive round trips, allowing
crystal-clear evidence of the existence of P1-P2 transitions for suitable changes of cavity parameters, as
well as for the successful characterization of the relative temporal patterns. Our findings reveal new
regimes where the averaged model known as the Lugiato-Lefever equation turns out to be inadequate to
explain the dynamics, whereas the results are correctly predicted and described on the basis of the full
Ikeda map.
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I. INTRODUCTION

The generation of frequency combs has attracted a lot of
attention during the last decades since these ultraprecise
optical rulers have a wealth of applications including
astrophysics, metrology, or spectroscopy to name a few
[1,2]. Also associated with the formation of cavity solitons
in the time domain [3,4], their generating mechanism relies
on modulation instability (MI), which first initiates the
exponential growth of two symmetric sidebands around the
pump [5,6]. Then, subsequent four-wave mixing processes
lead to the generation of additional equidistant lines to
eventually form ultrabroadband spectra that might reach an
octave [7]. Characteristics of the frequency comb thus
strongly depend on these early stages of formation, and a
perfect knowledge of the MI dynamics is essential to
understand their formation in order to optimize their
performances [8]. The first observation of MI in passive
resonators has been achieved by Coen and Haelterman [9]

in an all-fiber system. This seminal work has motivated
further investigations aimed at understanding the complex
and rich dynamics of MI processes that may arise beyond
the basic configuration. More recent investigations have
addressed passive fiber ring cavities in the weak dispersion
regime [10–12], understrong cavity driving to reachnonlinear
shifts larger than 2π [7,13–15], through polarization effects
[16,17], and in dispersion-modulated cavities [18–21].
The common thread between these complex systems,

compared to the basic configuration studied in Refs. [6,9], is
that new parametric resonances are excited [7,10–16,18–22].
This striking feature is not only limited to the generation of
new sets of frequencies but also to the modification of the
whole behavior of the system. From a theoretical point of
view, these new parametric resonances correspond to new
eigenvalues of the system, which might be positive or
negative, thus leading to temporal shifts of the output pattern
from round trip to round trip [14,20,23,24]. Inmodulationaly
unstable systems [5,25], the output cavity pulse train can
either be out-of-phase round trip to the other, which is
denoted as the P2 regime or, conversely, in phase in the so-
called P1 regime [20]. In particular, the P2 regime turns out to
be inherently associated with the parametric resonance
phenomenon induced by system periodicity. However,
different sources of periodicity such as the intrinsic perio-
dicity associated with the cavity boundary conditions in a
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uniformcavity, oradhoc introducedmodulation of the cavity
parameters (e.g., dispersion, nonlinearity, etc.), can have
different impacts on how the parametric resonance reflects
itself into the onset of P2 regimes. To date, however, only
indirect evidence of such phenomena have been reported
through observation of spectral sideband generation (see
Ref. [26] for a uniform cavity and Refs. [19,27] for a cavity
with modulation of dispersion). Conversely, the true assess-
ment of P2 regimes by means of real-time observations over
the timescale of the round trip remains extremely challenging
and has not been reported so far. The general importance
of such types of measurements stands also on the fact that
the P2 regime is a well-known mechanism in nonlinear
systems supporting bistable states, first predicted by Ikeda
et al. [28], which was identified as a first step in a universal
route to chaos. It has been observed in modulationaly stable
passive fiber cavities [29–31] and investigated in active lasers
in theory [32–34] and in experiments [35,36].
In this paper, we report direct observations in the time

domain of P1 and P2 regimes in both uniform and
modulated passive fiber ring cavities. We implemented a
time lens [37], which is a recent instrumentation developed
to study optical rogue waves in real time [38,39] or to
characterize transient dynamics in active lasers [40]. This
device based on space-time duality [41] temporally mag-
nifies the cavity output pulse train whose period lies in the
picosecond scale to reach nanosecond duration that can
be measured in real-time, round trip to round trip, using
high-speed photodetectors. Thus, π or 2π shifts experi-
enced by the output pulse train round trip to round trip can
be observed and thus the nature of the regime, P1 or P2,
identified. Moreover, we provide theoretical development
to support these experimental observations.
The paper is organized as follows. In Sec. II, a theoretical

description of both uniform (Sec. II B) and modulated
cavities (Sec. II C) is presented. We end up with parametric
gain expressions that allow us to describe the dynamics and
to identify the P1 and P2 regimes. In Sec. III, experimental
results are presented. First, the experimental setup used in
both cavity configurations is described (Sec. III A), followed
by experimental results in a uniform passive fiber cavity
(Sec. III B 1) and a dispersion-modulated one (Sec. III B 2).

II. THEORETICAL INVESTIGATIONS

A. Governing equations

We consider a passive fiber ring cavity modeled by the
following Ikeda map model [28]:

∂Enðz; tÞ
∂z ¼

�
−
αf
2
− i

β2ðzÞ
2

∂2

∂t2 þ iγjEnðz; tÞj2
�
Enðz; tÞ;

ð1Þ

Enþ1ð0; tÞ ¼ ρEnðL; tÞ expðiΦ0Þ þ θEinðtÞ; ð2Þ

where Eq. (1) is the nonlinear Schrödinger equation
(NLSE) that rules the propagation of the intracavity field
En (respectively, intracavity power P ¼ jEnj2) during the
nth round trip along the cavity of length L, in the reference
frame moving at the wave group velocity. The parameters
β2, γ, and αf are, respectively, the group velocity dispersion
(GVD), the nonlinear coefficient, and the fiber loss coef-
ficient. Equation (2) accounts for the periodic boundary
conditions imposed by the coupler at each round trip, where
ρ and θ are, respectively, the reflection and transmission
coefficients of the coupler defined such that ρ2 þ θ2 ¼ 1.
The parameter Ein refers to the pump input field (respec-
tively, input power Pin ¼ jEinj2), and Φ0 is the linear phase
accumulated by the intracavity field over one round trip.
The cavity detuning δ0 is defined such as δ0 ¼ 2kπ −Φ0,
with k an integer, chosen such that the cavity detuning
refers to the detuning of the pump frequency from the
closest resonance of the cavity. Note that while it is often
very convenient to investigate the dynamics of this system
using a simplified model such as the Lugiato-Lefever
equation (LLE) [5], this model is not valid for large
values of the cavity detuning [10,13,15,20]. Some of the
results presented here were obtained outside the range of
validity of this model, which is thus not fully relevant for
our study.
In the following, we first study the emergence of the P1

and P2 regimes by means of Floquet theory in the most
simple cavity configuration: the uniform fiber cavity. Then,
we extend this analysis to the dispersion of a modulated
fiber cavity.

B. Uniform fiber cavities

A schematic of the passive cavity is shown in Fig. 1(a)
along with the evolution of the GVD over one cavity round
trip in Fig. 1(b). As detailed in Ref. [20], the dynamics of
the system is well described by performing a linear stability
analysis of the complete map system [Eqs. (1) and (2)]
using the method described in Refs. [9,42]. We obtain a
system of differential equations whose evolution is ruled by
the product of the fundamental matrix calculated from
the linear stability analysis of Eq. (1) (at z ¼ L) and the
rotation matrix owing to the boundary conditions [Eq. (2)].
As a result, the stability of this system depends on
eigenvalues of the product of these two matrices. For the
modulus of eigenvalues larger than one, the steady-state cw
solution is unstable with respect to harmonic perturbation,
which initially grows exponentially. Assuming that fiber
propagation losses are small relative to coupling losses,
the overall cavity losses can be approximated by α ¼
1 − ρ expð−αf=LÞ, which leads to eigenvalues expressed
as [20]

λ� ¼ ð1 − αÞ½Ψ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2 − 1

p
�; ð3Þ

where
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Ψ ¼ ½cosðμLÞ cosðΦÞ − κ sinðμLÞ sinðΦÞ�: ð4Þ

The parameter Φ ¼ γLPþΦ0 refers to the total phase
accumulated over a round trip, while

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β22Ω4

4
þ β2γPΩ2

r
ð5Þ

refers to the standard MI gain, with Ω the pulsation of the
perturbation and κ ¼ ðβ2Ω2=2þ γPÞ=μ. It can easily be
checked that unstable eigenvalues (i.e., jλj > 1) appear only
for jΨj > ½1 − αþ 1=ð1 − αÞ�=2, which leads to real eigen-
values that can be expressed as λ ¼ jλjeimπ , with m an
integer. As a consequence, an infinite number of frequencies
can be destabilized, each of them being associated with a
parametric resonance of the system. We introduce λ0, which
corresponds to the eigenvalue λ� with the highest modulus;
hence, the complex gain turns out to be lnðjλ0jÞ=Lþ imπ=L.
Two distinct cases appear depending on the value of m:
(i) For m even (i.e., λ0 > 1), the initial perturbation grows
exponentially [with growth rate guniform ¼ lnðjλ0jÞ=L� fol-
lowing P1 dynamics. (ii) For m odd (i.e., λ0 < −1), the
perturbation changes sign at every round trip, which is
characteristic of P2 dynamics. Clear-cut evidence of this
behavior is the π phase shift experienced by the temporal
pattern from round trip to round trip as opposed to the P1

case. An overview of the behavior of the system in terms of
P1 or P2 regimes can be obtained by looking at the
maximum gain value calculated from the growth rate
guniform in the (δ0, P) plane [see Fig. 1(c)]. This representa-
tion is relevant since it allows a comprehensible description
of the dynamics of the systems, and these parameters
correspond to those easily accessible from an experimental
point of view. In this work, we focus our attention on the
case of normal dispersion, which more easily reveals the
striking features of the system. Indeed, cavities operating in
the anomalous dispersion regime are known to exhibit MI
under a rather large range of parameters, which is likely to
hinder the observation of a competition between P1 and P2
dynamics. Figure 1(c) shows that the system exhibits an
alternation of narrow and broad instability tongues associ-
ated with P1 and P2 dynamics, respectively. As soon as the
pump power is above a certain threshold that depends on the
amount of losses, the system might enter one of the unstable
regions. We can point out that this mapping is necessarily 2π
periodic with respect to δ0, owing to the periodicity of the
linear resonances of the cavity. Accordingly, the most
noteworthy features of the system can be illustrated by
considering only two scenarios at the MI cavity threshold:
the first one, where the nonlinear phase is close to zero, and
the second one, where the phase is close to π. These two
cases have been called resonant and antiresonant cases in
Ref. [9], respectively. Nevertheless, well above the MI
threshold, this denomination is not relevant anymore.
Indeed, the nonlinear phase shift (ΦNL ¼ γLP) induces a
displacement of resonance peaks of several radians; thus, in
this paper, we use the denomination positive and negative
detuning (δ0) in order to correctly identify the different
scenarios.
First, let us consider the cavity operating on positive

detuning. As an example, we set the cavity detuning to
δ0 ¼ 1.44 rad, indicated by the vertical green line in
Fig. 1(c). For this value of detuning, the system is bistable,
and two distinct instability tongues can be accessed,
depending on the intracavity power. For a better under-
standing, we plot in Fig. 1(d) the corresponding steady-
state curve function:

P ¼ θ2Pin

1þ ð1 − αÞ2 − 2ð1 − αÞ cosðΦÞ ; ð6Þ

in the (Pin, P) plane (green curve). The dashed line between
the knees of this S-shaped curve delimits the “uncondi-
tionably unstable domain” regarding the continuous wave
(cw), while the blue lines indicate unstable states in regards
to unstable domains in Fig. 1(c). With a pump power above
the threshold for the first instability tongue on the lower
branch of the steady-state curve [PA ¼ 1.56 W, point A in
Figs. 1(c) and 1(d)], a pulse train that is stable from one
round trip to the other can be excited and thus corresponds
to P1 dynamics. This lower branch is known to be

(10-3 m-1)

)
W( 

P

Pin (W)0 (rad)

Steady state Parametric gain 

(b)

(a)

(c) (d)

FIG. 1. (a) Schematic of the cavity. (b) GVD evolution over one
cavity round trip. (c) Two-dimensional (2D) map of the maximum
parametric gain in the plan (δ0, P). (d) Steady-state curves of
the cavity for δ0 ¼ 1.44 rad (green curve) and δ0 ¼ −1.6 rad
(red curve). The blue parts stand for the regions where the P1
and P2 regimes can be excited. Parameters are as follows:
βDSF2 ¼ 9 ps2:km−1, L¼120.6m, γ ¼ 2.5 W−1:km−1, and cavity
losses α ¼ 0.165.
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modulationaly unstable if Δ > 4.25, with Δ ¼ δ0=α, and it
is linked to the so-called Turing instability [43,44]. By
increasing the intracavity power to PB ¼ 5.84 W [point B
in Figs. 1(c) and 1(d)], the system switches to the upper
branch of the steady-state curve [see Fig. 1(d)] and falls
within another parametric instability tongue that is asso-
ciated with P2 dynamics. We point out that such a behavior
could not be anticipated using the Lugiato-Lefever model,
which predicts a steady state for the system [18,25,43].
In the second scenario, the cavity detuning is set to a

negative value. For example, δ0 ¼ −1.6 rad [vertical red line
in Fig. 1(c)]. The steady-state curve for this detuning is
plotted in Fig. 1(d) (red curve), and we notice that the P2
instability can be accessed for a lower intracavity power
[PC ¼ 0.83 W, point C in Figs. 1(c) and 1(d)]. At this
large negative detuning value, it is also possible to switch on
the P1 tongue with a huge increase of pump power to
Pin ≈ 180 W, which is not accessible with standard exper-
imental equipments.

C. Dispersion-modulated fiber cavities (DMF)

A similar mathematical approach can be applied to
modulated cavities [20]. For the sake of simplicity, we focus
on the specific case where only the GVD is modulated along
the cavity lengthwith a piecewise constant dispersion profile,
corresponding to almost all realistic fiber optics configura-
tions [45]. However, a similar behavior is expected to be
observedwhenvarying any other cavity parameter regardless
of the exact modulation format [22,46]. A schematic of the
cavity is shown in Fig. 2(a) along with the GVD evolution
β2ðzÞ [Fig. 2(b)]. Here, we consider a cavity built out of two
pieces of uniform fibers of lengths La and Lb with GVD
coefficients β2;a and β2;b, respectively. This case corresponds
to the simplest configuration for which the period of
dispersion (Λ ¼ La þ Lb) is equal to the cavity length L.
We define the ratio between these lengths N ¼ ðL=ΛÞ; thus,
N ¼ 1 in this example. This value can be arbitrarily larger,
and for the sake of generality, theoretical investigations have
been performed for any integer values of N. As in the
previously studied case ofuniformcavities,we investigate the
dynamics of this system thanks to a linear stability analysis of
the complete map system [Eqs. (1) and (2)]. We obtain a
system of difference equations whose evolution is ruled by
the product of the fundamental matrices of each uniform fiber
calculated from Eq. (1) and a rotation matrix owing to the
boundary conditions (2). The stability of this system depends
on eigenvalues of the product of thesematrices, which can be
expressed in the form of Eq. (3) over a period Λ, where now

Ψ ¼ ½cosðμaLaÞ cosðμbLbÞ − σ1 sinðμaLaÞ sinðμbLbÞ�
× cosðΦÞ − sinðΦÞ
× ½σ2 sinðμaLaÞ cosðμbLbÞ þ σ3 cosðμaLaÞ sinðμbLbÞ�;

ð7Þ

with

σ1 ¼
ðβ2;aμaÞ2 þ ðβ2;bμbÞ2

2β2;aβ2;bμaμb
; ð8Þ

σ2=3 ¼
ðβ2;a=bΩ2Þ2 þ 4μ2a=b

4μa=bβ2;a=bΩ2
: ð9Þ

The parameter μa=b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ22;a=bΩ4Þ=4þ β2;a=bγPΩ2

q
refers

to the standard MI gain, with Ω the pulsation of the
perturbation for fibers a and b. Unstable eigenvalues appear
for the same condition as in uniform cavities, and again, they
are always real. Consequently, introducing λ0, which corre-
sponds to the eigenvalue λ� with the highest modulus, the
complex gain over a cavity round trip (i.e., overN periodsΛ)
reads as N lnðjλ0jÞ=Λþ iNmπ=Λ, with m integer. From this
expression, contrary to the case of the uniform cavity studied
in Sec. II B, P1/P2 regimes are not only associated with the
order m but also with the number of dispersion periods
forming the cavityN. Indeed, form odd andanoddnumber of
dispersion periods, perturbations experience an exponential
growthwith a growth rate gDMF ¼ N lnðjλ0jÞ=Λ and a π phase
shift (P2 regime) at each round trip, while in all other cases,
there is no π phase shift (P1 regime). A summary of all the
combinations (N, m) is presented in Table I.

(b)

(a)

(c) (d)

(10-3 m-1)

)
W( 

P

Pin (W)0 (rad)

Steady state Parametric gain 

P in (W)

)
W( 

P

FIG. 2. (a) Schematic of the cavity. (b) GVD evolution over one
cavity round trip. (c) 2D map of the maximum parametric gain in
the plan (δ0,P). (d) Steady-state curve of the cavity for δ0 ¼
1.1 rad (green curve). The red (blue) parts stand for the region
where the P1 (P2) regime can be excited. The inset zooms in on
point B. Parameters are as follows: βSMF−28

2 ¼ −19 ps2:km−1,
LSMF−28 ¼ 1.6 m, βDSF2 ¼ 2 ps2:km−1, LDSF ¼ 48.1 m, γ ¼
5.5 W−1:km−1, cavity losses α ¼ 0.157, L ¼ Λ.
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For the sake of simplicity, we focus on the case where
N ¼ 1, which is the easiest configuration to implement
experimentally [19,21,27,47,48].
Similarly to the uniform cavity studied in Sec. II B,

Fig. 2(c) showcases a 2D map in the (δ0, P) plane of the
maximum gain value calculated from the growth rate gDMF.
Many parametric instability tongues appear, characterized
either by P1 or P2 dynamics. We work in a range of the
detuning that allows us to observe Turing and Faraday
instabilities, that is to say, P1 and P2 dynamics, respec-
tively, by simply tuning the pump power, keeping a
constant cavity detuning [19,21,27,47]. The cavity detun-
ing is set to δ0 ¼ 1.1 rad [marked by a vertical green line in
Fig. 2(c)], which leads to a normalized cavity detuning
Δ ¼ 7 large enough to allow the Turing instability to reach
a steady state [44]. By setting the pump power above the
cavity threshold (PA ¼ 1.14 W, point A), the Turing
instability is excited on the lower branch of the steady-
state curve [Fig. 2(d)] and is characterized by P1 dynamics.
The upper branch can be reached through an increase
of the pump power up to P ¼ 5.27 W (point B). The
system then switches to another instability tongue, which is
characterized by P2 dynamics [see inset in Fig. 2(d)]. The
Faraday mechanism is known to be at the origin of multiple
tongues of instability [49], and a further increase of the
pump power would bring the system to a regime where
another parametric instability tongue can be excited,
characterized by P1 dynamics. As expected from previous
theoretical works, the Turing instability is always ruled
by a P1-type instability, while the Faraday one can be either
P1 or P2.

III. EXPERIMENTAL INVESTIGATIONS

In this section, we experimentally study the emergence
of P1 and P2 regimes in the temporal domain in uniform
and dispersion-modulated cavities.

A. Experimental setup

The experimental setup is depicted in Fig. 3. It is similar
to those used in Refs. [12,21]. It consists of a passive fiber
cavity, made of either a uniform or a dispersion-modulated
fiber (see parameters listed in Figs. 1 and 2) closed by a
90=10 coupler. In the uniform cavity, the coupler is made of
the same fiber as the whole cavity (a specially designed
dispersion shifted fiber, βDSF2 ¼ 9 ps2=km) to get a per-
fectly uniform cavity, while for the dispersion-modulated

cavity, it is a standard SMF-28 fiber. To drive the cavity, a
train of square pulses of 1-ns duration is used. It prevents
Brillouin scattering and allows us to obtain high peak
power to trigger the MI process. These pulses are generated
from a cw laser at 1550.5 nm chopped by an electro-optical
modulator (EOM). The repetition rate is set to match with
the repetition rate of the cavity to get one pulse per round
trip. Pulses are then amplified by an erbium-doped fiber
amplifier (EDFA), and they pass through a thin filter (BPF,
1 nm width) to remove the excess amplified spontaneous
emission (ASE). Pump pulses are launched into the cavity
in the anticlockwise (blue arrows) direction, while a
fraction of the output power of the EOM is launched in
the clockwise direction (green arrows). This sample is used
to stabilize the cavity to small external perturbations thanks
to a feedback loop system (proportional-integral-derivative-
controller, which finely tunes the cw laser wavelength)
[11,19,26]. The cavity output is studied by means of an
optical spectrum analyzer (OSA) and a commercial time
lens system (Picoluz ultrafast temporal magnifier,
Thorlabs) based on the results published in Ref. [37].
The time lens system is pumped by a femtosecond laser
centered at 1570 nm. This laser will serve as a reference
clock for the rest of the setup to get a perfect synchroniza-
tion between all laser pulses involved in the experimental
system. The cavity length is carefully adjusted with a fiber
stretcher so that the laser repetition rate of the time lens
pump, about 100 MHz, is an exact multiple of the cavity
repetition rate (typically 59 times for the uniform cavity and
24 times for the modulated cavity). The magnified signal
(magnified factor of 57) is recorded by a fast oscilloscope
and photodiode (70-GHz bandpass each). However, we
added a fiber Bragg grating (FBG), used in transmission
and placed just before the time lens in order to lower the
power of the central component. It allows us to reduce
the relative amplitude of the cw component compared to the

TABLE I. Conditions under which parametric instabilities
exhibit P1 or P2 dynamics in dispersion-modulated cavities.

N ¼ L=Λ

Even Odd

m Even P1
Odd P1 P2

Laser

90/10

80/20

PD

Cavity

PC3

PC2

PC1

PID

EOM

BPF

OSA

90/10

Laser fs

PD

PC4

STR

FBG

FIG. 3. Experimental setup. PC, polarization controller; STR,
stretcher; PD, photodetector; EOM, electro-optic modulator;
OSA, optical spectrum analyzer; EDFA, erbium-doped fiber
amplifier; BPF, band-pass filter; PID, proportional-integral-
derivate controller; Laser fs, femtosecond laser; Oscillo., oscillo-
scope; FBG, fiber Bragg grating.
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modulated ones in the time domain, in order to record the
periodic temporal patterns. Thanks to this method, we
recorded the temporal waveforms with approximately
300 fs of resolution over a window of 50 ps. This resolution
is short enough to record MI temporal patterns, whose
period of modulation lies in the picosecond range.

B. Experimental results

Experimental results have been performed in both uni-
form and modulated cavities to observe the P1-P2 transition
described in theory and marked by points A, B, and C in
Figs. 1(c) and Fig. 1(d) and by points A and B in Figs. 2(c)
and 2(d). They have been compared with numerical
simulations performed by integrating the Ikeda map model
[Eqs. (1) and (2)]. Numerical simulations have been carried
out using a square pulse pump of 1 ns as in experiments,
adding a low random noise. In the case of Turing
instabilities (lower branch of the bistable cycle), we used
a cw pump seeded by a monochromatic signal located
at the maximum gain frequency. For such large normalized
cavity detuning values, the area of instability on the lower
branch is very restricted and thus very sensitive to pertur-
bations. Consequently, seeding the system with noise
should lead to unexpected switches over the upper branch
and avoid the observation of stable temporal patterns over a
large round-trip number (typically 1000 in numerical
simulations). In experiments, for the sake of clarity, we
restricted our results to eight round trips, but we have
been able to record this steady state over more than 30
round trips.

1. Uniform cavity

All experimental parameters are listed in the caption of
Fig. 1. We investigate the configurations corresponding to
points A, B, andC in Fig. 1(c). First, we start by working on
positive detuning to reach the first P1 regime tongue on
Fig. 1 by increasing the input power. It corresponds to the
configuration marked by point A in Fig. 1(c) (δ0 ¼ 1.44 rad
and P ¼ 1.56 W). Two weak sidebands, symmetric around
the pump, are destabilized, as can be seen in Fig. 4(a). They
are located at 140 GHz, in really good agreement with
theory, predicting 154 GHz [calculated from Eq. (3) and
marked by vertical dashed lines in Fig. 4(a)]. The temporal
pattern recorded for eight consecutive round trips is shown
in a 2D color plot in Fig. 4(c), where the minimum and the
maximum are normalized to 0 and 1, respectively. We note
that this pulse train identically reproduces itself round trip
to round trip. The last two consecutive round-trip traces
depicted in Fig. 4(b) (orange lines) show a good overlap.
Thus, this result proves that the system operates in the P1
regime, as expected from theory. These results are con-
firmed by numerical simulations, with an excellent agree-
ment for the spectrum displayed in Fig. 4(a) (blue lines) as
well as for temporal traces depicted in Figs. 4(d)–4(b)
corresponding, respectively, to the 2D color plot from
intracavity temporal signals and the last two consecutive
round-trip traces from (d). For the sake of clarity, we use the
same normalization as in experiments.
To reach point B of Fig. 1(c), we increase the input

power until switching on the upper branch, where the
system also features an instability zone [Fig. 1(d)]. First, we

P1 regime, 0=1.44 rad [A in Fig. 1(c)] 
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observe a chaotic temporal pattern in good agreement with
numerical simulation predictions (not shown here). Then,
we slowly decrease it until the intracavity power reaches
P ¼ 5.84 W (input power of 6.0 W) where the temporal
waveform becomes periodic again. This method is the
usual way to reach operating points located close to the
knee of the steady-state curve of the upper branch. Results
are depicted in Figs. 4(e)–4(h), similarly to the previous
case. Two symmetric sidebands appear around the pump in
the output spectrum at 273 GHz, in excellent agreement
with theoretical predictions [265 GHz calculated from
Eq. (3) and marked by vertical dashed lines in Fig. 4(e)]
and with numerical simulations (blue lines). The normal-
ized temporal traces obtained here alternate between two π
out-of-phase modulated patterns at each round trip with a
singular form of a chessboard [Fig. 4(g)], which is also
clear by looking at the last two round trips depicted in
Fig. 4(f) (orange lines). The system undergoes the P2
regime as predicted by theory. Experimental results are in
excellent agreement with numerical simulations [blue lines
in Figs. 4(e) and 4(f), and in Fig. 4(h), corresponding to the
2D color plot from intracavity temporal signals] in this
example, too. Finally, we change the cavity detuning to a
negative value δ0 ¼ −1.6 rad, to reach the first P2 regime
tongue by increasing the input power [marked by point C
in Figs. 1(c) and 1(d)]. The cavity threshold is about
2 times larger in that case (Pin ¼ 16.3 W, respectively
P ¼ 0.83 W) compared to positive detuning cases inves-
tigated previously. Results are shown in Figs. 4(i)–4(l).
Two symmetric sidebands appear around the pump at

238 GHz, in excellent agreement with theoretical predic-
tions [221 GHz according to theoretical predictions using
Eq. (3) and marked by vertical dashed lines in Fig. 4(i)] and
with numerical simulations (blue lines). The chessboard
pattern in Fig. 4(k) clearly proves that the system undergoes
a P2 regime, as expected from theory and in good agree-
ment with numerical simulations [Fig. 4(l) and blue lines in
Figs. 4(i) and 4(j)].
As in the positive detuning case, we could increase the

input power to switch the system in another instability area
where the temporal waveform undergoes a P1 regime, but
this larger amount of power cannot be reached with our
experimental system.

2. Dispersion-modulated fiber cavities

We now investigate the dispersion-modulated cavity
whose parameters are listed in the caption of Fig. 2. The
average dispersion is positive, so the system is known to be
modulationaly unstable if it operates in the bistable regime
of the LLE model. The turing instability only depends on
the average dispersion value and can be observed on the
lower branch, provided that the normalized detuning is
larger than 4.25 [50]. The Faraday instability originates
from the periodic variation of the dispersion and exists on
the upper branch of the system [19,27]. We choose to study
the simplest configuration for which the period of modu-
lation of the dispersion is equal to the cavity length (N ¼ 1).
Except for the cavity, the experimental setup is identical
to the one used in the previous section to investigate the
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uniform cavity. We note that in dispersion-modulated
cavities, the P1 and P2 regimes are, respectively, associated
with Turing and Faraday instabilities, as has been shown
theoretically [20]. Turing and Faraday instabilities are easily
discriminated in the frequency domain [19,21,27] and thus
in the P1 and P2 regimes. However, the analysis does not
provide a direct observation of these regimes. Here, our goal
is to perform a direct observation in the time domain and to
check experimentally that P1 is associated with Turing and
P2 with Faraday instabilities.
We set the cavity detuning to δ0 ¼ 1.1 rad (Δ ¼ 7) to

observe both regimes. Just above the Turing instability
threshold (Pin ¼ 5.95 W, P ¼ 1.14 W), two symmetrical
sidebands around the pump are generated [see Fig. 5(a)].
They are located at 580 GHz, in really good agreement with
theory, predicting 591 GHz [calculated from Eq. (3) and
marked by vertical dashed lines in Fig. 5(a)]. Increasing the
input power up to 6.42 W (P ¼ 5.27 W), the system
switches onto the upper branch of the steady-state cycle,
and thus the Faraday instability is excited. As expected
from theory [18], their spectral positions are different from
the Turing ones. We measure 975 GHz in experiments,
which is slightly different from theory, giving 1.122 THz
[from Eq. (3); see vertical dashed lines in Fig. 5(e)]. This
discrepancy can be explained by the sensitivity of sideband
frequencies to experimental parameters in this instability
domain, particularly to the intracavity power, which is
indirectly measured from the input power. Numerical
simulations, represented by blue lines in Fig. 5(a) for
the Turing instability, are in good agreement with exper-
imental recordings (orange lines), while Fig. 5(e), for
the Faraday instability, shows this small disagreement.
Experimental temporal traces are shown in Figs. 5(b)
and 5(c) and Figs. 5(f) and 5(g), respectively, for the
Turing and Faraday instabilities, where the corresponding
numerical simulations [Figs. 5(b) (blue lines) and 5(d) for
Turing instabilities and Figs. 5(f) (blue lines) and 5(h) for
Faraday instabilities] show the same behavior. From these
figures, it is clear that the Turing instability lies in the P1
regime and the Faraday instability in the P2 regime, which
is in excellent agreement with numerical simulations.

IV. CONCLUSION

Real-time characterization with a resolution of the order
of hundreds of femtoseconds allowed by time lens systems
revolutionizes the way we investigate passive resonators for
cavity soliton characterization [4] or lasers for real-time
characterization of mode-locking dynamics [40] in phase
and intensity. In this work, we show that it can also be of
great interest in the context of modulation instability. We
anticipate that these time lens systems or, more recently,
dual-frequency comb systems [51] will become a standard
in future experiments to get real-time recordings with high
resolution to improve the understanding of the complex
dynamics occurring in these nonlinear systems.
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