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Abstract In this paper, we investigate the capabil-

ity of the recently proposed extended virtual element

method (X-VEM) to efficiently and accurately solve

the problem of a cracked prismatic beam under pure

torsion, mathematically described by the Poisson equa-

tion in terms of a scalar stress function. This problem

is representative of a wide class of elliptic problems for

which classic finite element approximations tend to con-

verge poorly, due to the presence of singularities. The

X-VEM is a stabilized Galerkin formulation on arbi-

trary polygonal meshes derived from the virtual ele-

ment method (VEM) by augmenting the standard vir-

tual element space with an additional contribution that

consists of the product of virtual nodal basis functions

with a suitable enrichment function. In addition, an

extended projector that maps functions lying in the
extended virtual element space onto linear polynomi-

als and the enrichment function is employed. Conver-

gence of the method on both quadrilateral and polyg-

onal meshes for the cracked beam torsion problem is

studied by means of numerical experiments. The com-

puted results affirm the sound accuracy of the method

and demonstrate a significantly improved convergence

rate, both in terms of energy and stress intensity fac-

tor, when compared to standard finite element method

(FEM) and VEM.
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1 Introduction

Over the past sixty years, finite element methods in-

volving the use of piecewise polynomial approximat-

ing functions have been extensively employed for solv-

ing many engineering problems with adequate accu-

racy, particularly in the fields of solid and structural

mechanics. However, the use of piecewise polynomial

functions is very inefficient in capturing solutions con-

taining singularities [1], such as those typically encoun-

tered in fracture mechanics problems: see for instance,

the crack tip problem in a fractured elastic body [2] or

the torsion problem of a cracked prismatic beam [3]. In-

corporating the form of the singularity in a numerical

scheme is, generally, more effective than mesh refine-

ment. Since the Seventies, many computational tech-

niques have been proposed to tackle this issue in the

finite element framework. Early methods successfully

addressing the finite element solution of problems with

singularities include both the singular basis function

method [4] and the integrated singular basis function

approach [5]. Among the more recent approaches, a

prominent role is played by enriched approximations

based on the partition-of-unity scheme introduced by

Melenk and Babuška [6,7], such as the extended finite

element method (X-FEM) [8–10].

First proposed in [11], the Virtual Element Method

(VEM) is a recent development of stable Galerkin dis-

cretizations on polytopal meshes for boundary-value

problems. Differently from the FEM, in the VEM, the

shape functions are defined as the solution of a local el-

liptic partial differential equation and are never explic-
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itly computed. Hence, the finite element space spanned

by such virtual shape functions is known as virtual ele-

ment space. Since virtual shape functions are unknown,

the VEM entails the construction of the approxima-

tion of the bilinear form by means of suitable elliptic

polynomial projections, which are computable from the

degrees of freedom of the method. In particular, the ap-

proximated bilinear form is composed of two parts: the

consistency term, which approximates the stiffness ma-

trix on a given polynomial field, and a correction term

ensuring stability.

Like the FEM, the VEM requires a special treat-

ment in order to satisfactorily approximate singular

solutions. For instance, similarly to the hp-version of

FEM, Beirão da Veiga et al. [12] proposed the use of

geometrically refined meshes with appropriate local de-

gree of accuracy to study L-shaped domains with ge-

ometric singularities. Moreover, Nguyen et al. [13] de-

vised a VEM methodology for the modeling of crack

propagation in 2D for linear elastic fracture, which places

the crack line along the inter-element edges and exploits

an adaptive mesh refinement procedure based on super-

convergent patch recovery.

By generalizing the main concepts from the X-FEM,

the Authors have recently contributed to formulating

the etended virtual element method (X-VEM) for two-

dimensional problems governed by the Laplace equa-

tion in the presence of both singularities and strong

discontinuities [14]. The basic idea of the X-VEM for

problems with singularities is to enrich the standard

virtual element space by means of an additional set of

shape functions built upon suitably chosen enrichment

functions that accurately describe the behavior of the

solution near to the singularity. The choice of enriching

the virtual element space was previously investigated

in the plane wave virtual element method developed

by Perugia et al. [15], who exploited approximations

spaces made of products of functions that constitute a

partition of unity and plane waves. However, to the Au-

thors’ knowledge, the proposed X-VEM represents the

first attempt of exploiting the flexibility of the VEM for

the construction of efficient approximations on general

finite element meshes in the presence of singularities in

the primal field [14].

In particular, in the X-VEM, the standard VEM

projection operator has been modified to project func-

tions onto an extended polynomial space spanned by

standard basis monomials and one ore more enrichment

functions. In [14], the X-VEM has been tested on the

Laplace problem for an L-shaped domain, whose so-

lution exhibits a singularity at the re-entrant corner,

and the exact global solution was chosen as enrichment

function. Since the enrichment coincides with the exact

solution, the extended projection has been applied to

every element of the mesh, observing a large improve-

ment in both accuracy and convergence rate, which ap-

proached the optimal rate predicted by theory.

In the present paper, we assess the capability of the

X-VEM previously proposed in [14] to accurately ap-

proximate the problem of the torsion of a prismatic

cracked beam, which is described by the Poisson equa-

tion in terms of a two-dimensional scalar stress func-

tion. This problem is especially meaningful in that it

preludes to the general crack tip problem in fractured

elastic continua. For the cracked beam torsion prob-

lem, no exact global solution is available as an ana-

lytic expression. However, it is known that the solu-

tion has a singularity on the crack tip, usually placed

at the origin of the coordinate system, and can be ex-

panded in a trigonometric series on a neighboorhood of

the origin [16]. Hence, we choose the leading term of

the series as the enrichment function for the X-VEM.

Moreover, a geometric enrichment around the singu-

larity is adopted, meaning that all the nodes within a

given radius from the singularity are enriched. Thus,

we only use the extended projector on elements con-

taining enriched nodes, whereas the standard projector

is employed for the remaining non-enriched elements.

We show that the X-VEM performs equally well in this

configuration, by greatly improving both accuracy and

convergence rates in comparison to standard FEM and

VEM.

The paper is organized as follows. In Section 2, we

discuss the problem of the cracked beam under torsion.

In Section 3, we present the X-VEM for problems gov-

erned by the Laplace equation in the presence of singu-

larities, while Section 4, describes the main aspects of

the implementation of the method. Numerical results

are presented and discussed in Section 5. Finally, Sec-

tion 6 is devoted to final remarks and conclusions.

2 The torsion problem for a cracked beam

The classical theory of the torsion of prismatic beams

is a milestone of the theory of elasticity. Its founda-

tion can be ascribed to Barrè de Saint Venant [17] and

owes important contributions to other prominent scien-

tists [18].

In particular, let us consider the case of a cracked

prismatic beam of square cross section Λ, with bound-

ary ∂Λ, subjected to torsion, shown in Fig. 1. We intro-

duce the coordinates system (x, y) principal of inertia

and centered at the barycenter of Λ. The problem is

governed by the following Poisson equation in terms of

the scalar Prandtl stress function v with homogeneous
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boundary conditions:

∆v = −F in Λ, (1a)

v = 0 on ∂Λ. (1b)

In (1), F = 2Gϑ̄ where G is the tangential elastic mod-

ulus and ϑ̄ is the unit torsion angle of the beam. The

Aſ(ï1/2, 1/2) Dſ(1/2, 1/2)

Bſ(ï1/2, –1/2) Cſ(1/2, –1/2)

x
y
OQ1 Q2

P
r
θ
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Fig. 1: Cracked square beam cross section.

solution v of problem (1) is singular at the origin O and

can be expanded by a trigonometric series with leading

term r1/2 cos θ/2, where (r, θ) are the polar coordinates

represented in Fig. 1. More precisely, it has been shown

in [16,5] that

v =

∞∑
j=1

αjr
(2j−1)/2 cos

[(
2j − 1

2

)
θ

]
(2)

is analytic in a neighborhood of O for suitable coeffi-

cients αj . Following the development in [4], in order to

avoid physically uninteresting logarithmic singularities,

boundary condition (1b) is replaced with:

v = 0 on Q1O,AD, andBC, (3a)

∂v

∂n
= 0 on AB,CD, (3b)

where ∂v
∂n is the normal derivative to the boundary. As

demonstrated in [16], the solution v to (1a), (3a), (3b)

has a singularity in O of the form (2).

For the sake of simplicity, we assume F = 1 and

apply the transformation u = v + y2/2 so that equa-

tion (1a) together with boundary conditions (3a), (3b)

can be rewritten as a Laplace equation in terms of the

new variable u as follows:

∆u = 0 in Λ, (4a)

u =
y2

2
on Q1O,AD, andBC, (4b)

∂u

∂n
= 0 on AB,CD. (4c)

Finally, we appeal to the symmetry to restrict prob-

lem (4a)-(4c) to the rectangle Ω ⊂ Λ with boundary

∂Ω, shown in Fig. 2.

A

Q1 O Q2

Du = 1/8

u = 0 u,y = 0

u,x = 0 u,x = 0

Fig. 2: Symmetrized region.

Be ΓD and ΓN the parts of ∂Ω where Dirichlet and

Neumann boundary conditions are given, respectively.

In order to define the weak form of problem (4), let

V0 = H1
0 (Ω) denote the linear subspace of functions in

the Sobolev space H1(Ω) whose trace on ΓD is equal to

zero. Furthermore, be V = H1
∂Ω(Ω) the affine subspace

of functions in H1(Ω) whose restriction on ΓD is equal

to y2/2. The variational formulation of problem (4a)-

(4c) reads as: find u ∈ V such that

a(u, v) = 0 ∀v ∈ V0, (5)

where the bilinear form a(·, ·) is given by

a(u, v) =

∫
Ω

∇u · ∇v dx. (6)

Noteworthy, the Dirichlet boundary condition in (4b)

is incorporated in the definition of the functional space

V .

3 Extended virtual element approximation

In this Section, we closely follow the procedural outline

presented in [14]. For the sake of conciseness, we will

hereafter provide the essential aspects of the method

and refer the reader to [14] for a thorough presentation

of the general ideas behind the X-VEM.
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From the weak form of the continuous problem (5),

we can state the extended virtual element discrete prob-

lem as: find uhX ∈ V hX,∂Ω ⊂ V such that

ah(uhX , v
h
X) = 0 ∀vhX ∈ V hX,0 ⊂ V0, (7)

where ah(·, ·) is the virtual element bilinear form that

approximates the exact bilinear form a(·, ·). Spaces V hX,∂Ω
and V hX,0 are built from the enrichment of the standard

finite-dimensional conforming virtual element space V h ∈
V . Let {φi}Ni=1 be the set of canonical X-VEM basis

functions, deriving from the discretization of the prob-

lem domain Ω. After expanding the trial and test func-

tions as a linear combination of these basis functions

and substituting them in (7), owing to the arbitrariness

of the test coefficients, we obtain the following linear

system of equations:

Kd = 0, Kij = ah(φi, φj), (8)

where K is the stiffness matrix and d is the unknown

coefficients vector. We consider first-order virtual el-

ements. Therefore, we define the space P1(Ω)of lin-

ear polynomials on Ω. For each element E, we intro-

duce the local virtual element space V h(E), which in-

cludes the linear polynomials P1(E) = span{1, x, y} as

a subspace. Moreover, we define the global virtual ele-

ment space V h on Ω. Any virtual element function vh

in V h(E) is uniquely determined by its vertex values,

known as the degrees of freedom (DOFs), from which it

is possible to compute the elliptic projectionΠ∇vh onto

linear polynomials. We now introduce the enriched local

and global virtual element spaces for the X-VEM, i.e.,

V hX(E) and V hX , incorporating additional information

about the behavior of the singular solution by means of

a suitable enrichment function denoted by ψ. We also

define the more general projection operator Π∇Xv
h
X onto

span{1, x, y, ψ}, which allows to construct the extended

virtual element bilinear form ah(·, ·) used in (7).

3.1 Standard virtual element space

Let the mesh be a family T = {Ωh}h of decompositions

of Ω into nonoverlapping polygonal elements E, with

nonintersecting boundary ∂E and straight edges. Be

xE := (xE , yE) and hE = supx,y∈E |x−y| the barycen-

ter and diameter of element E, respectively. Moreover,

be NE the number of vertices of element E, oriented

in counter-clockwise order and let xk := (xk, yk), k =

1, 2, . . . , NE denote their coordinates. We finally indi-

cate by nE,e the unit outward normal vector to edge

e ∈ ∂E.

Let the standard local virtual element space on each

polygonal element E with boundary ∂E be defined as:

V h(E) =
{
vh ∈ H1(E) : ∆vh = 0, (9)

vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E
}
.

The space V h(E) contains all harmonic functions de-

fined on E whose restriction on the elemental bound-

ary ∂E is a continuous piecewise-linear polynomial. It

follows from the definition (9) that the space of linear

polynomials on E, P1(E), is a subspace of V h(E). A

basis for P1(E) can be constructed from the following

set of scaled monomials:

m1(x) = 1, m2(x) =
x− xE
hE

, m3(x) =
y − yE
hE

,

(10)

so that P1(E) = span{m1,m2,m3}. Since any virtual

element function vh ∈ V h(E) is uniquely determined by

the degrees of freedom of vh, we can compute the elliptic

projection operator Π∇ : V h(E) → P1(E), which, for

vh ∈ V h(E), is defined by the following condition [11]:

∫
E

∇Π∇vh · ∇q dx =

∫
E

∇vh · ∇q dx ∀q ∈ P1(E),

(11)

with the additional requirement∫
∂E

(Π∇vh − vh) ds = 0. (12)

Integrating by parts and recalling that linear polyno-

mials are harmonic functions yields:∫
E

∇Π∇vh · ∇q dx =
∑
e∈∂E

∫
e

vhne · ∇q ds, (13)

where the edge integrals are computable because the

degrees of freedom of vh allow us to uniquely deter-

mine the restriction of vh on each edge through lin-

ear interpolation. Equation (13) makes it possible to

compute the elliptic projection by means of a linear

system of equations. The global conforming virtual ele-

ment space V h is obtained by the union of all the local

spaces V h(E) and is defined as:

V h :=
{
vh ∈ H1(Ω) : vh|E ∈ V h(E) ∀E ∈ Ωh

}
.

(14)
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3.2 Extended virtual element space and the elliptic

projection

In order to provide an accurate virtual element solution

of problem (4), we enrich the local standard virtual ele-

ment space with the harmonic function ψ = r1/2 cos θ/2

on the polygonal element E, so that the extended vir-

tual element space can be defined as:

V hX(E) := V h(E) + ψV h(E). (15)

In order to construct the enriched bilinear form ah, we

need to define the extended elliptic projection operator

Π∇X : V hX(E)→ P
X
1,0 = span(1, x, y, ψ) for each element

E. Analogously to (11) and (12), the extended ellip-

tic projection Π∇Xv
h
X for a given vhX ∈ V hX(E), is the

solution of the variational problem:∫
E

∇Π∇XvhX · ∇qX dx =

∫
E

∇vhX · ∇qX dx (16)

∀qX ∈ PX1,0(E),

together with the condition:∫
∂E

(Π∇Xv
h
X − vhX) ds = 0. (17)

Similarly to standard VEM projection, the projection

Π∇Xv
h
X onto the subspace PX1,0(E) is computable from

the degrees of freedom of vhX . In fact, recalling that qX
is harmonic, integration by part provides the following

equality:∫
E

∇Π∇XvhX · ∇qX dx =
∑
e∈∂E

∫
e

vhXne · ∇qX ds (18)

which holds for any function qX ∈ PX1,0(E). The edge

integrals on ∂E are computable since the restriction of

vhX can be obtained by linear interpolation of the nodal

degrees of freedom.

3.3 Bilinear form

The construction of the X-VEM straightforwardly fol-

lows the scheme outlined for the standard VEM [11].

The global discrete bilinear form ah(uhX , v
h
X) for uhX , v

h
X ∈

V hX is defined as the sum of elemental contributions

ah(uhX , v
h
X) =

∑
E∈Ωh

aEh (uhX , v
h
X), (19)

where each local bilinear form can be computed as

aEh (uhX , v
h
X) =

∫
E

∇Π∇XuhX · ∇Π∇XvhX dx (20)

+SE
((
I −Π∇X

)
uhX ,

(
I −Π∇X

)
vhX

)
.

In (20), the first term on the right hand side is the so-

called consistency term, which ensures the linear and

ψ-consistency of the method, whereas SE(·, ·) is known

as stabilization term and guarantees the stability of the

method. Different effective choices for the stabilization

terms have been proposed in [19,20].

4 Notes on the implementation of the method

Similarly to the FEM, any virtual element function of

the local space V h(E) can be written as the Lagrange

interpolation of the NE canonical basis functions ϕj
for j = 1, . . . , NE , associated with the vertices xj of

E; in particular, each basis function ϕj takes the value

1 at the j-th node xj and zero at all the other nodes,

and has compact support, the support region being the

patch of elements that have node xj in common. Let

the mesh Ωh be composed of N nodes. Then, it follow

immediately that the set of N basis functions ϕj in Ωh
is a partition-of-unity (PU) on Ωh:

N∑
j=1

ϕj(x) = 1 ∀x ∈ Ωh. (21)

Any virtual element function of the extended space

V hX(E) can be expressed as:

vhX(x) =
∑
i∈I

ϕi(x)v0i +
∑
j∈J⊆I

ψ(x)ϕj(x)v1j ∀x ∈ E,

(22)

where I is an index set containing the nodes of the el-

ement E, whereas the set J ∈ I indexes the enriched

nodes. Finally, v0j and v1j are the nodal degrees of free-

dom of the standard virtual element functions vh0 and

vh1 .

4.1 Matrix representation of the elliptic projector Π∇X

We build the local stiffness matrix KE from the ex-

tended projection operator Π∇X mapping the enriched

virtual function vhX onto linear monomials and ψ. Under

the assumption that all the element nodes are enriched

and making use of the set of Lagrange basis functions

previously defined, we represent the projection opera-

tor Π∇X defined on E as a 4 × 2NE matrix ΠX . The

j-th column of ΠX contains the coefficients (aXj )T =

{aX1j , aX2j , aX3j , aX4j}T of Π∇Xφj , projection of the j-th ba-

sis function φj on the scaled monomials and ψ/ψ0. Let

mX
i for i = 1, . . . , 4 be the scaled functions that form a

basis for the extended space PX1,0 = P1(E) + ψP0(E).

In particular, mX
i for i = 1, 2, 3 are the scaled monomi-

als and mX
4 = ψ/ψ0 is the scaled enriched function. It
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is possible to compute the matrix ΠX by solving the

linear system

GXΠX = BX , (23)

where the components GXij of GX are given by

GXij =


1

NE

NE∑
k=1

mX
j (xk) for i = 1,∫

E

∇mX
i (x) · ∇mX

j (x) dx for i > 1,

(24)

where j = 1, . . . , 4, and the matrixBX = (BXij ) is given

by

BXij =


1

NE

NE∑
k=1

φj(xk) for i = 1,∫
E

∇mX
i (x) · ∇φj(x) dx for i > 1,

(25)

where j = 1, . . . , 2NE . The matrix components GXij and

BXij defined in (24) and (25) are readily computed as

the corresponding integrals of the standard VEM [21].

4.2 Enriched stiffness matrix

As anticipated, the stiffness matrix KE := (KE
ij ) of the

X-VEM is constructed as the sum of a consistent part

Kc and a stabilization part Ks. On using (20), the

entries of the stiffness matrix KE are given by

KE
ij = Kc

ij +Ks
ij =

∫
E

∇Π∇Xφi · ∇Π∇Xφj dx (26)

+SE
((
I −Π∇X

)
φi,
(
I −Π∇X

)
φj

)
,

where the stabilization term is computed as

SE
((
I −Π∇X

)
φi,
(
I −Π∇X

)
φj

)
=

= α trace(Kc)

NE∑
`=1

dof`
[(
I −Π∇X

)
φi
]

dof`
[(
I −Π∇X

)
φj
]
,

α being a scalar stabilization parameter and dof`(·) the

functional that returns the value of the `-th degree of

freedom when applied to a virtual element function.

4.3 Numerical integration

An enhanced quadrature scheme, especially conceived

for singular functions, has been adopted for the com-

putations of integrals in the matrix G defined in (24),

in the stiffness matrix entries KE
ij defined in (26), and

strain energy computations as well. Polynomial approx-

imations of such integrals are poor and require a huge

number of quadrature points to attain sufficient accu-

racy. The enhanced quadrature scheme, hereafter re-

ferred to by the acronym HNI, is based on the numeri-

cal integration of homogeneous functions on convex and

nonconvex polygons, developed by Chin et al. [22]. The

HNI scheme allows to reduce integration of homoge-

neous functions over arbitrary polygons to integration

over the boundary edges of the polygon. By definition,

a positively homogeneous function of degree q satisfies

f(λx) = λqf(x) (27)

for all x and where λ > 0. Given a polygonal domain

M with edges ei (i = 1, . . . ,m), let ai · x = bi the line

containing edge ei, where the sign of bi is determined

such that ai/‖ai‖ is the outward normal to the poly-

gon. Starting from definition (27), applying Euler’s ho-

mogeneous function theorem and Stokes theorem, and

finally using an nq-th point Guass quadrature rule, it

is possible to prove that:∫
M

f(x) dx =
1

2 + q

m∑
i=1

bi
‖ai‖

nq∑
j=1

wijf(xij). (28)

With Gauss quadrature applied to the bounding line

segments, (28) provides numerical integration with poly-

nomial precision over arbitrary polygons. To improve

the distribution of integration points required on each

line segment, we adopt an adaptive integration scheme

that provides an optimized, custom quadrature rule for

each element, which allows to compute the integrals to

a user-specified precision through an a posteriori esti-

mation of the error. The reader is addressed to [23] for

further details.

5 Numerical results

5.1 The cracked beam torsion problem

We present a convergence study for the X-VEM de-

scribed in the previous sections applied to the cracked

beam torsion problem (4), which, as discussed in Sec-

tion 3, exhibits a singular solution at the crack tip. Re-

calling that the transformation v = u−y2/2 holds, from

the solution u of problem (4), the solution in terms of

stress function v of the original problem can be de-

termined. The main features of the problem at hand,

together with adopted geometry and boundary condi-

tions, have been described in Section 3. In the X-FEM

framework, it has been shown by Laborde et al. [24]

and Béchet et al. [25] that optimal convergence is re-

covered if all nodes that lay within a fixed radius around

the singularity are enriched. This strategy is referred to

as geometric enrichment. Also for the X-VEM, it has
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been proved that geometric enrichment in the presence

of singularities is beneficial to the convergence rate of

the method [14]. For this reason, we apply geometric

enrichment to the cracked beam torsion problem, by en-

riching all the nodes within a radius re = 0.2 from the

origin, where the singularity lays. Fig. 3 represents geo-

metric enrichment for a mesh of quadrilateral elements.

Since, in this case, the enrichment function does not

coincide with the global exact solution of the problem,

we only use the extended projector Π∇X on elements

containing enriched nodes, whereas the standard pro-

jector Π∇ is employed for the remaining non-enriched

elements. The convergence study has been conducted

by means of two different sets of 5 meshes each. The

first set is composed of 8, 32, 128, 512, 2048 quadrilat-

eral elements, respectively, while the second set is made

of 8, 28, 88, 300, 1120 polygonal elements, respectively;

see Fig. 4 for an example of polygonal mesh. The num-

ber of elements in polygonal meshes has been chosen

so that each polygonal mesh has the same number of

degrees of freedom as the corresponding quadrilateral

mesh. In particular, polygonal meshes have been gener-

ated starting from a Voronoi tassellation obtained with

the Lloyd’s algorithm [26]. To illustrate the strengths of

the method, we compare the results obtained from the

X-VEM with results obtained from classic VEM and

FEM. From an engineering point of view, the most in-

A D

Q1 Q2
2

O

re

Fig. 3: Geometric enrichment in the cracked beam torsion
problem. Nodes lying within the circle of radius re = 0.2 are
enriched.

teresting quantity is not the value taken by the stress

function v but, rather, the so-called stress intensity fac-

tor σ0 defined as [4]:

σ0 = lim
r→0

r−1/2 [v(r, 0)− v(0, 0)] , (29)

which is a commonly accepted measure of the amount

of torsion the beam can sustain before fracture takes

place. Such quantity can be approximated from the nu-

merical solution in terms of the stress function v by

A D

Q1 Q2O

Fig. 4: Example of polygonal mesh.

means of the difference quotient [3]:

σ0 =
vh(ξh, 0)− vh(0, 0)

ξ
1/2
h

(30)

where ξh is chosen such that ξh = O(h), being h a mesh

dimension parameter. The exact value of the stress in-

tensity factor for the cracked beam torsion problem is

σ0 = 0.19112 [5]. Fig. 5 displays convergence plots in

terms of stress intensity factor at the crack tip for the X-

VEM and compares it to classic VEM and FEM. It can

be drawn that, while both the FEM and VEM exhibit

a poor convergence behavior, the X-VEM has a higher,

steady convergence rate which guarantees significantly

more accurate results. It is also interesting to study
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Fig. 5: Convergence in terms of stress intensity factor at the
crack tip for the cracked beam torsion problem. X-VEM com-
putations are done with the elliptic projector Π∇

X on quadri-
lateral and polygonal meshes and are compared to both the
standard VEM and FEM

.
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the convergence of the approximate solution in terms of

point values taken by stress function v at three differ-

ent locations in the problem domain [4]. In particular,

points P1 ≡ (0, 1/24), P2 ≡ (−11/24, 1/4) and P3 ≡
(11/24, 1/4) have been considered, where the exact so-

lution as been computed respectively as v1 = 0.027425,

v2 = 0.032877 and v3 = 0.070844. As shown in Figs. 6, 7

and 8, the X-VEM provides faster convergence and bet-

ter accuracy than both FEM and VEM. Finally, con-
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Fig. 6: Convergence in terms of stress function evaluated in P1

for the cracked beam torsion problem. X-VEM computations
are done with the elliptic projector Π∇

X on quadrilateral and
polygonal meshes and are compared to both the standard
VEM and FEM

.

vergence in relative error in strain energy has been in-

vestigated. Strain energy for the Laplace problem at

hand is defined as [27]:

E(v) =
1

2

∫
Ω

∇v · ∇vdV. (31)

Therefore, relative error in strain energy is:

εrel =
|E(ṽh)− E(vex)|

E(vex)
, (32)

where vex is the exact solution and ṽh is the projection

of the discrete solution vh, defined as:

ṽh =
∑
K∈T

Π∇Kvh, (33)

withΠ∇K = Π∇ for non-enriched elements andΠ∇K = Π∇X
for elements containing enriched nodes. The reason for

101 102

(Number of DOFs)1/2

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
er

ro
r 

in
 v

(P
2
)

FEM (rectangular Q4)
VEM (rectangular Q4)
VEM (polygons)
X-VEM (rectangular Q4)
X-VEM (polygons)

Fig. 7: Convergence in terms of stress function evaluated in P2

for the cracked beam torsion problem. X-VEM computations
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.
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Fig. 8: Convergence in terms of stress function evaluated in P3

for the cracked beam torsion problem. X-VEM computations
are done with the elliptic projector Π∇
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polygonal meshes and are compared to both the standard
VEM and FEM

.

the choice (33) is that it is not possible to compute

the true energy associated to vh, since virtual functions

are not explicitly known [12]. Moreover, since the ex-

act solution is not available as an analytic expression
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for the problem under study, it has been approximated

by means of a higher order FEM solution, vref , com-

puted on an overkill mesh with 524288 elements. The

corresponding strain energy, Eref = 0.0097847, is used

in (32) in place of E(vex). Fig. 9 depicts convergence

plots in terms of relative error in strain energy for the

X-VEM, VEM and FEM respectively. Again, the X-

VEM provides a distinctive advantage in terms of ac-

curacy and convergence rate over both the FEM and the

VEM. In particular, the computed convergence rate in

terms of relative error in strain energy is equal to 2.04

for the X-VEM and 1.18 for both the VEM and the

FEM. Hence, the X-VEM allows to recover the optimal

convergence rate in energy as predicted by theory for

finite elements, which is equal to 2. On the contrary,

both VEM and FEM exhibit a suboptimal convergence

rate of 1, which is in agreement with theory as well:

indeed, the theoretical asymptotic rate of convergence

of finite element methods with polynomial degree p for

problems with a singularity of order λ is min(2p, 2λ)

[28] and, for the problem at hand, we have p = 1 and

λ = 1/2.
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Fig. 9: Convergence in terms of strain energy for the cracked
beam torsion problem. X-VEM computations are done with
the elliptic projector Π∇

X on quadrilateral and polygonal
meshes and are compared to both the standard VEM and
FEM

.

5.2 The Motz problem

Very similar to the cracked beam torsion problem, the

Motz problem [29] is a popular benchmark for test-

ing the various approaches proposed in the literature

for treating singularities. The problem is defined on

the same square domain as the cracked beam torsion

problem and its exact solution can be expanded in a

neighborhood of the origin with the same trigonomet-

ric series (2). Fig. 10 depicts geometry and boundary

conditions for the Motz problem as modified by Wait

and Mitchell [30]. The convergence of the X-VEM on

A

Q1 O Q2

Duy = 0

u = 0 uy = 0

ux = 0 u = 500

Fig. 10: Geometry and boundary conditions of the Motz prob-
lem

.

the Motz problem in terms of relative error in strain

energy has been investigated. Since the exact global

solution of the Motz problem is not known in closed

form, the same approach adopted for the cracked beam

torsion problem is here used to establish an accurate

reference value for the strain energy, which has been

computed as Eref = 8.50795. Fig. 11 shows conver-

gence in terms of relative error in strain energy for the

X-VEM, VEM and FEM respectively. As in the case of

the cracked beam under torsion, for the Motz problem,

the X-VEM provides a definite advantage in terms of

accuracy and convergence rate over standard FEM and

VEM. In particular, the computed convergence rate in

terms of relative error in strain energy is equal to 2.16

for the X-VEM and 1.05 for both the VEM and the

FEM. Again, the X-VEM allows to recover the optimal

convergence rate predicted by theory.

6 Conclusions

In this paper, we have presented the extended virtual

element method (X-VEM), originally proposed in [14],

for the torsion problem of a prismatic cracked beam,

governed by the Poisson equation in terms of a two di-

mensional scalar stress function. This problem is char-

acterized by a singularity in the primal field placed at
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Fig. 11: Convergence in terms of strain energy for the Motz
problem. X-VEM computations are done with the elliptic pro-
jector Π∇

X on quadrilateral and polygonal meshes and are
compared to both the standard VEM and FEM

.

the crack tip. Even if no exact global solution is avail-

able as an analytic expression, an expansion in trigono-

metric series is available in a neighborhood of the ori-

gin. The leading term of the series has been taken as

the enrichment function for the X-VEM and a geomet-

ric enrichment strategy around the singularity has been

adopted, meaning that all the nodes within a given

radius from the singularity have been enriched. More-

over, we have only used the extended projector on ele-

ments containing enriched nodes, whereas the standard

projector has been employed for the remaining non-

enriched elements. Through numerical experiments, we

have investigated the convergence of the method in

terms of stress intensity factor, stress function and strain

energy. In all cases, we have shown that the X-VEM is

more accurate than classic FEM and VEM. Moreover,

X-VEM allows to recover the expected optimal conver-

gence rate.
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