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ABSTRACT

A Finite Element-Boundary Integral Equation (FE-BIE) coupling method is proposed to investigate 

a flexible bar weakly attached to an elastic orthotropic half-plane. Firstly, the analysis has been 

conducted assuming interfacial displacements linearly proportional to tangential traction for a bar 

subjected to horizontal force or thermal load. Secondly, the study has been addressed to model 

debonding behaviour of a composite reinforcement glued on a substrate. Using incremental 

nonlinear analysis, a bilinear elastic-softening relationship between interfacial traction and slip has 

been implemented in the model simulating the delamination of pure Mode II. Finally, influence of 

the anchorage length on the ultimate bearing capacity of the adhesive joint has been investigated.

Keywords: Mixed variational principle, Green function, Weak interface, Debonding, FRP–

strengthening concrete.
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1 INTRODUCTION

In the last few decades, repairing and strengthening of existing structures made of concrete and 

masonry [1] or rehabilitation of steel structures [2] have emerged as a cutting edge issue in 

structural engineering. Particularly, the use of Fibre Reinforced Polymer (FRP) strips has become 

more and more common than ever before, as it has proved to be a rapid and efficient technical 

solution. Plenty of these studies have been focused on the issue of strengthening Reinforced 

Concrete (RC) members with externally bonded FRP sheets [3]. Nonetheless, thin film-based 

devices and coated systems have been widely employed, remarkably in fields of aerospace and 

electronic engineering. For these problems, a simple reference model may be a straight elastic 

stiffener of prescribed length bonded to an elastic substrate in plane state that can debond in pure 

mode II only. Moreover, bending stiffness of the stiffener may be disregarded because of its 

thickness that is generally very small. Consequently, the stiffener is not able to sustain transverse 

loads and no peeling stresses can arise at the interface.

In 1932, Melan studied the problem of a point force applied to an infinite stiffener bonded to an 

infinite linear elastic sheet [4]. Several authors have reconsidered and extended the Melan's 

problem, especially for stiffened plate in aircraft structures and FRP strengthened RC structures. 

Early studies, concerning stiffeners welded to an elastic substrate, have adopted series 

approximation method to solve singular integral equations including proper Green function, see [5] 

and references cited therein. Perfect adherence hypothesis was relaxed in [6], where the adhesive 

interface was substituted by a set of independent linear elastic springs. This classical assumption [7] 

is frequently referred to as weak or imperfect interface and for a soft thin adhesive connecting two 

adherents was justified making use of asymptotic expansion methods of the corresponding three-

dimensional elastic problem [8]. Nevertheless, correction terms may be required at the adhesive 

ends [9]. With reference to the FRP plates glued on rigid substrate, a closed-form analytical solution 

of shear-out test has been presented in [10], where an elastic-softening bilinear bond law describes 

the adhesive interface and fracture behaviour in Mode II is assumed throughout the interface. In the 
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same framework, the effect of the substrate elasticity has been considered in [11, 12], using a series 

approximation method. Alternatively, stress analysis combined with linear elastic fracture 

mechanics can be chosen to evaluate critical delamination condition for RC beams strengthened 

with FRP strips [13].

Fracture behaviour involving the substrate has required Finite Element (FE) procedures based 

on continuum damage models, where failure in a zone below the adhesive/concrete interface might 

occurred [14, 15, 16]. Accurate results have been obtained in [17, 18] using a regularized extended 

FE approach to study delamination test in FRP strengthened concrete. Nonetheless, the FE approach 

undergoes important limitations when applied to film-substrate systems [19] because a refined mesh 

has to be used to describe thin layer of the film. Furthermore, in order to simulate the half-plane, FE 

meshes should be extended to a region significantly greater than the contact area, with detrimental 

effect on the time needed to carry out the numerical simulations.

Boundary Element (BE) techniques can be used to evaluate the mechanical behaviour of coated 

systems involving thin layers, as long as the nearly-singular integrals arising in the BE formulations 

are handled correctly [20]. Symmetric Galerkin boundary element techniques for solving cohesive 

interface problems are presented in [21, 22], where the non-linear behaviour has been localized at 

the interface only. Moreover, in [22] both the substrate and the reinforcement has been considered 

as linear elastic bodies and a bar model has shown computationally more efficient than that of a thin 

layer.

For bars and beams resting on two-dimensional substrate, a Finite Element-Boundary Integral 

Equation (FE-BIE) coupling method can be suited well to give very accurate solutions at low 

computational cost. To date, several problems have been analysed: thin film bonded to an isotropic 

elastic substrate and subjected to thermal variation or axial loads [23]; Euler-Bernoulli and 

Timoshenko beams in frictionless [24, 25] or adhesive contact [26, 27] with an elastic half-plane, 

including buckling problems [28, 29]. In particular, the FE-BIE coupling method makes use of a 

mixed variational formulation including the Green function of the substrate and assumes as 
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independent fields both the nodal displacements and the contact tractions. It is worth noting that 

only the structure in contact with the substrate boundary has to be discretized. In addition, the 

mechanical response of the half-plane is represented through a weakly singular integral equation, 

which solution is given analytically, avoiding singular and hyper-singular integrals typically 

involved in the classical BE formulation. For the mixed problem at hand, useful mathematical 

references are in [30, 31], where well-posedness of the variational problem and of the 

corresponding Galerkin solution is set in a proper abstract functional framework.

In this paper, the FE-BIE coupling method is used introducing a slip between a flexible bar and 

an elastic orthotropic half-plane. First, the slip is assumed linearly proportional to the interface 

reactions. Point force and uniform thermal variation applied at a bar are investigated. To the 

authors’ knowledge, the present proposal represents a new contribution.

In the second part of this paper, incremental nonlinear analysis of the proposed model is 

adopted to investigate the delamination of a FRP strengthened RC substrate. The analysis of the 

interfacial reaction turns out to be an important aspect about the prediction of detachment 

phenomenon. Extremely arduous is the representation of mechanical properties of an adhesive, 

which can be obtained by shear-out tests adopting different layouts, such as single slipping test with 

fixed back side or double pull-out shear schemes [32, 33]. Simple formulations are generally based 

on adopting a priori analytical expression for describing the interface bond-slip law, assuming a 

fracture process in pure Mode II, disregarding the effect of the interface normal tractions (peeling) 

and occurrence of out-of-plane displacement (uplift). The interface peeling stress and uplift, 

experimentally observed through advanced optical systems [34], are developed by eccentricity 

between applied force and interface. Although, these components affect the ultimate bearing 

capacity of the adhesive joint, in [35] a negligible influence on the distribution of interface slips 

throughout the contact has been demonstrated 
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In the proposed model, incremental analysis with displacements control has been used 

assuming a bilinear bond-slip law, comparing results with experimental tests and analytical 

formulations found in the literature.

2 VARIATIONAL FORMULATION

An elastic bar with length L and cross section A attached to an elastic half-plane is considered, as 

shown in Fig.  1. Reference is made to a Cartesian coordinate system (O, x, z) centred at the middle 

of the bar, with the vertical axis z directed toward the half-plane and the x-axis placed along the 

interface. Both the bar and the semi-infinite substrate are made of homogeneous and isotropic 

solids. Elastic constants Eb and b denote the Young's modulus and Poisson's coefficient of the bar, 

whereas Es and s characterise the substrate. Generalised plane stress or plane strain regimes are 

considered. For plane strain, the width b of the half-plane will be assumed unitary. The thickness of 

the coating is assumed thin, so making possible to neglect its bending stiffness. Being ignored the 

peeling stress, only shear tractions rx(x) occurs along the contact region. The system is subjected to 

a generically distributed horizontal load px(x) or thermal variation ΔT(x).

Unlike the perfect adhesion case proposed in [23], the relaxed adhesion is representative of the 

mechanical characteristics of the adhesive connecting the bar with the substrate. This assumption 

involves different values for the bar displacement ux,b and the half-plane displacement ux,s.

2.1 Total potential energy for the bar

The strain energy of a bar can be written as follows: 

(1),d])([)(
2
1 2

0,0bar  
L bx xTxuxAEU

where prime denotes differentiation with respect to x, Young modulus and the coefficient of thermal 

expansion of the bar are correspondently E0 = Eb, α0 = αb for a generalized plane stress or E0 = 
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Eb/(1 ), α0 = (1+b)αb for a plane strain state. It is worth noting that axial force in the bar is N(x) 2
b

= E0A(x)[u'x,b (x)α0ΔT]. The potential energy Πbar can be written as the strain energy Ubar minus the 

work related to the external loads:

(2).d)()]()([ ,barbar  
L bxxx xxuxrxpbU

2.2 Total potential energy for the substrate

The solution of the elastic problem for a homogeneous isotropic half-plane loaded by a point force 

tangential to its boundary is referred to as Cerruti solution [36]. In particular, the horizontal 

displacement ux,s(x) due to the interfacial tractions rx(x) acting along the boundary between the half-

plane and the bar can be found as follows

(3)
L xsx xdxrxxgxu ,ˆ)ˆ()ˆ,()(,

where the Green function  can be expressed as)ˆ,( xxg

 (4).
ˆ

ln2)ˆ,(
d

xx
E

xxg





In Eq. (4), E = Es or E = Es/(1 ) in the plane stress or plane strain, respectively, and d is an 2
s

arbitrary length associated with a rigid displacement. 

Making use of the theorem of work and energy for exterior domains [37], it can be shown that 

the total potential energy soil for the half-plane equals one half of the work of external loads [23, 

24]:

(5)
L sxx xxuxrb d)()(

2 ,soil

By introducing Eq. (3) into Eq. (5) one obtains

 (6) 
L L xx xxrxxgxxrb .ˆd)ˆ()ˆ,(d)(

2soil



7

2.3 Total potential energy for the adhesive

A jump of displacement occurs when a stiffener is glued to a support by means of an adhesive. In 

the following, the transmission traction rx is assumed proportional to the slip ux = ux,b  ux,s 

between the bar and the half-plane displacements

, (7)xxx ukr 

where parameter kx summarizes the mechanical characteristics of the interface [8]. Making use of 

Eq. (7), the total potential energy for the adhesive can be written as

(8) 
L

x

x
L xxL xx x

k
xrbxxuxrbxxuxrb d)(

2
d)()(d)()(

2

2

spring

2.4 Total potential energy for the bar-adhesive-substrate system

Maxing use of Eqs. (2), (6) and (8), the total potential energy of the whole system turns out to be

, (9)springsoilbar, ),(  xbx ru

which is a mixed variational formulation represented by bar displacement ux,b and interfacial 

tangential tractions rx along the contact region. Consequently, making use of Eq. (7), half-plane 

displacements ux,s = ux,b  rx/kx.

For a bar attached to an orthotropic substrate having a plane of elastic symmetry coincident 

with the vertical plane xz, in [27] was shown that the orthotropic substrate behaves like an isotropic 

half-plane assuming an equivalent Young modulus E = 2 c1/(c2 R11), where parameters c1, c2, R11 are 

reported in Appendix. Obviously, the stress field within the orthotropic substrate differs from that of 

the isotropic case.
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3 FINITE ELEMENT MODEL

Both the bar and the substrate boundary are subdivided into FEs sharing the same mesh. The 

generic ith FE has a length li = |xi1  xi,| where xi and xi1 are the initial and end coordinates. 

Assuming a dimensionless local coordinate  = x/li, nodal displacements uxi of the bar characterizes 

completely the axial displacement field in the generic ith FE by means of the vector N() containing 

the shape functions:

ux,b(ξ) = [N(ξ)]T ux,i , (10)

In the following, either linear Lagrange polynomials (N1 = 1 N2 = ) or quadratic Lagrange 

polynomials (N1 = 1 N2 = 4, N3 =  are adopted.

Piecewise constant functions are used to interpolate the tangential tractions

rx(ξ)= [(ξ)]T rx,i , (11)

where rx,i represents the vector of nodal interfacial tangential traction and () is assumed to be 

unitary along the generic FE.

Substituting Eqs. (10) and (11) in the variational principle (9) and assembling over all the 

elements, the potential energy takes the expression

 , (12)  xkxxxxxxxxxxxxxaxxx rGrrGrrHufuuKuru TTTTT

2
1

2
1

2
1, 

where Ka is the bar stiffness matrix and fx the external load vector, whose elements take the usual 

form

(13) 
1

0 0, ξd)ξ()ξ()(1
jib

i
ija NNAE

l
k

 (14)  
1

0 00, d)()()()( TAENblpNf iixiix

The components of matrices Hxx, Gxx and Gkx are given by the following expressions
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, (15) 
1

0, d)()( jiiijxx Nblh

, (16) 
   1 1 ˆd)ˆ()ˆ,(d)(,

i

i

j

j

x

x

x

x jiijxx xxxxgxxbg

. (17)
  1 d)(2

,
i

i

x

x xiiikx xkxbg

Imposing the potential energy (12) to be stationary, the solution of the problem can be written 

in the following matrix form

(18).
)(T


























 0

f
r
u

GGH
HK x

x

x

kxxxxx

xxa

The formal solution of the system of equations (18) provides the nodal displacements and tangential 

tractions

rx = (Gxx+Gkx)1 Hxx
T ux , (19)

(Ka + Ksoil) ux = fx , (20)

where Ksoil is the stiffness matrix for the substrate with weak interface, defined as:

Ksoil = Hxx (Gxx+Gkx)1 Hxx
T. (21)

3.1 Prismatic bar subjected to uniform load and thermal variation

A prismatic bar element subjected to uniform loads px and thermal variation T is considered. 

In the case of Lagrange linear functions, bar stiffness matrix Ka, vector of equivalent external load 

fx and matrix Hxx for the ith FE become 

, (22a) 












11
110

,
i

ia l
AEK

, (22b)T
00

T
, ]1,1[]1,1[2  TAElbp iixf

, (22c)T
, ]1,1[2iixx lbH
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whereas for Lagrange quadratic functions become 

, (23a)






















781
8168

187

3
0

i
ai l

AEK

 , (23b)T
00

T
, ]1,0,1[]1,4,1[6  TAElhp iixf

 . (23c)T
, ]1,4,1[6iixx lhH

Piecewise constant functions are used to interpolate rx and the shape functions for the substrate 

tractions are assumed to be ρ(ξ) = 1. Consequently, the components of matrix Gxx are given by

 (24a),ln
2
32 2

, 





 


 iiiixx ll

E
bg

 (24b)
 ,for  )()()(

)(
2
32

11

11,

jixxGxxGxxG

xxGll
E
bg

ijijij

ijjiijxx




 








where G(x) = x2/2 ln|x| and the contribution due to the arbitrary length d has been omitted since 

rigid-body displacements can be imposed in post-processing analysis. For instance, the horizontal 

displacement at one bar end or at the bar midspan can be set to zero. 

Finally, the interface adhesive represented by the independent springs is described by a 

diagonal matrix Gkx having the following components: 

, (25a, b)jig
k
blg ijkx

ix

i
iikx  for  0, ,

,
,

where kx,i is stiffness value of the generic ith FE.
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3.2 Solution and post-processing

The solution of the FE-BIE analysis, i.e., the system of equations (18), gives nodal displacement of 

the bar ux and substrate traction rx. Once the nodal values of the primary variables are known, the 

axial force N = E0A (  0T) and the displacement of the substrate ux,s = ux,b  rx/kx.bxu ,

In summary, the general flow of the analysis of a reinforcement bar resting on an elastic 

substrate requires that the following steps be taken:

- discretize the bar element and the underlying substrate into FEs;

- calculate element matrices Kai, Hxx,i and vectors fx,i for every element;

- assemble element matrices Kai and vectors fx,i into the global matrix Ka and vector fx;

- assemble element matrices Hxx,i into the global matrix Hxx;

- calculate global matrix Gxx and Gkx;

- solve the system of equation (18) for the primary variables ux and rx;

- compute secondary variables ux,s and N.

4 NUMERICAL EXAMPLES

Similarly to [4, 23], the elastic response of the bar-substrate system is characterised by the 

parameter 

(26).
0 AE

LbEL 

Low values of βL characterise short bars stiffer than the substrate. In this case, the bar performs like 

an almost inextensible stiffener. Higher values of L describe long bars bonded to stiff substrate. 

With regards to the weak interface, the following parameter is introduced:

. (27)
AE
LbkL x

0

2

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Low values of L characterise practically detached bars, whereas high values of L correspond to 

almost perfectly attached bars.

In the present section, several loading cases of a bar weakly attached to the underlying half-

plane are considered and discussed. In the first part, some common problems are studied assuming a 

linear elastic behaviour of the bond-slip law and comparisons with the perfect bonded case are 

made. In the second part, debonding of a FRP glued on a concrete substrate is analysed. Numerical 

results are compared with solutions and experimental tests found in the literature.

4.1 Linear analysis 

In the following, a number of 512 equal FEs having quadratic Langrange polynomials are used to 

model the elastic bar. A bar subjected to a horizontal concentrated force Px, or a uniform thermal 

variation is analysed. 

4.1.1 Bar loaded by a horizontal point force Px at one end

A flexible bar loaded by a horizontal point force Px at one end is investigated for the case L = 10, 

L = 5 and L = ∞ (perfect adhesion). Dimensionless values of displacements, axial forces and 

tangential tractions along the bar are reported in Fig. 2. With reference to the weak interface case, 

bar displacements ux,b increase and substrate displacements ux,s decrease along the whole contact 

region with respect to the perfect adhesion case (Fig. 2a). Axial force tends to become higher along 

the bar (Fig. 2b) and the tangential tractions are not singular at the bar ends as occurs with regard to 

those ones in the perfect adhesion case (Fig. 2c). Fig. 3 shows maximum tangential reaction rx(L/2) 

versus parameter γL. It is worth noting that the value of the maximum traction depends on L 

almost linearly irrespective of the parameter L. In particular, rx(L/2) = C  Px, where C = 1 for L ≥ 

10 and L ≥ 3 and C = 1.19 for L = 1 and L ≥ 4.
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4.1.2 Bar subjected to an uniform thermal variation 

In this section, an elastic bar subjected to a uniform thermal variation is investigated. This case is 

similar to that of a bar symmetrically loaded by two equal opposite force applied at the ends [5]. In 

particular, the axial displacement and the interfacial tangential traction of a bar subject to a uniform 

thermal load T coincide with those induced in the bar by two opposite axial forces of magnitude 

Px = E0A0T applied at the ends [5]. As for the discrete problem and assuming consecutive bar 

FEs, the vector of equivalent external loads, where the components of the generic ith FE is reported 

in Eq. (23b), reduces to fx = Px [1, 0, ..., 0, 1]T. The axial force of a bar which is subjected to two 

opposite forces Px is equal that of the same bar subjected to a thermal load T increased by the 

quantity E0A0T.

Nondimensional value of ux, N and rx versus x/L are reported in Fig. 4 for the case L = 10, L 

= 5 and L = ∞ (perfect adhesion). For the weak interface case, the bar displacements uxb increase 

while substrate displacements uxs decrease with respect to the perfect adhesion case (Fig. 4a). The 

magnitude of the axial force N diminishes (Fig. 4b) and tangential tractions rx result more 

distributed along the bar annihilating the tractions singularity close to the bar ends (Fig. 4c). 

4.2 Incremental nonlinear analysis of a shear-out test

In the scientific literature, several shear-out tests are available, especially for FRP strengthened RC 

structures [32, 38]. The shear-out tests could be used to determine not only the ultimate bearing 

capacity but even the local bond-slip behaviour of the interface [39, 40]. The bilinear elastic-

softening bond-slip relationship is the most commonly function adopted [41].

In this section, the debonding process in shear-out test due to an horizontal force Px applied at 

the right bar end is evaluated using an incremental analysis with displacement control. The 

debonding phenomenon occurs when the slip between the strip and substrate attains a critical value 

that causes separation. Fracture behaviour in pure Mode II is assumed throughout the interface that 

is characterised by a bilinear elastic-softening bond-slip relationship (Fig. 5). A linear ascending 
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branch, which is described by the stiffness parameter kx,E, reaches the elastic limit rx,0 at the elastic 

slip limit ux,e = rx,0/kx,E. Afterwards a linear softening branch with descending slope kx,S is 

activated. At the end, beyond the ultimate slip ux,u = rx,0/kx,E + rx,0/kx,S, no bond tractions can be 

transferred trough the interface. 

The mechanical and geometrical proprieties proposed in [10, 41] are introduced basing on 

experimental results reported in [42]. In particular, the elastic modulus of the Carbon FRP (CFRP) 

plate is E0 = 100 GPa, while b = 25.4 mm and A = 25 mm2. For the concrete substrate E = 30 GPa. 

Two specimens in plane stress state characterised by bond lengths 50 and 200 mm are analysed, 

having parameter L equal to 15 and 61, respectively. A number of 64 equal FEs having linear 

Langrange polynomials are used to model the shorter bar (50 mm), while 128 equal FEs are used 

for the second one (200 mm), which can describe the behaviour of a long bar. 

Because of the randomness of the mechanical properties of the concrete substrate, the 

calibration procedure outlined in [40] assumes that each specimen has different interface properties. 

For the short anchorage, traction limit rx,0 = 6.9 MPa with stiffness kx,E = 135 N/mm3 (L = 1.9), kx,S 

= 25 N/mm3 and ultimate slip ux,u = 0.33 mm are assumed, whereas for the long anchorage, rx,0 = 

5.0 MPa with kx,E = 5000 N/mm3 (L = 38), kx,S = 100 N/mm3 and ux,u = 0.05 mm. 

Fig. 6 shows the applied force Px versus the maximum slip ux, FRP axial strain x,FRP and 

interface tangential traction rx throughout the bonding length for the short and long anchorages. 

Cartesian coordinate system (O, x, z) is centred at the left bar end. The force-slip response of the 

short anchorage is shown in Fig. 6a, where dashed line with symbol × refers to the closed-form 

analysis proposed in [10], assuming a rigid substrate. As a result, the substrate elasticity taken into 

account by the proposed FE-BIE model reduces the maximum slip from those calculated through a 

model with rigid support. The corresponding values of the FRP axial strains x,FRP throughout the 

bond length are shown in Fig. 6b, for the elastic state (solid line) and the softening state (dashed 

line). An exponential shape of the axial strain x,FRP can be observed until the maximum load Px,D 

(i.e. point D in Fig. 6a) is attained. Subsequently, the trend of x,FRP becomes linear and decreases 
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until a complete detachment is achieved. Poor agreement between numerical predictions and 

experimental x,FRP has been found. Indeed, the assumed bond law parameters work well with a 

rigid substrate [10], where the elastic concrete deformation close to the interface has been taken into 

account implicitly. Numerical models adopting two-dimensional substrate require adjustment of the 

interface laws calibrated by using one-dimensional model [22]. The main aim of the present 

example is to show how the proposed FE-BIE method is simple and effective. Nonetheless, a 

subsequent research may be devoted to find the interface law suitable for the proposed FE-BIE 

method. The evolution of the interface shear tractions rx is clearly reported in Fig. 6c. In early 

stages, an exponential shape of traction is shown along the contact region. A transition stage starts 

when traction rx(L) = rx,0, i.e., line B in Fig. 6c, and it continues until every reactions overtake the 

traction limit rx,0, i.e., line D in Fig. 6c. Finally, a progressive decrease in reactions occurs up to an 

achievemnet of the complete debonding. 

The force-slip response of long anchorage is shown in Fig. 6d, where a constant plateau has been 

emerged. Results similar to those reported in [10] have been obtained, with the exception of largest 

plateau displacements. This aspect may depend on different choices of stiffness parameters of the 

interface law, which are not clearly stated in [10]. The FRP axial strains x,FRP and the substrate 

reaction are reported in Figs. 6e and 6f, respectively, for the elastic state (solid line) and the 

softening state (dashed line). Points A in Fig. 6d characterise the end of the elastic states, whereas 

points B, C, D symbolise the elastic-softening behaviours. Subsequently, the debonding states begin 

at points E and continue until points G. In the detachment zone, the FRP axial strains x,FRP remains 

constant and does not increase. The tangential tractions rx are reported in Fig. 6f, where a 

progressive decrease in tractions occurs up to attainment of the complete debonding. 

5 CONCLUSIONS

A simple and effective FE-BIE method has been proposed to investigate problems of axially loaded 

bar weakly attached to a homogeneous elastic substrate. Bar FEs has been used to simulate thin 
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structures, whereas the behaviour of the semi-infinite substrate has been  represented using a BIE. 

Making use of a mixed variational formulation including the Green function of the half-plane, the 

axial displacement of the bar is interpolated using first or second order Lagrange polynomials, 

whereas the interfacial shear traction is approximated by piecewise constant functions. A slip 

between the flexible bar and the elastic substrate is introduced using a set of independent springs. 

Several examples have been presented to show the effectiveness of the proposed formulation. 

Firstly, linear elastic analyses has been performed. In particular, tangential traction and axial force 

of a bar subjected to horizontal point force or uniform thermal variation has been investigated. 

Secondly, incremental nonlinear analysis with displacement control has been used to study the 

delamination of a reinforcement bar glued to a substrate. The mechanical behaviour of the adhesive 

is described through  a bond-slip law which is assumed a priori. Both short and long anchorages 

has been investigated showing the difference in terms of tangential tractions and axial strains 

throughout the bonded length or in term of the global response outlined by the plot of the applied 

force versus the maximum slip. The influence of the substrate elasticity is made by means of 

comparison with model adopting a rigid substrate. Poor agreement with experimental FRP axial 

strains has been found due to the use of parameters calibrated for one-dimensional model. Indeed, 

two-dimensional substrate requires adjustment of the elastic stiffness to be used in the bond-slip 

law. This aspect is well known as the bond-slip law is particularly sensitive to the adopted 

numerical model. A subsequent research may be devoted to find the bond-slip model to be adopted 

in the proposed FE-BIE method.
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APPENDIX

In plane stress state, the substrate coefficients c1, c2, R11 are given by
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whereas in plane strain state the constants c1, c2, R11 become
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where Ei denotes the Young's modulus along the directions i = x, z, Gij and ij are the shear modulus 

and Poisson's coefficient, respectively, associated with the pair directions i, j = x, y, z. In particular, 

due to this special kind of material symmetry, ij/Ei = ji/Ej. For an isotropic substrate, the 

coefficients reduce to c1 = 1, c2 = 2.
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Figure Captions

Fig. 1. Bar weakly attached on semi-infinite substrate (a), and free-body diagram (b).

Fig. 2. Bar loaded by a point force Px at one end. Nondimensional values of ux (a), N (b) and rx 

(c) versus x/L for L = 10, L = 5 (solid line) and L = ∞ (dashed line - perfect adhesion).

Fig. 3. Bar loaded by a point force Px at one end. Nondimensional values of rx at the end (x/L = 

0.5) versus L.

Fig. 4. Bar subjected to a uniform thermal variation T. Nondimensional values of ux (a), N (b) 

and rx (c) versus x/L for L = 10, L = 5 (solid line) and L = ∞ (dashed line - perfect adhesion).

Fig. 5. Bilinear bond-slip law.

Fig. 6. Incremental nonlinear analysis of a shear-out test of short (a, b, c) (L = 50 mm) and long 

(d, e, f) anchorage. Applied force Px vs. the maximum slip ux (a, d), FRP axial strain x,FRP (b, e)  

and interface shear stress rx (c, f) along the bonding length. Results reported by Caggiano et al. 

(dashed line with symbol (×) in (a)) and experiment tests reported by Chajes et al. (dots in (b)).



Fig. 1. Bar weakly attached on semi-infinite substrate (a), and free-body diagram (b).
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Fig. 2. Bar loaded by a point force Px at one end. Nondimensional values of ux (a), N (b) and rx (c) 
versus x/L for L = 10, L = 5 (solid line) and L = ∞ (dashed line - perfect adhesion).
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Fig. 3. Bar loaded by a point force Px at one end. Nondimensional values of rx at the end (x/L = 0.5) 
versus L.
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Fig. 6. Incremental nonlinear analysis of a shear-out test of short (a, b, c) (L = 50 mm) and long (d, 
e, f) anchorage. Applied force Px vs. the maximum slip ux (a, d), FRP axial strain x,FRP (b, e)  and 
interface shear stress rx (c, f) along the bonding length. Results reported by Caggiano et al. (dashed 

line with symbol (×) in (a)) and experiment tests reported by Chajes et al. (dots in (b)).


