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ABSTRACT 

Making use of a mixed variational formulation including the Green function of the substrate, a finite 

element model is derived for the static analysis of Timoshenko beams in bilateral frictionless 

contact with an elastic half-space. Numerical results are obtained by adopting locking-free Hermite 

polynomials for the Timoshenko beam and piecewise constant reaction over the soil. Foundation 

beams loaded by forces and couples at the midspan illustrate accuracy and convergence properties 

of the proposed formulation. 
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1. INTRODUCTION 

In this paper, static analyses of beams on a three-dimensional (3D), elastic and isotropic half-

space are considered. Strip footing adopted in building structures is a typical example of beam 

resting on a half-space. For this reason, static analyses of beams resting on half-space or soil were 

performed by many researchers up to present days and a wide range of analytical and numerical 

models can be found in literature [1-9], characterized by different assumptions for foundation 

elements and for half-space behavior. 

Focusing on 3D half-space behavior, the early studies of Boussinesq and Cerruti [10, 11] defined 

the Green functions of an elastic and isotropic 3D half-space. Starting from such Green functions, 

the expressions for stresses and displacements generated by a vertical force applied on the half-

space surface can be determined. Analyses related to the determination of displacements generated 

by various force distributions on the surface of the half-space were carried out by many researchers 

[1, 4, 6, 8, 9]. For instance, Love [12] determined surface displacements generated by a uniform 

pressure over a rectangular area, whereas the indentation of a rigid punch on a half-space represents 

another problem which involves Boussinesq solution [10, 11]. 

The static analysis of beams on 3D half-space was considered for the first time by Biot [13], who 

studied an Euler-Bernoulli (E-B) beam having infinite length resting on an elastic half-space 

adopting Fourier integrals. Beam deflection was considered only along its longitudinal axis and a 

relation between half-space elastic parameters and the Winkler subgrade constant was suggested. 

The same problem was studied by Rvachev [14], that also extended the solution to a strip in flexure 

along both contact surface directions [15]. Lekkerekker [16] proposed an asymptotic solution of the 

integral equation arising from the general differential equation of the beam on half-space, whereas 

the corresponding rigorous solution was obtained by Koiter [17, 18]. Gorbuonov-Possadov [19] 

studied E-B beams having infinite and finite length on elastic half-space adopting the power series 

method. Barden [20] studied E-B beams of finite length on elastic half-space adopting power series 
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and compared the results with experimental data. Then, Vesic [21] solved the same problem 

introduced by Biot and considered the case of an infinite beam loaded by a concentrated load and a 

couple. More recent developments dealing with infinite beams are represented by the contributions 

of Selvadurai and co-workers, that studied an infinite beam embedded in an elastic half-space [22] 

and resting on a poroelastic half-space [23]. 

In order to numerically solve interaction problems of beams and plates resting on elastic 

foundation, both Finite Element (FE) and Boundary Element (BE) methods were largely adopted by 

many authors [7]. Finite element method (FEM) allows to describe complex soil media and surface 

profiles [4, 24]. However, the substrate mesh has to be extended far away from the loaded area to 

ensure vanishing displacements at the boundaries, leading to a huge number of FEs. To improve the 

computational efficiency, infinite elements were used, see [7, 25] and references cited therein. It is 

worth observing that using classical beam FEs and brick FEs for the substrate does not allow for the 

angular continuity at the contact surface. In principle, this problem may be solved by introducing 

special interface elements between brick and plate bending elements [26]. 

In the boundary element method (BEM), only the boundary of the substrate has to be meshed. In 

this field, an important contribution was given, among the others, by Brebbia, Katsikadelis, 

Banerjee and their co-workers, that introduced BEM both for generic elastic domains [27-30] and 

for plates on Winkler-type support [31, 32]. BEM was applied to a wide variety of engineering 

problems up to present days [33], including soil-structure-interaction problems, see [34, 35] and 

references cited therein. However, soil tractions are usually considered as nodal reactions in the FE 

model of the raft and the rotation continuity between beam and substrate is neglected. In the general 

formulation of BEM dealing with elastic half-space, Mindlin’s fundamental solution was usually 

adopted to obtain the displacement field due to a point force applied in the interior of a 

homogeneous three-dimensional elastic solid [36]. The particular problem discussed in the present 

paper refers to loads applied to the ground surface of a half-space. Consequently, Boussinesq 

solution [10, 11] is the proper fundamental solution to be used. In this framework, the first 
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satisfactory solution for a square raft of arbitrary flexibility resting on an elastic foundation was 

obtained by Cheung and Zienkiewicz [37]. Cheung and Nag [38] used a similar technique to 

account for horizontal contact pressures beneath the raft. In these methods, the raft was modeled by 

rectangular plate elements where the uniform soil reactions were lumped at the FE nodes and the 

flexibility matrix of the half-space was obtained by using the Boussinesq fundamental solution. 

Consequently, this approach required the explicit inversion of the substrate flexibility matrix. 

Moreover, a pinned-clamped rigid link connecting the plate element to the substrate was implicitly 

assumed. Thus, no angular continuity between plate and substrate could be imposed. Variational 

formulations including the Green function of the substrate were first presented in [39-41] and in the 

contributions of Selvadurai dedicated to plates on elastic half-space [42, 43], also accounting for 

plate shear deformability [44-46]. In [47], the analysis of frames with rigid footings resting on an 

isotropic elastic half-space is reported. In [48, 49], the static analysis of Timoshenko beam on 

elastic multilayered soils by combination of finite element and analytical layer element was 

analysed. Solution to multilayered soils under axisymmetric loading was used, so introducing some 

errors in substrate traction modeling. Moreover, adequate soil traction distribution in beam 

transverse direction was neglected. 

With reference to elastic half-plane, the static analysis of Timoshenko beams and frames in 

frictionless [50, 51] or fully adhesive [52, 53] contact with an half-plane was analysed by means of 

a Finite Element-Boundary Integral Equation (FE-BIE) method. An analogous study concerning 

bars and thin coatings can be found in [54], and in [55] accounting for debonding. Moreover, the 

FE-BIE coupling method was also used to study the buckling of Euler-Bernoulli [56] and 

Timoshenko [57] beams in bilateral frictionless contact with an elastic half-plane. The numerical 

performance of the abovementioned FE-BIE coupling method shown an excellent convergence rate 

in comparison with those of other standard numerical methods. 

In this paper, the coupled FE-BIE method introduced in [50] is extended to study the in-plane 

bending of Timoshenko beams in bilateral frictionless contact with an elastic, isotropic half-space. 
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The assumption of beam deflections varying only along x direction requires uniform displacements 

along y direction. In particular, the mixed variational formulation assumes as independent fields 

both the surface tractions and the beam displacements and rotations, whereas existing variational 

formulations for beams and plates on half-space usually assume displacements as unknowns of the 

problem. The numerical model makes use of locking-free “modified” Hermitian shape functions 

[58-61] for the beam and piecewise constant function for the substrate tractions. 

Differently from the majority of the methods available in the literature, see for example [4, 37, 

38], the adopted coupled FE-BIE method enforces the angular continuity between the foundation 

beam and the half-space surface at the node locations. Moreover, the proposed model involves 

symmetric substrate matrices, whereas the classical FEM-BEM approach based on collocation BEM 

requires an additional computational effort to remedy the lack of symmetry of the BEM coefficient 

matrix. If the ground surface underneath the foundation beam is meshed with rectangular elements, 

the weakly singular BIE is evaluated analytically, so avoiding singular behavior in the numerical 

evaluation of the integrals, that are the major concern of the classical BEM [62]. Furthermore, soil 

traction distribution in beam transverse direction can be considered adopting an adequate FE mesh 

refinement of contact surface. Finally, the resolving matrix has dimensions proportional to the 

number of the foundation beam FEs. Vice versa, in the standard FEM, a refined mesh requires a 

stiffness matrix with dimensions that are several times the square of the number of FEs used for the 

foundation beam. The advantages outlined result in accurate solutions at low computational cost. To 

the authors’ knowledge, the present proposal to use the coupled FE-BIE model for the static 

analysis of shear deformable beams in bilateral frictionless contact with an elastic 3D half-space 

represents a new contribution. 

A variety of numerical examples is presented to show the effectiveness of the proposed model. 

An initial convergence test is performed in order to evaluate the influence of the accuracy of contact 

surface discretization on the behavior of a foundation beam subject to a vertical point force at 

midspan, with particular attention to the discretization along the beam width. This case study is 
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adopted for a further convergence test that compares the results of the proposed model with respect 

to a classical 3D FEM. Furthermore, several parametric examples are performed, accounting for 

varying half-space stiffness and beam length to cross-section width ratio, and evaluating the 

influence of shear deformations typical of Timoshenko beams. Results are compared with existing 

analytical and numerical solutions, showing the effectiveness of the model in representing the 

behavior of a foundation beam resting on a 3D half-space with small computational effort. 

 

2. VARIATIONAL FORMULATION 

A foundation beam, with length L, resting in bilateral frictionless contact with a semi-infinite 

substrate, is referred to a Cartesian coordinate system (0; x, y, z), where the x-y plane defines the 

boundary of the half-space and x coincides with the centroidal axis of the beam, whereas z is chosen 

in the downward transverse direction. Beam cross-section shape is assumed to be symmetric about 

the axis z, with height h and width b representing the overall cross-section dimensions in z and y 

direction. Moreover, a flat cross-section base is considered, in order to define a contact area 

between the beam and the half-space as a strip of constant width b and length L. A distributed 

vertical external load p(x) and a distributed external couple m(x) are applied in the plane of 

symmetry along the beam axis x (Fig. 1), allowing the beam to experience flexure only in x-z plane. 

On the interface between beam and substrate, frictionless and bilateral conditions are assumed, so 

that only a vertical half-space traction r(x, y) is acting upon the beam. The beam is made of 

homogeneous linearly elastic material, with longitudinal and transverse elastic moduli Eb, Gb, and 

Poisson coefficient νb. The isotropic material of the substrate is characterized by the elastic modulus 

Es and by the Poisson ratio νs. Focusing on the half-space behavior, the vertical displacement w of a 

point on its boundary due to a generic surface traction ˆ ˆ( , )r x y  is given by the Boussinesq solution 

[10, 11]: 
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Assuming positive cross-section rotation ϕ in counterclockwise direction and restricting the 

analysis in the x-z plane, axial and transverse displacements of a Timoshenko beam with symmetric 

cross-section can be written as: 

u(x, y, z) = ϕ(x) z,   v(x, y, z) = 0,   w(x, y, z) = w(x). (6a, b, c) 

The corresponding nonzero axial and shear strains become: 

ε = ϕ' y,     γ = w' + ϕ, (7) 

where prime represents differentiation with respect to x. Stress-strain relations yield:  
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σ = Eb ε,     τ = Gb γ. (8) 

Using strain components (7) and constitutive laws (8), the elastic strain energy for the in-plane 

bending of a beam of length L can be written in the form: 

( )∫ ϕ+′+ϕ′=
L

bbbbbb xwAGkJEU d][
2

1 22 , (9) 

where Ab and Jb are the cross-sectional area and the second moment of area with respect to the y 

axis, respectively, and kb is the shear factor [64]. The potential energy Πb of the beam can be 

written as 

∫ ∫ 
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Hence, making use of Eqs. (5) and (10), the total potential energy of the beam-substrate system 

turns out to be 

Π(w, ϕ, r) = Πb(w, ϕ, r) + Πs(r). (11) 

Variational formulation analogous to Eq. (11) was obtained in [39, 41] for beams resting on a 

Pasternak soil and in [50, 51] for beams and frames resting in bilateral frictionless contact with an 

elastic half-plane. Moreover, mixed variational principle similar to Eq. (11) was used in [54] to 

study axially loaded thin structures perfectly bonded to an elastic substrate and in [56, 57] to 

determine the buckling loads of beams in frictionless contact with an elastic half-plane. Beams in 

perfect adhesion with an elastic half-plane are considered in [52, 53]. Differently with respect the 

proposed approach, traditional variational formulations are defined in terms of foundation 

displacements only [42-46]. 

It is worth noting that the beam model hypothesis implies vertical displacement w varying only 

along x direction, see Eq. (6c), and uniform vertical displacement along beam width. Focusing on 

the behavior of the model along the beam width, two limit cases may be defined: uniform vertical 
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displacement and uniform contact traction. A uniform contact traction distribution in y direction 

produces a transverse deflection and the beam cannot be considered with a rigid cross-section (Fig. 

2a). Vice versa, a uniform displacement along beam width is obtained if the beam cross-section is 

infinitely rigid with respect to the half-space in the y direction, then the distribution of contact 

stresses in the transverse direction is expected to be equal to the one generated by a rigid indenter 

with width b in a plane strain problem [10, 11] (Fig. 2b). The effect of changing the distribution of 

the soil pressure in the y direction was investigated in [13], where it is shown that the ratio of 

average loads and deflections varies only about 10% when the distribution of soil pressure changes 

from a uniform one to one giving constant vertical displacement across the width b. It is worth 

noting that different transverse soil distribution yields alternative Green function [39]. The 

assumption of beam deflections varying only along x direction implies an infinite beam section 

stiffness along y direction, leading to uniform displacements along y direction; in the next section, 

different subdivision methods of the beam-substrate contact interface are investigated in order to 

evaluate their influence on the resulting beam displacement and contact stress distribution. 

 

3. DISCRETE MODEL 

Dividing the beam into nx FEs having length lxi (see Fig. 3 for the case of equal beam FEs), the 

displacement field for the ith element can be approximated in the usual form: 

di(ξ) = N(ξ) qi (12) 

where ξ = x/lxi, d(ξ) = [w(ξ), ϕ(ξ)]
T
 collects the two displacement functions, qi = [w1, ϕ1, w2, ϕ2]

T
 

denotes the vector of nodal displacements and the matrix N(ξ) assembles the following “modified” 

shape functions N1j and N2j (j = 1, …, 4) [58, 59, 60, 61]: 

[ ] ( ) ( )[ ] ( )iixiii lNN φ+ξ−φ+ξ−ξ−=φ+ξ−φ+ξ+ξ−= 12)1(1,1)1(231
2

12
32

11 , (13a, b)  
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[ ] ( ) [ ] ( )iixiii lNN φ+ξ−φ−ξ+ξ−ξ−=φ+ξφ+ξ−ξ= 12)1(,123 2
14

32
13 , (13c, d) 

( ) ( )[ ] [ ] ( )iiixi NlN φ+ξ−φ+ξ+ξ−=φ+ξ−ξ= 1)1(341,116 2
2221 , (13e, f) 

( ) ( )[ ] ( ) ( )iiixi NlN φ+ξφ+ξ+ξ−=φ+ξ−ξ−= 132,116 2
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These “modified” shape functions depend on a coefficient φi that takes the expression: 

2

12

xibbb

bb
i

lAGk

JE=φ  (14) 

that accounts for the shear deformation according to the Timoshenko beam theory. As shown in 

[59], the finite element interpolation functions (13) give exact nodal displacements as they derive 

from the exact solution of the homogeneous governing equations for a Timoshenko beam. 

Moreover, Eqs. (13) reduce to the classical Hermitian polynomials (and to their derivatives) when 

shear deformations are negligible, so resulting in locking-free FEs [59, 61]. 

The contact surface underneath the beam may be divided in x and y directions by means of 

different methods, then nx ·  ny surface elements having length lxi and width lyi are defined, leading to 

a total number of ( 2) 2x yn n + +  unknowns of the entire soil-structure system, represented by beam 

degrees of freedom and half-space surface tractions. Surface subdivisions in x direction are assumed 

to be coincident with those of the foundation beam, whereas subdivisions in y direction, i.e. across 

the beam width, are needed for modelling the non-uniform pressures generated by uniform 

displacements. The simplest surface subdivision method is the regular one with lxi = L/nx and lyi = 

b/ny. However, it is well known that a rigid punch as well as the problem at hand exhibits a singular 

behavior near the edges and corners of the rectangular surface [4, 10, 11]. Therefore, a regular mesh 

should be very refined to describe correctly displacements and reactions at contact surface edges 

and corners. In order to obtain accurate results with a small number of surface subdivisions, it is 

common to use power graded meshes [65, 66], which are characterized by a grading exponent β ≥ 
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1. In particular, an interval [−0.5, 0.5] subdivided in n points is described by the following 

coordinates: 









≤<−
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2/for
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For β = 1 the subdivision turns out to be uniform, but as β increases, the elements near the ends of 

the interval tend to be smaller and smaller, whereas the elements close to the origin tend to be 

larger. 

In the following, as previously stated, the length of a generic surface element along the beam 

length (x direction) is assumed equal to the beam FE length lxi, and vice versa. However, in order to 

evaluate correctly the soil pressure singularities near the beam extremities, a power-graded mesh 

with a number of subdivisions nx,end is also introduced for the sub-elements at the beam ends, 

leading to , ,2 2x tot x x endn n n= − +  subdivisions along the x direction. Considering then the possible 

subdivisions along the beam width (y direction), one subdivision requires uniform half-space 

reactions along the y direction, but such a traction distribution corresponds to a foundation beam 

with a deformable cross-section with respect to the half-space (Fig. 2a), contradicting the assumed 

hypothesis of rigid cross-section. Vice versa, more subdivisions along beam width allow to describe 

the surface traction singularities close to the beam section ends (Fig. 2b). Nonetheless, the behavior 

of a beam with a rigid cross-section with respect to the half-space can be achieved only with an 

infinite number of subdivisions. 

Fig. 4 shows some examples of contact surface subdivisions. Starting from the simple case of a 

beam with nx = 8, nx,end = 1 and ny = 1 corresponding to an uniform mesh, the second and third row 

show discretizations characterized by ny = 3 and 5, respectively. Such discretizations are obtained 

by using the power graded function along the y axis (Eq. 15) with β = 3 and n = 4 and 6, 

respectively, and merging the subdivisions adjacent to the midpoint. Second and third column show 
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discretizations characterized by nx,end = 2 and 3, respectively. In the numerical examples presented 

in the following section, analyses are carried out by increasing the number of subdivisions nx along 

longitudinal direction and considering the nine combinations presented in Fig. 4. 

The kth soil surface FE underlying the beam is characterized by a length lxj and width lyj, with 

( 1) xk j n i= − +  and i, j varying from 1 to nx,tot and ny, respectively. Accordingly, the soil reaction 

can be approximated as  

rk(ξ, η)= [ρ(ξ, η)]
T
 rk, (16) 

where η = y/lyj, rk denotes the vectors of nodal soil reaction and ρ(ξ, η) assembles the substrate 

shape functions. In the following, constant shape functions ρ(ξ, η) are assumed; thus, only one soil 

traction is defined over a contact surface element and a constant piecewise traction distribution is 

assumed underneath the beam. 

Substituting Eqs. (12, 16) in variational principal (11) and assembling over all the elements, the 

potential energy takes the expression 
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, −+−=Π b , (17) 

where Kb is the stiffness matrix of the beam and F the external load vector, whose components for 

the generic element are as usual 
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whereas the components of matrices H and G are 
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where (xi, xi+1; yi, yi+1) are the (global) coordinates of the ith surface FE and ( ix̂ , 1ˆ +ix ; iŷ , 1ˆ +iy ) are 

the coordinates of the jth surface FE. The matrices appearing in Eq. (17) are reported in Appendix. 

It is worth noting that the matrix G, which may be defined as the flexibility matrix of the half-space, 

is fully populated since it takes into account the nonlocal relation between beam deflection and 

contact traction. Moreover, the integral in Eq. (21) is weakly singular, i.e., it always exists and is 

finite. 

Requiring the potential energy to be stationary, the following system of equations is obtained 









=
















− 0

F

r

q

GH

HK
T

b
, (22) 

whose formal solution gives 

r = G
−1

 H
T
 q, (23) 

(Kb + Ksoil) q = F, (24) 

where Ksoil is the stiffness matrix of the soil or 3D half-space 

Ksoil = H G
−1

 H
T
 (25) 

and Eq. (24) represents the discrete system of equations governing the response of the soil-structure 

system. 

It is worth noting that the second row of Eq. (22) includes beam displacements and rotations due to 

half-space tractions and matrix H plays a key role in enforcing the displacement compatibility 

between beam and half-space surface. Furthermore, the validity of Eq. (23) does not depend on the 
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presence of a foundation beam, but it may be used for determining the surface tractions generated 

by a generic displacement field q assigned to the half-plane boundary. 

4. NUMERICAL EXAMPLES 

According to references [4, 13, 21], the parameter characterizing the soil-foundation system is 

3
2

3

)1( bs

s

D

LbE
L

ν−
=α . (26) 

Low values of αL characterize short beams stiffer than the soil, when the beams perform like a rigid 

punch. Large values of αL describe more flexible beams, thus are appropriate for long beams on 

stiff soil. In the following, symbol E is used instead of Es/(1− 2
sν ). Moreover, the parameter χ = L/b 

have to be defined in order to complete the description of the beam geometry; for instance, long 

beams are characterized by large values of χ. Parameters αL and χ are typically adopted for studying 

beams resting on half-space [4, 20]. Making use of Eq. (14), shear deformation is characterized by 

the parameter 

2

12

ALkG

D

b

b=φ . (27) 

For isotropic beam with νb = 0.2 and slenderness L/h equal to 3, 5 or 10, the coefficient φ is 

approximately equal to 0.3, 0.1, 0.03, respectively. 

In this section, static analyses of beams with free ends and finite length resting in bilateral 

frictionless contact with an elastic half-space are dealt with. Three simple load cases are considered: 

vertical point force at midspan, uniform vertical load distribution along the beam length and couple 

at midspan.  

It is worth noting that the half-space behavior is linear and bilateral. Consequently, tractions 

along contact surface may result both tensile (negative values) and compressive (positive values). 
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However, considering more complex load conditions and, in particular, adding the effects of the 

self-weight of the foundation, surface tractions turn out usually to be compressive. 

For the sake of simplicity, beams with rectangular cross-sections are assumed having νb = 0.2 

and coefficient φ = 0.3. The Euler-Bernoulli beam case (φ = 0) is also considered. 

 

4.1. Beam loaded by a vertical point force at midspan 

4.1.1 – Influence of contact surface discretization 

In this section, a foundation beam resting on an elastic half-space loaded by a vertical point force 

Pz at midspan is considered. The first example refers to an Euler-Bernoulli beam having χ = 10, 

subdivided with nx = 2
8
 FEs, nx,end = 1 and by considering three cases of subdivision along y 

direction: ny = 1, ny = 3 and 5 adopting a power-graded mesh with β = 3. Figs. 5a, b show 

dimensionless beam displacement w/[Pz/(Eb)] for αL = 5 and 25, respectively. Displacements 

obtained with ny = 3 and ny = 5 appear almost coincident, whereas with ny = 1 beam displacement is 

slightly larger than the other results. Similar considerations can be done about dimensionless 

surface tractions r(x, 0)/[Pz/(Lb)] along the beam length (Fig. 5c, d). Tractions obtained with one 

subdivision along y direction are larger with respect to the other cases, whereas tractions obtained 

with ny = 3 and ny = 5 are quite close to each other. Moreover, Figs. 6a, b show surface tractions at 

midspan along the beam width. It is worth noting that ny = 1 corresponds to the case of a flexible 

beam cross-section that cannot be correctly represented by a beam model; the corresponding 

uniform traction along beam width at midspan is smaller than minimum tractions obtained with ny = 

3 and 5. On the other hand, 3 or 5 graded subdivisions along y direction are able to model traction 

singularities near edges, but only a large number of subdivisions allows to obtain the actual traction 

distribution along beam width typical of a rigid indenter in plane strain conditions. 

Convergence tests are performed in order to evaluate the influence of the number of subdivisions 

ny along beam width on the overall system behavior for increasing regular longitudinal subdivisions 

nx. For this purpose, a numerical reference solution in terms of displacements w
REF

 and tractions 
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r
REF

, obtained with a refined beam and contact surface discretization, is assumed. In particular, for 

the reference solution nx = 2
10

, nx,end = 3 and a power-graded subdivision along y direction with ny = 

7 and β = 3 are adopted. Reference results are collected in Tab. 1. Fig. 7 shows relative differences 

δw(0) = [w(0) − w
REF

(0)]/w
REF

(0) and δr(0) = [r(0,0) − r
REF

(0,0)]/r
REF

(0,0) versus nx for αL = 5, 25 and 

ny = 1, 3, 5. The adopted subdivisions along y direction influence significantly the results, with 

relative differences tending to constant values instead of tending to zero. If only one subdivision is 

adopted along beam width, differences are larger than those obtained with 3 and 5 subdivisions. In 

particular, differences for beam displacement at midpoint are close to 3% and 4% for αL = 5 and 25, 

respectively, whereas differences for the traction at midpoint are close to 45% and 30%, showing 

that one subdivision along beam width does not allow to obtain accurate results. Adopting three 

power graded subdivisions along beam width, relative differences are smaller with respect to the 

previous case, in particular they are close to 0.4% and 0.6% for beam displacement at midpoint for 

αL = 5 and 25, respectively, whereas differences for traction at midpoint are close to 10% and 7% 

for αL = 5 and 25, respectively. Finally, five power graded subdivisions along beam width give 

differences close to 0.1% for beam displacement at midpoint and both αL cases, whereas traction at 

midpoint is characterized by differences close to 2% for both αL cases. These convergence tests 

show that half-space reactions strictly depend on contact surface discretization and differences with 

respect to reference solutions are larger than those obtained for beam displacements, which are less 

influenced by contact surface discretization. Moreover, differences generally decrease for 

increasing half-space stiffness. Considering discretization along beam length and focusing on the 

results obtained with power graded meshes, it must be pointed out that the differences with respect 

to reference results start to converge to the values previously depicted when nx is close to 2
6
, except 

for the displacements evaluated with αL = 5. 

Considering the results of this convergence tests, the following examples will consider contact 

surface discretization with ny = 3 and will avoid further discretization at beam ends by assuming 

nx,end = 1. 
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4.1.2 – Comparison with a 3D FEM 

In this section, another convergence test is performed by comparing the proposed model with 

respect to a classical 3D FEM of a beam on elastic half-space loaded by a vertical force at midspan. 

For this purpose, the half-space is modelled by a cubic mesh having an overall size equal to 4L, 

composed of non-uniform cubic and rectangular prismatic brick elements, whereas the foundation 

beam is modelled as an Euler-Bernoulli beam subdivided into equal FEs. In the 3D mesh, horizontal 

displacements normal to the vertical edges are fixed, together with vertical and horizontal 

displacements fixed at the base of the model. The mesh is refined close to the foundation beam and 

it is coarse close to the boundaries. The mesh refinement is adopted in order to correctly represent 

the contact surface between the foundation beam and the half-space in x and y directions. Focusing 

on the contact surface, equal subdivisions along both directions are adopted and brick element size 

in x direction is equal to beam FE length. The frictionless connection between beam and half-space 

is established by vertical master-slave links, which connect each beam node to the contact surface 

nodes having the same x coordinate, allowing to obtain a uniform vertical displacement along 

contact surface width. The 3D FEM is refined up to 2
6
 beam FEs; however, in order to reduce the 

computational effort of the convergence test, only one quarter of the 3D FEM is actually modelled, 

and Fig. 8 shows the case of the foundation beam subdivided into 4 beam FEs. 

Considering a beam with χ = 10 subject to a vertical force at midspan, with nx = 2
6
, results in 

terms of dimensionless displacements w/[Pz/(Eb)] and tractions r(x, 0)/[Pz/(Lb)] obtained with the 

3D FEM are added to Fig. 5 with solid circles, whereas Fig. 9 a, b shows results in terms of 

dimensionless bending moment M/(Pz L) obtained with the 3D FEM (solid circles) and with the 

proposed model with ny = 3 (continuous lines). The 3D FEM turns out to be less deformable and 

characterized by small surface tractions with respect to the proposed model, especially in case of 

stiff foundation beam on soft soil; whereas results in terms of bending moment are in excellent 

agreement with those of the proposed model. 
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Assuming the numerical reference solutions of the previous section in terms of displacements 

and tractions at midpoint, Fig. 7 collects also relative differences versus nx obtained with the 3D 

FEM (line with solid circles), for αL = 5 and 25. The displacements at midpoint obtained with the 

3D FEM converge very slowly to reference solutions, with differences close to 8%, whereas the 

corresponding tractions at midpoint better converge to the results of the proposed model with ny = 3, 

even if differences with respect to reference solutions are close to 11% for αL = 5 and close to 20% 

for αL = 25. Focusing then on bending moment at midspan, Fig. 9 c, d shows differences with 

respect to reference solution δM(0) = [M(0) − M
REF

(0)]/M
REF

(0) versus the overall number of degrees 

of freedom of each model. In this case, both the 3D FEM and the proposed model converge rapidly 

to reference solutions, with differences close to 4% for the 3D FEM and close to 0.3% for the 

proposed model. It is worth noting that Fig. 9 shows that the overall number of degrees of freedom 

of the 3D FEM, even if related to one quarter of the entire 3D model, is several orders of magnitude 

larger than that of the proposed model with ny = 3. 

This convergence test showed that a classical 3D FEM may require a more refined discretization 

and a larger computational effort with respect to the proposed model, especially in terms of beam 

displacements and contact tractions. 

Then, considering the results of both convergence tests, in order to have sufficiently accurate 

results but also to limit the overall number of unknowns of the upcoming numerical tests, the 

following examples adopt nx = 2
8
, nx,end = 1 and ny = 3. 

 

4.1.2 – Parametric tests 

Several analyses are carried out for different values of the parameter αL. Figs. 10 and 11 show 

dimensionless displacement w/[Pz/(Eb)], dimensionless half-space traction r/[Pz/(Lb)] and 

dimensionless bending moment M/(PzL) versus x/L, for values of the parameter αL equal to 1, 5, 10, 

100, which correspond to beams of increasing length on stiff soil. Each figure show results for φ 

equal to 0 and 0.3. 



19 

Fig. 10a shows dimensionless vertical displacements referred to αL = 1, in this case the mean 

displacement is larger than the maximum relative displacement; thus the beam behaves like a rigid 

rectangular indenter. Moreover, for φ = 0.3, a wedge-shaped beam deflection is obtained. Figs. 10c, 

e show that both surface tractions and bending moments do not depend significantly on φ. 

Moreover, surface tractions are characterized by a singular behavior at beam ends, typical of a 

rectangular rigid punch. 

Results obtained with αL = 5 are shown in Figs. 10b, d, f. In this case the mean displacement is 

smaller than the maximum relative displacement (Fig. 10b) and, for φ = 0.3, a wedge-shaped beam 

deflection generates singular half-space tractions at midpoint (Fig. 10d). Bending moment values 

decrease for increasing the value of φ (Fig. 10f). 

Figs. 11a, c, e show results obtained with αL = 10, which turn out to be quite similar to those 

obtained with αL = 5. Fig. 11b, d, f is referred to αL = 100. For φ = 0.3, the system of equations (22) 

tends to be singular, then the corresponding results are not shown. It is worth noting that the vertical 

displacement shown in Fig. 11b is well approximated by Boussinesq solution (1) that reduces to 

xE

P
xw z 1

)0,(
π

= , (28) 

as shown with cross symbols in Fig. 11b, except in the neighbourhood of the point load, where 

Euler-Bernoulli beam enforces the continuity of w' in the surface displacements. 

Fig. 12a shows dimensionless displacement at beam midpoint and beam end versus αL. For very 

low αL values, both displacements tend to be coincident with those given by a rigid punch. For 

instance, such displacements are both close to 0.21 / ( )zw P Eb= , leading to a translational stiffness 

of the system / 0.48w zk P w EL= = , that is in excellent agreement with data determined by 

Whitman and Richart [67] for χ = 10. Increasing αL, displacement at midpoint obviously increases, 

whereas displacement at beam ends converges to a constant value given by Eq. (28) for x = L/2: 
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χπ
=⇒

π
= 2

)(

)2(2
)2(

bEP

Lw

LE

P
Lw

z

z  (29a, b) 

which is equal to 0.064 for χ = 10 irrespective of the shear deformation parameter φ. 

Fig. 12b shows dimensionless traction r(L/2 − 2L/nx, 0) close to the beam end versus αL. For a 

beam on stiff soil, tractions assume large values due to the singular behavior showed in Fig. 10c. 

For αL > 3 tensile tractions close to the beam ends are obtained and, for increasing αL, tractions 

tend to zero. In fact, the singular behavior at the ends of slender beams on stiff soil is restricted to a 

zone with length lesser than 2lx = 2L/2
8
. 

Biot [13] studied the behavior of an infinite Euler-Bernoulli beam resting on an elastic half-space 

loaded by a concentrated force Pz, the maximum bending moment is expressed by: 

0.2770.277 3

4

χ
(0) 0.166 16 0.166 16

χ α

b z
z

D P L
M P b k k

Eb L

    = =          
, (30) 

where k is a parameter introduced by Biot and set equal to 1 in the case of uniform pressure 

distribution along the beam width and equal to 1.13 in the case of uniform deflection along the 

beam width. The present model, characterized by tractions varying in both x and y direction (ny = 

3), follows sufficiently the hypothesis of uniform deflection along the beam width. Then, setting χ 

equal to 10, 30 and 100, the bending moment M(0) is evaluated for increasing αL values and 

compared to Eq. (30) assuming k = 1.13. Fig. 13 shows that Eq. (30), represented with dashed lines, 

is in good agreement with the results of the present analysis for αL > 3. Therefore, Eq. (30) can be 

profitably used for beam of finite length. 

 

4.2. Beam loaded by an uniform force distribution 

In this section, a foundation beam resting on an elastic half-space loaded by a uniform force 

distribution p along its entire length is considered. The examples refer to a beam with χ = 10, nx = 

2
8
, nx,end = 1 and ny = 3 adopting a power-graded mesh. 
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For αL = 1, Fig. 14a shows that beam displacements are characterized by a rigid body vertical 

translation and a small deflection. Surface tractions presented in Fig. 14c are typical of a rigid 

indenter. Moreover, surface traction and bending moment are not influenced by φ. For αL = 5, 

surface tractions (Fig. 14d) are characterized by singularities at beam ends. Both displacement (Fig. 

14b) and tractions are not influenced by φ, whereas bending moment (Fig. 14f) decreases as φ 

increases. Displacements and tractions obtained with αL = 10 (Fig. 15a, c) are quite similar to those 

obtained with αL = 5, whereas bending moment (Fig. 15e) is quite different and characterized by 

large values close to / 4x L= ± . For αL = 100, the results are presented only for the Euler-Bernoulli 

beam case (Figs. 15b, d, f) due to the singular behavior of matrix in Eq. (22). Beam displacements 

(Fig. 15b) are quite different to those determined with Love analytic solution (Eq. 3.25 in [10]), 

which are shown with cross symbols in the figure. Surface tractions (Fig. 15d) are nearly constant 

along the beam length excluding singularities at the beam ends, whereas bending moment (Fig. 15f) 

is characterized by two peaks close to the beam ends. 

Fig. 16a shows dimensionless displacement at midpoint and beam end versus αL. For beam on 

stiff soil, both displacements tend to be coincident with those corresponding to a rigid punch. In 

fact, starting from the almost uniform displacement w =2.12 p/E for αL = 1, the translational 

stiffness turns out to be kw = pL/ w = 0.47 EL, that is again in agreement with existing data [67] and 

it is quite close to the value obtained in the previous case study. Increasing αL, displacement at 

midspan tend to converge to a constant value close to 2.4 p/E, which is smaller than 2.51 p/E = 0.8 

π p/E that is the solution of a rectangular loaded area having L/b = 10 (Eq. 3.25 in [10]), whereas 

displacement at beam ends is quite close to the analytic solution 1.48 p/E = 0.47 π p/E. Fig. 16b 

shows dimensionless tractions at beam midpoint versus αL, starting from 0.63 p/b, that corresponds 

to the value that may be obtained with a rigid rectangular punch [67]. It is worth noting that the 

pressures distribution underneath a slender beam on a stiff soil converge to a uniformly loaded area 

only if ny = 1 is assumed (large dashed line in Fig. 16b). Vice versa, surface discretization along the 

beam width provides foundation rigidity in y direction. For this reason, dimensionless tractions for 
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ny = 3 converge to a value close to 0.7 qz/b, that is less than a unitary uniform pressure p/b. 

Therefore, the case of uniform force distribution turns out to be more influenced by contact surface 

discretization across beam width with respect to the previous one. 

 

4.3. Beam loaded by a couple at midspan 

The case of a foundation beam loaded by a counterclockwise couple C at midspan is finally 

considered. The examples refer to a beam with χ = 10, nx = 2
8
, nx,end = 1 and ny = 3 adopting a 

power-graded mesh. Figs. 17a, c, e show results relative to αL = 1 in terms of dimensionless 

displacement, traction and bending moment. In this case results do not depend appreciably on φ. 

Beam displacement shows a rigid body rotation, whereas surface tractions present singularities near 

beam ends. Starting from absolute displacement at beam ends, rigid rotation θ = 1.55 C/[EL
2
b] and 

the corresponding rotational stiffness of the system kθ = C/θ = 0.65 EL
2
b is in agreement with 

existing data for a rigid rectangular indenter with L/b = 10 [67]. 

Figs. 17b, d, f show results for αL = 5. In this case, maximum absolute displacements are 

attained close to / 4x L= ± , with larger absolute values obtained with φ = 0, whereas tractions and 

bending moment are less influenced by φ. For αL = 10, Figs. 18a, c, e show results quite different 

with respect to the previous cases, since they are more depending on φ. In particular, beam 

displacements and surface tractions with φ = 0.3 are smaller than those obtained with the Euler-

Bernoulli beam, moreover, maximum absolute values are obtained close to /10x L= ± . For αL = 

100, Figs. 18b, d, f show results obtained with φ = 0. In this case, the displacements, tractions and 

bending moment are concentrated close to beam midspan; then, a large number of subdivisions 

along x axis is necessary in order to obtain accurate results. 
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CONCLUSIONS 

In this paper, static analyses of Timoshenko beams with finite length in frictionless and bilateral 

contact with an elastic and isotropic 3D half-space are presented. For this purpose, a simple and 

effective coupled finite element-boundary integral equation method, already adopted by the authors 

for static and buckling analysis of beams and frames on elastic half-plane, is extended to the more 

complex case of beams on 3D elastic half-space, that, for instance, is able to represent the behavior 

of shallow foundation beams. Starting from the Boussinesq solution of the displacement generated 

by a normal point force acting on the half-space surface, the boundary integral equation method is 

adopted by discretizing only contact surface pressures by means of a piecewise constant function. 

Beam stiffness matrix is determined by adopting locking free FEs based on “modified” Hermitian 

shape functions accounting for beam shear deformability. Several numerical tests are performed by 

considering beams of finite length subject to a concentrated vertical force, a concentrated couple 

and to a distributed vertical force. The proposed model turns out to be simple and effective in 

representing foundation behavior. In particular, for increasing beam stiffness, the behavior of the 

foundation converges to that of a flat rectangular punch and to the corresponding existing solutions 

in terms of punch translational and rotational stiffness. On the other hand, for increasing soil 

stiffness and, at the same time, for increasing beam slenderness, the behavior of the foundation 

converges to existing solutions for Euler-Bernoulli beams. 

The proposed model turns out to be strictly dependent on the contact surface discretization along 

beam width, in particular considering results in terms of contact surface tractions. Assuming 

vertical displacements along beam width to be uniform, corresponding to the hypothesis of rigid 

beam cross-section, the distribution of contact tractions along beam width must follow the one 

typical of a rigid punch in plane strain conditions, characterized by singularities close to section 

ends. Such a traction distribution is obtained by subdividing contact surface along beam width too, 

in particular by adopting a power-graded mesh characterized by smaller and smaller subdivisions 
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close to section ends. A first convergence test limited to the case of a foundation beam loaded by a 

vertical force at midspan showed that the simplest case of contact surface mesh without 

subdivisions along the beam width turns out to be still sufficiently accurate in determining 

displacements, but extremely inaccurate in determining contact tractions, whereas three graded 

subdivisions along the beam width may be sufficient for obtaining accurate results in terms of both 

displacements and tractions. A second convergence test has been performed for comparing the 

proposed model with respect to a standard 3D FEM of an Euler-Bernoulli beam on half-space. This 

test showed an excellent agreement between the models in terms of beam bending moments, and a 

sufficient agreement in terms of beam displacements and contact tractions, due to the huge 

computational effort required by the 3D FEM. 

Further developments of this work will regard for first the study of 3D framed structures with 

their shallow foundations resting on a half-space, in order to account for soil deformability on 

structural behavior. Then, further analyses will assume unilateral contact between the beam and the 

half-space, requiring to develop iterative techniques for identifying possible separation zones along 

the contact surface. The effect of adhesion and/or friction between the foundation beam and the 

half-space will be also taken into account, following the approach already adopted in [52-55]. 

ACKNOWLEDGMENTS 

The present investigation was developed in the framework of the Research Program FAR 2017 

of the University of Ferrara. Moreover, the analyses were developed within the activities of the 

(Italian) University Network of Seismic Engineering Laboratories–ReLUIS in the research program 

funded by the (Italian) National Civil Protection – Progetto Esecutivo 2014-2018 – Research Line 

“Reinforced Concrete Structures”. The financial support of the MIUR PRIN Projects 

2015LYYXA8 and 2015JW9NJT is gratefully acknowledged. 



25 

APPENDIX 

For a prismatic beam element subjected to uniform loads p(x) and m(x), element matrices Kbi and 

Fi become 
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Considering ny subdivisions along the beam width, the matrix H for the generic ith beam element 

is given by the following expression: 
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For one subdivision (ny = 1) along the beam width, the matrix H for the generic ith beam element 

reduces to: 

T22 ]12,2,12,2[ xixixixii llllb −=H , 

Considering the half-space surface subdivided into rectangular elements and adopting a 

piecewise constant substrate reaction, the components of the flexibility matrix G of the half-space 

are: 
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where the distance )ˆ,ˆ;,( yxyxd  between the points (x, y, 0) and ( yx ˆ,ˆ , 0) is reported in Eq. (2). The 

solution of the quadruple integral on a generic subdivision is: 
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FIGURE CAPTIONS 

Fig. 1. Beam with rectangular cross-section resting on an elastic half-space. 

Fig. 2. Transverse beam displacements with uniform contact stress distribution (a) and contact 

stress underneath a rigid foundation (b). 

Fig. 3. Beam on elastic half-space subdivided into equal FEs. 

Fig. 4. Examples of discretizations of a contact surface subdivided with nx = 8 elements and by 

varying ny and nx,end. 

Fig. 5. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL=5 (a, c) and 25 

(b, d). Vertical displacement (a, b) and surface pressures r(x, 0) (c, d) along the beam length. 

Results obtained with the proposed model and ny = 1 (dashed line), ny = 3 (continuous line), ny = 5 

(solid dashed line), and results obtained with the 3D FEM (solid circles). 

Fig. 6. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL = 5 (a) and 25 

(b). Surface tractions at midspan along the beam width for ny = 1 (dashed line), ny = 3 (continuous 

line), ny = 5 (solid small dashed line). 

Fig. 7. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL = 5 (a, c) and 25 

(b, d). Relative difference for w(0) (a, b) and r(0, 0) (c, d) versus nx for the proposed model with ny 

= 1 (dashed line), ny = 3 (continuous line), ny = 5 (solid dashed line), and for the 3D FEM (line with 

solid circles). 

Fig. 8. One quarter of the 3D FEM of a beam on half-space, case with beam subdivided into 4 equal 

FEs. 

Fig. 9. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL = 5 (a, c) and 25 

(b, d). Bending moment along the beam length 
 
(a, b) and relative difference for M(0) versus the 

overall number of degrees of freedom (DOFs) (c, d). Results obtained with the proposed model and 

ny = 3 (continuous line), and with the 3D FEM (line with solid circles). 
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Fig. 10. Beam loaded by a vertical point force Pz at midspan with αL = 1 (a, c, e) and 5 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction r(x, 0) (c, d) and bending moment (e, f) 

versus x/L for φ = 0 (continuous line) and 0.3 (dashed line). 

Fig. 11. Beam loaded by a vertical point force Pz at midspan with αL = 10 (a, c, e) and 100 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction r(x, 0) (c, d) and bending moment (e, f) 

versus x/L for φ = 0 (continuous line) and 0.3 (dashed line). In (b) cross symbols refer to Boussinesq 

solution. 

Fig. 12. Beam loaded by a vertical point force Pz at midspan. Vertical displacement at midpoint 

w(0) and beam end w(L/2) (a), traction r(L/2 − 2L/nx, 0) close to the beam end (b) versus αL for φ = 

0 (continuous line) and 0.3 (dashed line). 

Fig. 13. Beam loaded by a vertical point force Pz at midspan. Bending moment at midspan versus 

αL for χ = L/b equal to 10, 30, 100 (continuous lines). Dashed lines represent Biot solution. 

Fig. 14. Beam loaded by an uniform force distribution with αL = 1 (a, c, e) and 5 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus 

x/L for φ = 0 (continuous line) and 0.3 (dashed line). 

Fig. 15. Beam loaded by an uniform force distribution with αL = 10 (a, c, e) and 100 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus 

x/L for φ = 0 (continuous line) and 0.3 (dashed line). In (b) cross symbols refer to Love solution. 

Fig. 16. Beam loaded by an uniform force distribution. Vertical displacement at midpoint w(0) and 

beam end w(L/2) (a), traction r(0, 0) (b) versus αL for φ = 0 (continuous line) and 0.3 (dashed line). 

Large dashed line refers to traction obtained with ny = 1 and φ = 0. 

Fig. 17. Beam loaded by a couple at midspan with αL = 1 (a, c, e) and 5 (b, d, f). Dimensionless 

vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus x/L for φ = 0 

(continuous line) and 0.3 (dashed line). 

Fig. 18. Beam loaded by a couple at midspan with αL = 10 (a, c, e) and 100 (b, d, f). Dimensionless 

vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus x/L for φ = 0 

(continuous line) and 0.3 (dashed line). 

TABLE CAPTIONS 
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Tab. 1. Reference results for a beam on elastic half-space subject to a vertical point force Pz at 

midspan, obtained with nx = 2
10

, nx,end = 3 and a power-graded subdivision along y direction with ny 

= 7 and β = 3. 
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Fig. 2. Beam with rectangular cross-section resting on an elastic half-space. 
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(a)     (b) 

Fig. 2. Transverse beam displacements with uniform contact stress distribution (a) 

and contact stress underneath a rigid foundation (b). 
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Fig. 3. Beam on elastic half-space subdivided into equal FEs. 
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Fig. 4. Examples of discretizations of a contact surface subdivided with nx = 8 elements and by 

varying ny and nx,end. 
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Fig. 5. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL=5 (a, c) and 25 

(b, d). Vertical displacement (a, b) and surface pressures r(x, 0) (c, d) along the beam length. 

Results obtained with the proposed model and ny = 1 (dashed line), ny = 3 (continuous line), ny = 5 

(solid dashed line), and results obtained with the 3D FEM (solid circles). 
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Fig. 8. One quarter of the 3D FEM of a beam on half-space, case with beam subdivided into 4 equal 

FEs. 
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Fig. 9. Euler-Bernoulli beam loaded by a vertical point force Pz at midspan with αL = 5 (a, c) and 25 
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overall number of degrees of freedom (DOFs) (c, d). Results obtained with the proposed model and 

ny = 3 (continuous line), and with the 3D FEM (line with solid circles). 
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Fig. 10. Beam loaded by a vertical point force Pz at midspan with αL = 1 (a, c, e) and 5 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction r(x, 0) (c, d) and bending moment (e, f) 

versus x/L for φ = 0 (continuous line) and 0.3 (dashed line). 
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Fig. 11. Beam loaded by a vertical point force Pz at midspan with αL = 10 (a, c, e) and 100 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction r(x, 0) (c, d) and bending moment (e, f) 

versus x/L for φ = 0 (continuous line) and 0.3 (dashed line). In (b) cross symbols refer to Boussinesq 

solution. 
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Fig. 13. Beam loaded by a vertical point force Pz at midspan. Bending moment at midspan versus 

αL for χ = L/b equal to 10, 30, 100 (continuous lines). Dashed lines represent Biot solution. 
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Fig. 14. Beam loaded by an uniform force distribution with αL = 1 (a, c, e) and 5 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus 

x/L for φ = 0 (continuous line) and 0.3 (dashed line).
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Fig. 15. Beam loaded by an uniform force distribution with αL = 10 (a, c, e) and 100 (b, d, f). 

Dimensionless vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus 

x/L for φ = 0 (continuous line) and 0.3 (dashed line). In (b) cross symbols refer to Love solution.
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Fig. 16. Beam loaded by an uniform force distribution. Vertical displacement at midpoint w(0) and 

beam end w(L/2) (a), traction r(0, 0) (b) versus αL for φ = 0 (continuous line) and 0.3 (dashed line). 

Large dashed line refers to traction obtained with ny = 1 and φ = 0. 
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Fig. 17. Beam loaded by a couple at midspan with αL = 1 (a, c, e) and 5 (b, d, f). Dimensionless 

vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus x/L for φ = 0 

(continuous line) and 0.3 (dashed line). 
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Fig. 18. Beam loaded by a couple at midspan with αL = 10 (a, c, e) and 100 (b, d, f). Dimensionless 

vertical displacement (a, b), surface traction (c, d) and bending moment (e, f) versus x/L for φ = 0 

(continuous line) and 0.3 (dashed line).
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  w
REF

(0)/[Pz / (E b)] r
REF

(0,0)/[Pz / (L b)] M
REF

(0)/(Pz L) 

5 0.3833 1.4572 0.068005 
αL 

25 0.8485 6.2215 0.016388 

 

Tab. 1. Reference results for a beam on elastic half-space subject to a vertical point force Pz at 

midspan, obtained with nx = 2
10

, nx,end = 3 and a power-graded subdivision along y direction with ny 

= 7 and β = 3. 

 


