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ARTICLE INFO ABSTRACT

The River Continuum Concept (RCC) and the Riverine Ecosystem Synthesis (RES) are two different theories
proposed by river ecologists to describe the response of biotic communities to environmental variability. River
network directional patterns are conveniently described by asymmetric eigenvector maps, an eigenfunction-
based spatial filtering method specifically proposed for situations where a hypothesized directional spatial
process influences the species distribution.

In this work asymmetric eigenvector maps are used in conjunction with canonical redundancy analysis and
variation partitioning analysis to describe the distribution of macroinvertebrate communities of a river system in
Northern Italy and to test the link between the river theories and the available data. Benthic macrofauna data
were collected during the summer of 2009-2013 in 16 rivers, for a total of 283 replicates. We investigate the
effects of some measured environmental factors on the benthic macrofauna community, accounting for direc-
tional effects intrinsic to the river network structure.

The proposed protocol allows to highlight and discuss some of the features relevant to the two river theories.
According to the RCC theory, altitude and temperature were relevant factors affecting the macrozoobenthic
community, together with the distance from the spring and water depth. Environmental factors representing
local and lateral dimensions were less relevant for explaining the variability of the community composition.
Nonetheless a role of the surrounding land use was also found, suggesting the presence of lateral effects due to
human activities.

Overall, the results demonstrated that RCC is a reliable model to describe the distribution of macrobenthic
communities in river networks. In socio-ecological systems, the local and lateral dimensions postulated by the
RES theory could be mainly related to surrounding land use and naturalness degree.
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1. Introduction

Historically, the identification of environmental factors which de-
termine the composition of biotic assemblages in lotic ecosystems re-
ceived a great attention as a challenging topic in aquatic ecology
(Minshall et al., 1985). River ecologists proposed different theories to
describe the response of biotic communities to environmental varia-
bility of lotic ecosystems. In the River Continuum Concept (RCC)
theory, Vannote et al. (1980) conceptualized a pristine river as a con-
tinuum of chemical, physical and morphological gradients along a
longitudinal axis (i.e. from spring to mouth), which rules the distribu-
tion of biological communities in order to optimize the use of energetic
resources. However, Statzner and Higler (1985) argued that some
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assumptions of RCC are not always verified and should be excluded
from the theory for its larger applicability. Namely, the maximization of
yearly energy utilization through species replacement, lack of stream
community successions, their time invariance and specific mechanisms
leading to higher diversity in midstream communities are not verified
or restricted to specific geographic areas. Corkum (1990,1991,1992)
highlighted the importance of the surrounding landscape features in
determining the distribution of macroinvertebrate communities, de-
monstrating that similar assemblages occur at different river sites sur-
rounded by the same biome when characteristic vegetation is not dis-
turbed. Although not refusing the longitudinal gradient of physical
conditions described by the RCC, the Riverine Ecosystem Synthesis
(RES, Thorp et al., 2006) further developed the lateral dimension in
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river theories, describing the river as a mosaic of hydrogeomorphic
patches formed by catchment geomorphology and climate, named
‘functional process zones’. According to this theory, the distribution of
macrobenthic assemblages is mainly affected by the variability of local
abiotic conditions and energy sources. With this paper we aim to de-
scribe the distribution of macroinvertebrate communities of a river
system in Northern Italy and to assess the link of the RCC and RES
theories with the available data.

RCC and RES theories have to do with the effects of purely direc-
tional patterns and sparse environmental factors on the distribution of
the macrobenthic community in a lotic system. Directional patterns are
found in river networks, where water flows downstream carrying
abiotic particles and biotic organisms. Numerical ecologists have lar-
gely contributed to investigate the spatial and environmental effects
influencing species distribution models (Legendre and Legendre, 2012).
Eigenfunction-based spatial filtering methods allow to adequately re-
present the gradients influencing species spatial distributions in a river
network via latent variables that correspond to directional spatial
processes. Asymmetric eigenvector maps (AEM, Blanchet et al.,
2008a,2011) were proposed for situations where a hypothesized
asymmetric, directional spatial process influences the species distribu-
tion at scales ranging from fine to broad (e.g. the directional effects of a
river network organized in basins, rivers and monitoring stations). In a
community ecology context, AEM eigenfunctions are used to model the
directional spatial structure of single species or multi-species commu-
nities. Canonical redundancy analysis (RDA) is a multivariate extension
of multiple regression, suitable to measure the dependence of numerous
sampled taxa on environmental factors and AEMs used as explanatory
variables. Their relevance can properly be assessed by a forward se-
lection procedure (Blanchet et al., 2008b), while variation partitioning
analysis (VPA, Peres-Neto et al., 2006) can be performed to study the
independent and combined importance of purely spatial latent vari-
ables and sampled environmental variables on the community.

In this work AEMs describe the geometrical structure of the network
of mountain streams and rivers of Northern Italy, RDA allows to detect
the relations of the distribution of macrozoobenthic taxa with en-
vironmental and structural factors and VPA provides information on
which river model better describes the distribution of available data.
Eigenvector maps are used for the first time to discuss the connection
between the composition of macrozoobenthic communities and RCC
and RES theories. The outcomes clarify the role of broad spatial
structures and the effects of local conditions and surrounding land use
in order to test which river model (RCC or RES) better describes the
variability of the macrozoobenthic communities.

2. Materials and methods
2.1. River network data

2.1.1. Biological data

The biological data collection was carried out in 16 rivers located in
5 different basins of Northern Italy (Fig. 1 and Appendix Al). Sixty-one
monitoring stations were sampled 3-5 times during the summer of
2009-2013, for a total of 283 replicates. Sampling stations were located
within an altitudinal range of 150-1670 m a.s.l., to avoid sampling the
lower river sections that are typically highly impacted by intense
human activities. Benthic macrofauna was collected sweeping a 40 cm-
wide D-frame hand net (mesh size = 500 pm) in an area of 1 m2.
Animals were preserved in 4% formalin solution and later identified in
laboratory to the family level, except for Nematoda that were not fur-
ther classified. Family level is considered a sufficient level for in-
vertebrate community analysis (e.g. Gayraud et al., 2003). Particularly,
when applied to multivariate analyses, the results obtained considering
higher taxa may more closely reflect gradients or stresses than those
based on species data, that are more affected by natural “noise”
(Warwick, 1988).
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Biological samples were organized into a community matrix ac-
counting for 69 taxa observed at 61 monitoring stations. Observed taxa
are reported in Appendix A2. Prior to carrying out the statistical ana-
lysis, replicates were averaged and the resulting species data were
Hellinger transformed (Legendre and Gallagher, 2001): average species
abundances were first divided by the site total abundance and the result
was square root transformed, with the effect of reducing the importance
of very large abundances (Borcard et al., 2011).

2.1.2. Environmental data

With the aim to test the reliability of the RCC and RES river models,
a set of quantitative and qualitative environmental factors were mea-
sured to detect variability across longitudinal and lateral river dimen-
sions. Latitude, longitude and altitude were recorded using a GPS de-
vice (Garmin 72H) and eleven quantitative and qualitative
environmental variables were collected (Table 1). Water temperature
and dissolved oxygen concentration were measured using a multi-
parameter probe (YSI Model 85), mean water depth was measured with
a metric cord. The distance of the sampling stations from the river
spring was measured using Google Earth images. Water samples were
taken to the laboratory and filtered (Watman GF/F) before being ana-
lyzed. NH4 + was measured using the Bower and Holm-Hansen protocol
(Bower and Holm-Hansen, 1980), while NOs— was measured with au-
tomatic colorimeter method using AutoAnalyser II (Armstrong et al.,
1967; APHA et al., 1992). Granulometry was estimated using an ana-
lytical sieve shaker (Fritsch Analysensieb DIN 4188). Periphyton and
macrophytes, riparian vegetation and surrounding land use were as-
sessed visually.

2.2. Statistical methods

The statistical analysis is focused on the investigation of the effects
of environmental factors on the benthic macrofauna community over
the study area, accounting for directional spatial effects intrinsic to the
river network structure. This formulation allows to highlight and dis-
cuss some of the features relevant to the RCC and RES river theories.
The analysis proceeds along the workflow depicted in Fig. 2 where
available data, statistical tools and their outcomes are highlighted.

2.2.1. Asymmetric eigenvector maps [AEM]

The asymmetric eigenvector map (AEM) framework is an eigen-
function-based spatial filtering method specifically designed to model
spatial structures hypothesized to be produced by directional spatial
processes. When performing a spatial analysis using AEM, the connec-
tions among the sampling sites are expressed by a sites-by-edges matrix
that corresponds to a connection diagram. To account for directionality,
it is assumed that each most upstream sample of each river is connected
to an artificial site that is there solely to give directionality and nothing
else (Blanchet et al., 2008a). The sites-by-edges matrix is decomposed
into latent spatial variables (eigenvector maps, or eigenfunctions).
What results is a set of AEMs that, although constructed together, have
independent structure within the different river systems. An illustration
of this property of AEMs is given in Blanchet et al. (2011) and a. de-
tailed account of the procedures used to construct AEMs is found in
Blanchet et al. (2008a,2011). When constructing AEMs edges can re-
ceive weights representing the ease to move along them. In this work,
we consider edge weights using two different weight functions based on
altitude, originally proposed by Dray et al. (2006) and Blanchet et al.
(2008a):

I a 1

A =1 (o)) and g0 =
max U (€]

where 1; is the altitude difference between sites i (uppermost site) and j
while « is either 1 or 2. AEMs are obtained by the geometric structure of
the monitoring station network seen as a set of oriented graphs and can
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Fig. 1. Left: map of the study area in Northern Italy. Right: map of the river network with 61 monitoring stations. Station ID’s correspond to those in Appendix Al.

Table 1
Quantitative and qualitative environmental variables used in the analysis.

Quantitative environmental variables

Variable Abbr. Unit Min Max
Distance from the spring DIS km 1 190
Altitude ALT m a.s.l. 150 1670
Mean water depth DEP cm 0.5 100
Temperature TEM °C 6.8 20.9
Dissolved oxygen O, mg/1 7.26 14.01
NH,* NH4 mg/1 0.000754 191
NO;~ NO3 mg/1 0.172 2

Qualitative environmental variables

Variable Abbr. Categories

Granulometry GRA Rocks, Pebbles and gravel, Sand, Silt
Periphyton and macrophytes PER Present, Absent

Riparian vegetation RIP Trees, Bushes, Grass

Surrounding land use LAN Forest, Grassland, Agriculture, Urban

be interpreted as spatial features, possibly influent on species dis-
tribution and abundance. From an ecological perspective, AEMs ac-
count for the directional spatial forcing among the samples taken in the
river network. By construction, AEMs are ordered from the ones cap-
turing very broad spatial structure (e.g. the full range of the river net-
work) to very fine spatial structure (e.g. sites level spatial difference). In
other words, AEMs are designed to capture spatial autocorrelation
ranging from broad positive scale to fine negative scale in the direction
of the spatial forcing. It is important to notice that as AEMs are designed
to account for spatial autocorrelation in a specific, user defined, di-
rection, spatial autocorrelation measured transversal to the considered
direction may not be accounted for. Thus, AEMs can reveal patterns in
taxa composition that can be linked to specific effects occurring along
different spatial dimensions and scales.

2.2.2. Canonical redundancy analysis and variable selection [RDA,
FORWARD SELECTION and TESTS]

The resulting latent spatial variables are used in canonical re-
dundancy analysis (RDA) to study the directional spatial structure of
community composition data. RDA is a constrained ordination method
that can be understood as a multivariate extension of multiple regres-
sion (Legendre and Legendre, 2012, chapter 11; Rao 1964) and is thus

suitable to deal with numerous sampled taxa at once. RDA is obtained
by combining a set of multiple linear regressions and applying a prin-
cipal component analysis to the fitted values. In the RDA framework, an
unbiased estimate of the contribution of a set of explanatory variables
to the explanation of the multivariate response is given by the adjusted
coefficient of multiple determination R? (Ezekiel, 1930; Legendre et al.,
2011). ANOVA-like permutation tests, based on the differences in re-
sidual deviance in permutations of nested models (Legendre et al.,
2011; Blanchet et al., 2011), are also used to address the significance of
the whole model and of each constraining variable. To obtain a parsi-
monious RDA model a forward selection procedure using two stopping
criteria was used (Blanchet et al., 2008b). Specifically, if an explanatory
variable included in the forward selected model results in the model
having an R? higher than the R? calculated using all explanatory
variables, this variable is rejected, and the forward selection procedure
stops. In addition, if a variable included in the forward selected model is
not significant (p-value > 0.05), this variable is rejected, and the
forward selection procedure stops. In other words, variables will be
included in the model as long as they are significant and that their
cumulative R? is smaller than the R? calculated using all explanatory
variables. This approach has been recommended by Bauman et al.
(2018) when the goal is to describe as accurately as possible the system
under study. When spatial and/or environmental features are selected,
then partial RDA can be used to remove the effects of some conditioning
or background variables (Borcard et al., 2011, chapter 6).

2.2.3. Variation partitioning analysis [VPA]

Variation partitioning analysis (VPA, Borcard et al., 1992; Peres-
Neto et al., 2006) allows to elaborate on the independent and combined
importance of spatial and environmental variables on the river network
benthic macrofauna community, thus providing further insights on the
role of longitudinal and lateral dimension described by the RCC and
RES river models. VPA is calculated by first measuring the amount of
variation explained by the full set of explanatory variables (environ-
mental features and AEMs combined) and then by calculating the
amount of variation explained solely by environmental features and
AEMs independently. Following, we can calculate by subtraction
(Borcard et al., 1992) the amount of variation explained solely by en-
vironment (Fig. 3, Env) or AEM (Fig. 3, AEM) and by the combination
of the two sets of variables (Fig. 3, intersection). Peres-Neto et al.
(2006) have shown that it is relevant to use the adjusted coefficient of
determination (Raz) to measure the amount of variation explained by
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Fig. 2. Workflow of the statistical analysis of the river network data. Black typeface is for the data, red is for methods, blue for output and results.
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Fig. 3. Venn diagram of the variation partitioning of the community matrix
explained by environmental qualitative and quantitative covariates (Env) and
spatial variables (AEM).

each fraction of the variation partitioning analysis. Because some of the
environmental variables are qualitative, we discretized them into
binary dummy variables, allowing us to include them in the analysis.

2.2.4. RDA triplots [RDA]

After variable selection and model comparison, the results of RDA
are summarized by the so-called triplots that display sites, taxa and
environmental variables in the factorial plane spanned by RDA axes.
The choice of one of two distinct scaling schemes leads to correlation
triplots or distance triplots that allow to answer two types of ecological
questions: when the interest is to study the relationship among species
the correlation triplots should be used, while when the interest is to
understand similarities among sites, then the distance triplots should be
used. In both cases RDA axes are interpreted according to those vari-
ables that approach them away from the origin of the triplot. The
methods used in these analyses are available in the “adespatial” (Dray
et al., 2018) and “vegan” (Oksanen et al., 2019) R packages.

3. Results

The toolbox briefly described in the previous section was applied to
available river network data according to the workflow described in
Fig. 2 that will be further developed in this section.

3.1. Definition of directional spatial variables [SPATIAL VARIABLES]

Once the directional river network structure was coded into a 61
sites by 51 edges matrix, each edge was equipped by four alternative
weights corresponding to f; and f, in (1) with « =1 and 2. Conse-
quently, AEM gave rise to four sets of 43 eigenfunctions, corresponding
to four alternative specifications of the weights. Within each set, ei-
genfunctions were divided into those showing significant positive and
negative spatial autocorrelation using Moran’s I index (Moran, 1950) as
a reference. Positive autocorrelation arises when sites that are close to
one another have similar values of the AEM. Negative autocorrelation is
the tendency for adjacent locations to show dissimilar values.

3.2. Selection of relevant spatial variables [BEST EDGE WEIGHTS and
BEST SPATIAL VARIABLES]

The resulting eight groups of eigenfunctions were used as ex-
planatory variables in RDA to investigate the dependence of the com-
munity composition on directional spatial processes. Each group was
tested for overall significance using an ANOVA-like permutation test
with 999 permutations (based on the differences in residual deviance in
permutations of nested models as shown in detail by Legendre et al.,
2011; Blanchet et al., 2011). The four sets of negatively autocorrelated
spatial variables were all non-significant, while the four positively au-
tocorrelated sets of eigenfunctions were highly significant. Adjusted
coefficients of multiple determination R? were then calculated for each
of the four sets of positively autocorrelated spatial variables and the set
of AEMs that yielded the largest R? was used in all subsequent analyses,
corresponding to the weight function f, with a = 2 (values of R? for the
four sets of weights are provided in Appendix A3). Forward selection
(Blanchet et al., 2008b) was carried out to determine the relevance of
the nineteen AEMs with significant positive autocorrelation resulting in
eight latent directional spatial variables to be selected (1, 3, 2, 5, 12, 4,
6, and 10, ordered according to their relevance in the RDA). Selected
AEMs explained 21.0% of the total variation (R2) of the community
data matrix, accounting for purely spatial features driven by the
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geometrical structure of the river network. Maps of the eight selected
AEMs are displayed in Appendix A4 where some comments and inter-
pretations are also addressed in terms of long-range dependencies and
local spatial features.

3.3. Selection of relevant spatial and ecological features [RELEVANT
FEATURES]

To select and rank spatial and environmental variables linked with
the longitudinal and lateral river dimensions, VPA was carried out with
the selected AEMs and qualitative environmental variables as well as
quantitative ones (Table 1). VPA showed that both the directional
spatial structure and the environmental covariates contribute to the
explanation of the species data (Fig. 3). The unique contribution of
environmental covariates (RZ = 0.11) is larger than that of physio-
graphy (R2 = 0.07). Partial RDA was also used to calculate and test the
amount of variation explained by each of the two sets of variables given
(conditional on) the other (Appendix A5 contains some numerical re-
sults). The large variation explained jointly by the two sets of variables
(R? = 0.14) implies that many of the environmental variables have di-
rectional spatial structure (in line with both the RCC and RES river
theories). Therefore, we considered only the spatial and non-spatial
structures of the environmental explanatory variables as the main cause
of variation of the species data and dropped the 7% dependence on
AEMs to avoid redundancy.

3.4. Community composition data and environmental factors [RDA
TRIPLOTS and RDA MAPS]

According to the results of VPA, our analysis was completed con-
sidering RDA constrained by all environmental explanatory variables
and no AEMs. Assessing each axis by ANOVA-like permutation tests for
the joint effect of all constraints (Legendre et al., 2011) we obtain three
significant RDA axes, accounting for about 26% of the total variability
in the benthic macrofauna community. Since ecological data are often
quite noisy, much higher values of R? are not to be expected (Borcard
et al., 2011). The results of the RDA are here reported by distance tri-
plots, while correlation triplots are displayed and commented in
Appendix A6. To ease readability, each triplot is split into two distance
biplots in Fig. 4, highlighting similarities among sites. The two couples
of biplots show some interesting connections between the three sets of
variables. The first RDA axis is positively influenced by temperature
and, as expected, is negatively related to altitude. In the study area,
grassland occur mainly at higher altitudes, which is highlighted in
Fig. 4 (a, b). The second RDA axis is positively influenced by NH,4
concentrations, with higher concentrations of NH, associated to agri-
cultural land where fertilizer pollution and zootechnical discharges are
common. Some positive correlations between NH, concentration, dis-
tance from the spring and mean water depth are also highlighted in
Fig. 4 (b), as water depth and nutrient concentration increase going
down the river. The unexpected negative relation between NH, and
NO3 concentrations is possibly due to NO3 absorption in the lower
stations of the Adige basin, caused by the presence of riparian vegeta-
tion. In Fig. 4 (b), monitoring site positions reflect the interpretation of
the two axes. In the first quadrant we find stations with deep waters and
far from the spring, with large temperatures and NH, concentrations
(A3-7). On the opposite side, in the third quadrant, stations with higher
altitude are found (V1-5, S1-2, Arl-2, A8). Monitoring stations in the
second quadrant of the biplot (Sal, Brel-4, Bre6-7, Bral-2) have higher
water temperatures and higher concentrations of NOs3. For some of
them (Brel-4, Bre6-7) anthropic impacts due to surrounding urbani-
zation are reported. Finally, stations in the fourth biplot quadrant have
higher altitudes (P1, R1, I1-2, C2, Sa2-3, Sel). In Fig. 4 (c, d) we see
that, essentially, the third RDA axis is positively influenced by O,
concentrations. Silt granulometry is associated with agricultural land
use and higher distances from the springs, while sand granulometry is
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more commonly found in deeper waters. In addition, lower areas are
more exposed to agricultural activities and correspond to deeper riv-
erbeds characterized by sandy and silty substrata. According to Fig. 4
(d), stations in the second biplot quadrant (A3-7) are more distant from
the springs and have deeper waters with higher concentrations of NH,.
The first quadrant is quite heterogeneous and stations (C1, C4-5, M2,
Sa3) are characterized by higher O, concentrations. Stations in the third
biplot quadrant have higher NO3 concentrations (Brel-7, Bral-2, V2-5,
S1-4, Arl-2, A8).

Fig. 5 shows the maps of the 3 RDA axes that summarize the de-
pendence of the community composition on environmental covariates.
As seen with the biplots in Fig. 4, RDA axis 1 is positively correlated
with temperature and quite obviously negatively related to altitude.
Then, the white dots in Fig. 5 (left panel) highlight areas with lower
elevations and higher temperatures. Higher values of RDA axis 2 cor-
respond to higher concentrations of NH4 and lower concentrations of
NO; that, as was previously mentioned, seem to mostly characterize the
lower Adige basin (Fig. 5 right). Finally, black dots in Fig. 5 (lower
panel) represent areas with lower concentrations of O,, that are ex-
pected to increase in areas of higher altitude.

4. Discussion and conclusions

The results we obtained show an example of appropriate analysis in
systems where directional spatial information is required to describe
the data variation. With river network data, directionality is con-
ceptually fundamental, hence our proposal can be used whenever
abundance and environmental measures are to be jointly analysed.
There are a few studies (e.g. Blanchet et al., 2011; Bertolo et al., 2012)
where directional (AEMs) and non-directional (MEMs) eigenvalue maps
have been used side by side to study the relationship between direc-
tional and non-directional spatial forcing. These studies focussed on
describing the spatial forcing within a stretch of river, in a fluvial lake
or in the Atlantic Ocean. In the systems studied in either paper, the
authors found that in systems where the directional forcing was un-
clear, AEMs and MEMs explained independent fractions of the variation
in the response variables. These were all situations where there were
ecological reasons to believe that directional as well as non-directional
pressures could potentially influence the studied system. In this present
study, we known that the spatial forces influencing the distribution of
benthic macrofauna are mainly influenced by the river flow. As such,
not accounting for this information (i.e. spatial directionality in the
river network) would lead to a biased model and in turn to misleading
results. Note that had our study focussed on organisms less affected by
the directionality of the river network, such as aquatic birds or Sal-
monidae, we would have accounted for space differently.

The performances of AEM, RDA and VPA in identifying factors that
influence the distribution of macrobenthic invertebrates were tested
with abundance and environmental data for a river system in Northern
Italy. The applied methods and observed results provided outcomes that
can be extended to river theories and the general ecology of river
networks. Given the directionality of the relevant spatial processes,
combining AEMs and environmental variables allows to obtain a de-
tailed description of the distribution of the macroinvertebrate com-
munity composition. The inclusion of AEMs and non-spatial environ-
mental information in VPA produces a complete and informative model
and improves the understanding of the system under study.
Environmental variables were shown to be spatially structured and
AEMs were not used to explain the species variation in the final RDA
model. Nevertheless, AEM eigenfunctions provided some additional
insides on the directional forcing of the river system (Appendix A4).
The proposed methodology also provided a specific framework to test
the link between the RCC and RES theories and the available data.
According to the RCC theory (Vannote et al., 1980; Minshall et al.,
1985), the altitudinal gradient was found to be a relevant factor af-
fecting the macrozoobenthic community, as altitude and temperature
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Fig. 4. RDA distance biplots of the Hellinger transformed abundance data constrained by environmental explanatory variables. Sites scores are scaled by eigenvalues.

Shorter arrows and relative labels were discarded to make the figure easier to read.

were the most important variables contributing to the main RDA axis.
Notably, distance from the spring and water depth were also important
factors contributing to the second RDA axis. Nonetheless, the results
showed also a role of surrounding land use on determining macro-
benthic communities. In fact, NO; and NH, are the environmental
variables that mainly contributed to the second RDA axis, suggesting
the lateral effect of human activities on macroinvertebrate communities
(in accordance with the RES river model). Such effect is also confirmed
by the AEM 1 (Appendix A4), which “isolates” the central Adige sta-
tions, dominated by deposit feeder taxa such as Naididae and Tubifi-
cidae. These stations are surrounded by cultivated fields and char-
acterized by riparian vegetation with trees, low values of NO3 and high
values of NH,. Intensive agricultural practices (i.e. the application of
fertilizers) and the presence of zootechnical activities are sources of
nutrient excesses reaching the water body.

The effects at basin scale involve large scale variables such as those
captured by the river continuum, e.g. gradual variations in altitude and
distance from the spring, while the river scale reflects regional (i.e. sub-
basin) variations, such as those related to surrounding land use. Our

findings are in line with those of Corkum (1990,1992), who observed
significant effects of land use on macroinvertebrate assemblages, and
with other studies stressing river theories with various methods. This
suggests that anthropic impacts should be carefully considered as dis-
turbing effects when applying river theories to socio-environmental
systems. Larsen et al. (2019) tested the RCC theory in the Adige river
basin, analysing the variations of functional feeding groups considering
stream network topology and spatial autocorrelation. The authors
found that the community shift was consistent with the longitudinal
gradient, even if variations in water quality and local land use were
equally or more important. The general reliability of RCC was de-
monstrated by Jiang et al. (2011) in a subtropical Asian river system
and by Tomanova et al. (2007) in tropical streams, who respectively
used a RDA and PCA-based correlation tests to select significant pre-
dictors for functional feeding groups.

The AEMs were also successfully used by Mortillaro et al. (2012) to
demonstrate the consistence of RCC in predicting the organic matter
distribution along the lower Amazon river. Vrebos et al. (2017) used
Moran's and Asymmetric Eigenvector Maps to demonstrate that water
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Fig. 5. Spatial distributions of the three significant RDA axes. Dots dimension is proportional to the absolute value of the respective RDA scores (Abs(RDA)). White
dots are for positive scores, black for negative ones. In brackets we report the percentage of the of the total variability accounted for by each RDA axis.

quality descriptors are related to land use and other spatial descriptors
at different scales of extent rather than a longitudinal gradient. How-
ever, these two studies did not consider macroinvertebrate commu-
nities.

The inverse relation found between NH, and NO3; concentrations
could be due to the presence of different pollution sources (i.e. fertili-
zers application for NO3 and animal manure for NH,4) and the oxidation
processes occurring in riparian soils. Riparian vegetation may sig-
nificantly affect macrozoobenthic communities of rivers and streams,
being a source of allochthonous detritus that supplies additional energy
inputs to a broad range of macrobenthic taxa (Cummins et al., 1973;
Petersen and Cummins, 1974; Dudgeon, 1988) and increases soil
functionality (Mander et al., 2005; Gaglio et al., 2019). Thus, the ne-
gative correlation between NH4 and NO3 concentrations might depend
on the surrounding land use combined with the presence of arboreal or
shrubby riparian vegetation. Previous studies have shown that riparian
vegetation promotes conditions for denitrification processes (Martin
et al.,, 1999; Schade et al., 2001; Soana et al., 2017). The role of

naturalness seems to emerge in AEM 2 (Appendix A4), where, the
Brembo river in the Adda basin (Bre3-7) is opposed to the upper Piave
basin (Pia4-8). The Brembo river has little or no aquatic vegetation, an
urbanized surrounding area and is dominated by deposit feeders’ and
filter feeders’ taxa. Conversely, the Piave basin had the highest abun-
dance of Leuctridae (Plecoptera) in our study area, mainly belonging to
the shredders’ functional group and is surrounded by woodlands (i.e.
high naturalness degree of local and lateral conditions). Although not
clearly emerging from the RDA axes, the possible role of the riparian
vegetation and naturalness degree as expressions of local and lateral
dimensions are the only factors calling for considering the RES river
model (Thorp et al., 2006).

The distribution of sampling points in RDA triplots also suggests
effects at the river and basin scales on macroinvertebrate communities.
From a more general point of view, this highlights that aquatic biodi-
versity of river networks should be managed from a wide scale per-
spective. The clustering of the Adige and Piave river sampling stations
in the RDA triplots (Fig. 4) can be explained by the river continuum



A. Pollice, et al.

characteristics. The Brembo and Brambilla river stations are clearly
isolated in a specific group, suggesting common features related to the
Adda basin system.

As far as we know, the idea to use altitude as a way to account for
the influence of the samples within the river network is novel. That
being said, what is important to note is that we used this approach
because it is ecologically relevant for the river system we are studying.
This may not be as relevant for all river systems.

The two weight functions used to quantify the importance of edges
are two weights functions commonly used in with AEMs (and also
Moran’s eigenvectors maps, as proposed by Dray et al., 2006) because
they weight the importance edges using a concave-down (f;) and a
concave-up (f,) weight distribution. That is, when f, is used, a small
altitude difference between two samples will be given much less weight
(and thus much less importance) than if f, is used. From an ecological
perspective, this is interesting because it helps us better understand the
river system we are studying. As for the alpha values, there are many
different values of alpha that can be used in either of these functions
(actually there are an infinity of them). As such, it would have been
possible to compare a large range of alpha values. However, comparing
a range of alpha values for f; and f, makes it ecologically challenging to
fully grasp the meaning of the one that yields the highest amount of
explained variance. For this reason, we focussed on a subset of alpha
values that made ecological sense for the river system understudy. An
alpha value of 1 for f; results in the altitude being accounted for linearly
in the system, while an alpha of 2 for £, is concave-up. An alpha value of
1 for f, is concave-down while an alpha value of 2 for f, is even more
concave-down.

Overall, the findings show the prevailing effects of river continuum
along a spring-mouth gradient, thus supporting the reliability of the
RCC river model. Environmental factors representing local and lateral
dimensions were less relevant for explaining the variability of the
community composition. Land use effects were observed to pre-
dominate only in human impacted landscapes (e.g. cultivated systems),
confirming the observation of Corkum (1990). No clear evidences were
found to support the RES theory (Thorp et al., 2010). However, in socio-
ecological systems where human activities and natural components
coexist, the local and later dimensions postulated by the RES theory
could be affected by anthropic impacts rather than an expression of
natural variables acting at lower scale.

Notice that a considerable level of noise, quite common to ecolo-
gical data, causes only part of the total variability in the benthic mac-
rofauna community is explained by RDA axes. Such noise could be also
due to spatial effects that are not related to environmental variables,
e.g. dispersal capacity and mass effects. Anyway, macrobenthic com-
munities are used as indicators of ecological conditions because of their
limited mobility. In facts, only a limited number of taxa are subject to
drift in running waters. Moreover, samplings were carried out during
the summer season, when macrobenthic communities reached a stable
stage and source-sink dynamics should be less important.

The exclusion of lower river sections and the classification of qua-
litative environmental variables in few representative classes are pos-
sible causes of a further reduction of the capacity of the RDA to capture
specific effects on macroinvertebrate communities. Further improve-
ments on the classification of environmental factors, for example in-
cluding percentage coverage and different leaf decay rates of riparian
species, could improve the capturing of local variability. Nevertheless,
the AEM analysis suggests some effects of local environmental natur-
alness degree on macroinvertebrate communities.
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