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Abstract. The prediction of time evolution of gas turbine performance is an emerging requirement of modern prognostics 
and health management systems, aimed at improving system reliability and availability, while reducing life cycle costs. In 
this work, a data-driven Bayesian Hierarchical Model (BHM) is employed to perform a probabilistic prediction of gas 
turbine future behavior. The BHM approach is applied to field data, taken from the literature and representative of gas 
turbine degradation over time for a time frame of 7-9 years. The predicted variable is compressor efficiency collected from 
three power plants characterized by high degradation rate. The capabilities of the BHM prognostic method are assessed by 
considering two different forecasting approaches, i.e. single-step and multi-step forecast. For the considered field data, the 
prediction accuracy is very high for both approaches. In fact, the average values of the prediction errors are lower than 
0.3% for single-step prediction and lower than 0.6% for multi- step prediction. 

INTRODUCTION 

Gas turbine industry currently faces new challenges to improve operational flexibility, system reliability and 
availability, with the final aim of cost effectiveness and sustainability. Thus, modern prognostics and health 
management (PHM) becomes a fundamental target for GT buyers and the capability to efficiently predict future 
deteriorated characteristics of a GT unit can allow the development and implementation of a robust and efficient 
maintenance strategy by using information gathered via condition monitoring and planning maintenance actions 
before failures occur [1 - 5]. In this manner, economic losses caused by system breakdowns and unnecessary repair 
actions can be lowered.  

The complexity of GT units, the interaction between its components and the challenge of modeling transient 
behavior and its effects on performance and useful life [6] restrict the development and application of model-based 
prognostic approaches and, consequently, suggest the use of observed data to predict system future state. Therefore, 
data-driven models are more widespread in the literature than physics model-based approaches for the purpose of GT 
prognostics.  

It should be noted that the accuracy of a data-driven prognostic system is clearly influenced by the quality of 
processed data. To this aim, Ceschini et al. [7] developed a comprehensive tool for Detection, Classification and 
Integrated Diagnostics of Gas Turbine Sensors (named DCIDS) that aims at improving data quality by removing 
anomalies. The methodology was applied to gas turbine field data [8] and subsequently extended to identify the most 
frequent GT sensor faults [9].  

Since the uncertainty associated with maintenance actions and recovery effectiveness can be high [10, 11], GT 
measured variables can be treated as random variables. Therefore, data-driven methods developed by means of a 
statistical approach are more suitable to perform system prognostics. To discriminate among different available 
methodologies, Zaidan et al. [12] suggest several motivations to develop a forecasting algorithm based on a Bayesian 
approach. The same authors also established a prognostic methodology based on a Bayesian Hierarchical Model 
(BHM) to optimally exploit a large amount of data from multiple units to enhance prediction reliability.  

The BHM prognostic technique was applied by Losi et al. in [13] to simulated and field data representative of gas 
turbine power output degradation over time. The BHM-based prognostic method was investigated in [13] by studying 
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the effect of different amounts of training trends on model prediction accuracy through a parametric analysis on the 
number of past trends and engine fleet sizes. Moreover, unlike [12], the prognostic technique applied in [13] was 
tested by performing both single- and multi- step predictions. The analyses conducted in [13] for the prediction of GT 
power output confirmed that BHM reliability was very good, also in case of data trends characterized by high 
heterogeneity of degradation rates and even in case of variable degradation rate.  

Losi et al. also developed in [14] an innovative BHM-based diagnostic methodology. In this case, the BHM 
approach was adapted to simulate a virtual sensor representative of reliable sensor behavior, in agreement with the 
measured data of healthy sensors used for training the methodology. The BHM diagnostic methodology was applied 
to a field time series with implanted spikes and bias faults of different magnitude. The analyses were carried out by 
varying both fault magnitude and number of faulty sensors within the pool. The BHM diagnostic methodology 
exhibited good detection capabilities in several scenarios characterized by different numbers of faulty sensors within 
the pool.  

In this work, the BHM approach is applied to predict GT turbine deterioration over time, represented by GT 
compressor efficiency values, of which field data are taken from the literature. As made in [13], two different 
forecasting approaches, i.e. single-step and multi-step forecast, are adopted to test BHM prediction accuracy.  

BAYESIAN HIERARCHICAL MODELS APPLIED TO PROGNOSTICS 

The Bayesian Hierarchical Model (BHM) approach was described in detail by Losi et al. in [13]. Therefore, it is 
briefly recalled in this paper and the most relevant features which characterize its application to predict GT compressor 
efficiency data are discussed.  

A Bayesian Hierarchical Model (BHM) is a statistical model which combines a Bayesian approach with regression 
analysis within a hierarchical framework. Regression analysis allows the study of the underlying relationships between 
the predictor variable(s) (e.g. time) and the monitored variable(s) (e.g. compressor efficiency). The Bayesian approach 
treats regression coefficients as random variables, while the hierarchical framework allows model parameters to vary 
at more than one level.  

The main components of Bayesian inference are (i) the prior distributions, which describe the probability 
distributions of model parameters supposed before observing the data and (ii) the likelihood function, which represents 
the information that data provide about model parameters. The BHM involves individual prior distributions, associated 
with each particular unit, and common prior distributions, associated with the whole set of data, e.g. collected from 
multiple GT units.  

The goal of the Bayesian inference is to update prior probability distributions of the parameters to posterior 
distribution by incorporating the information provided by the data, according to Eq. (1): 
 

posterior  likelihood  prior (1) 
 

The final aim of the Bayesian analysis is performing predictive inference, i.e. predicting the probability distribution 
of future unobserved data points.  

The idea of Bayesian multi-level modeling is to handle data available in a hierarchical structure, so that group 
effects can be accounted for. For instance, gas turbine engines can be grouped according to different criteria such as 
belonging to the same customer, same site or same industrial application. Therefore, degradation data generated by 
GT engines are hierarchically structured and the BHM methodology is suitable to prognosis purposes.  

At the lowest level, the BHM handles degradation properties of individual units, while parameters of a higher level 
are related to the whole fleet of units and allow the variability of the degradation process of each unit to be taken into 
account. In this way, information about the health state can be shared among units and the model can grasp similarities 
of behaviour within the group of engines. A considerable amount of data can be used to perform inference, to improve 
the estimation of future observations.  

Methodology 

The predictive methodology comprises four main steps, as shown in Fig. 1. Step 1 consists of the estimation of 
model prior parameters by exploiting recorded observations taken in the past (i.e. past data). Step 2 combines historical 
data trends (past data) and real-time observations (real-time data) from multiple units to provide the training dataset 
to estimate the likelihood function for each unit. Step 3 exploits the information held by the training dataset as a base 
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of knowledge to perform inference on model parameters. Finally, at step 4, the outputs of step 3 are used to predict 
future unobserved values over a desired time horizon and provide an estimation of future engine degradation behavior. 

The BHM employed in this paper, and also in [13], consists of two levels. The first level relies on degradation 
trends from individual units; its model parameters, i.e. vector of regression coefficients wj and noise variance σj

2, are 
modelled by a Gaussian distribution and an Inverse Gamma distribution, respectively. The second level of the 
hierarchy expresses similarities on regression coefficients of individual unit degradation data by means of the 
definition of a common Gaussian distribution for the random variables wj. The mean w̅ and covariance matrix V of 
this distribution are random variables estimated by using the data. The pooled mean w̅ is modelled by a Gaussian 
distribution, while the inverse of the covariance matrix V 1 follows a Wishart distribution. Prior distributions of the 
pooled mean and covariance matrix as well as the unit noise variances are defined to complete the hierarchical model; 
their specifications are reported in [12, 13]. A first order regression analysis is adopted in this paper, as made in [12-
14].  

As anticipated above, information from both past and actual data are taken into account through the individual 
likelihood functions to update prior probabilities. The joint posterior probability density of all model parameters is 
computed by means of the Bayes’ theorem, based on data as well as prior distributions, according to Eq. (1). 

The complexity of the multi-level model employed in this paper does not allow to obtain a closed-form solution 
for the joint posterior distribution. This means that a sampling-based method is required to perform inference on model 
parameters. In particular, the specifications of prior distributions allow the computation of posterior conditional 
probabilities for all the parameters of interest. Thus, the Gibbs sampler is a very suitable tool for fitting the statistical 
model considered in this paper. From posterior conditional densities, Gibbs sampling produces a sequence of draws 
for the model parameters which, after a suitable “pre-convergence” period, have converged in distribution to the joint 
posterior probability, according to Eq. (2): 
 

{wj
(g)

, (σj
2)(g)

, w̅(g), (V 1)(g) },     g = 1, 2, ...., G (2) 
 
where G is the total number of generated draws.  
 
 

 
FIGURE 1. Block diagram of BHM applied to prognostics [13]  
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BHM Prediction 

By using the outputs of the Gibbs sampler, the predictive distribution of future data points is calculated and 
extrapolated over a desired time horizon by performing Monte Carlo integration which uses draws taken from the 
Gibbs sampler sequence after the “post-convergence” period B. Therefore, the number of values predicted by the 
BHM at each time point is equal to (GB). In this paper, in agreement with [13], the following values are selected: 
G=1000; B=100.  

A draw from the predictive distribution can be obtained from the following normal distribution: 
 

(yBHM
∗ )(g)~𝒩(X∗wj

(g)
, (σj

2)(g)I) (3) 
 
where X*contains the time vector of future data points t*. 

According to the definition provided in Eq. (4), the mean of the simulated values (y*
BHM)(g), which are (GB) in 

total (900 in the simulations carried out in this paper), can be used to produce a prediction of gas turbine trajectory 
over time, while the standard deviation defined in Eq. (5) provides a measure of prediction scatter:  
 

yBHM =
1

G − B
∑ (yBHM

∗ )(g)

G

g=B+1

 (4) 

 

σBHM = √
1

(G − B) − 1
∑ [(yBHM

∗ )(g) − yBHM]
2

G

g=B+1

 (5) 

 

CASE STUDY 

The analyses carried out in this paper consider field data collected on three Alstom heavy-duty gas turbine power 
plants (Alstom gas turbines GT13, GT24, GT26) characterized by high degradation rate. The field datasets include 
compressor efficiency values collected over a time frame of 7-9 years and are used for testing the prognostic method 
on a real-world case study. The field data considered in this paper are the same datasets considered by Venturini and 
Therkorn in [15] and are reported in Fig. 2.  
 

 
FIGURE 2. Compressor efficiency field data [15] 
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As discussed in [15], the raw data were preprocessed by means of Alstom monitoring tools and reduced to only 
one value per day, calculated as the average value during a 5-minute time interval. They were also corrected to ISO 
conditions and base load operation to identify the degradation trend. Therefore, the scatter of the field data due to 
measurement uncertainty can be considered negligible compared to the rate of change due to GT health state 
degradation. As made in [15], the non-dimensional compressor efficiency values reported in Fig. 2 were obtained by 
dividing each measured value by the corresponding value at the beginning of the trend.  

The field data consist of 76 data trends in total, not equally distributed across the three engines because the time 
frames of observation are different, and each trend has a different duration Tk (expressed in days) and downtime 
between two subsequent trends. The degradation datasets of GT13 consist of 34 trends, while both GT24 and GT26 
have a degradation history composed of 21 trends.  

Data Feed 

This Section describes the procedure adopted to supply input data to BHM. First, past degradation trends from 
multiple units are used to compute both individual and common prior distributions. Then, all training trends, i.e. past 
information contained in the degradation database and the real-time trend from each unit in the model, are fed into the 
BHM. The unit under prognosis, i.e. the j-th unit, is assumed to begin with no data while all others, i.e. the training 
units (which are M 1 in total) have full information in the model, i. e. the latest degradation trend of each training 
unit is completely known. Such information is added to the model to predict the real-time trend for the j-th unit under 
prognosis. As new data for the unit under prognosis are available, the prediction of the unit trend is updated.  

The total number of training trends used by the BHM is given by Eq. (6):  
 

Ntr = (M − 1)(Npt + 1) (6) 
 
The synthetic index Ntr summarizes the whole amount of information used for training the methodology, by accounting 
for both the number of engines and past trends. This in turn allows the extension of the results presented in this paper 
and thus the derivation of rules of thumb for field application.  

Each degradation trend of each gas turbine is forecasted and all the remaining trends or a subset of trends are 
supplied to the prognostic methodology to train the predictive model. In particular, Ntr values of 10, 15 and 20 are 
investigated in this paper for sensitivity purposes.  

The simulation tests are carried out by considering the forecasting trend as a new unit with no past degradation 
information. In this case, an average across the fleet of the individual priors was calculated to initialize the prognostic 
algorithm, as suggested by Zaidan et al. in [12]. With regard to the training dataset, it is assumed that M = 2, according 
to the analyses performed by the authors in [13]. This means that the prognostic tool is applied for predicting the future 
behavior of a single engine. 

Prediction Reliability Assessment 

The parameter considered to assess BHM prediction reliability is the relative root mean square error RMSE, which 
is calculated as the root mean square of the differences between the predicted values of the observations and the 
measured values, as described in Eq. (7):  
 

RMSE = √
1

N
∑e2(ti)

N

i=1

 (7) 

 
where N is the number of predictions and e is calculated for each time point in the range [0; T]. The capabilities of the 
BHM prognostic method are assessed by considering two different forecasting approaches, i.e. single-step and multi-
step forecast, which allow the evaluation of subsequent value (SV) prediction error eSV and last trend value (LV) 
prediction error eLV, respectively. The two errors are defined as follows:  
 

eSV(ti) =
ymeas(ti) − yBHM(ti)

ymeas(ti)
 (8) 
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eLV(ti) =
ymeas(T) − yBHM(T)

ymeas(T)
 (9) 

 
It is worth noting that the predictions of yBHM(ti) and yBHM(T), estimated by using Eq. (4), are made by exploiting 

the information held by a knowledge base of Ntr trends and real-time data of the engine under prognosis acquired until 
time ti-1. Therefore, the error on the last value of the trend eLV(ti) depends on both the time point ti under consideration 
and the number of time points from ti-1 to T, which, is different from one trend to another. 

Moreover, BHM prediction reliability is also assessed in terms of success rate (SR), once again for both single- 
and multi-step prediction. A success is obtained if the conditions expressed in Eqs. (10) and (11) are verified for 
single- and multi-step prediction, respectively:  
 

yBHM(ti) − k ∗ σBHM(ti) ≤ ymeas(ti) ≤ yBHM(ti) + k ∗ σBHM(ti) (10) 
 

yBHM(T) − k ∗ σBHM(T) ≤ ymeas(T) ≤ yBHM(T) + k ∗ σBHM(T) (11) 
 

Then, SR is estimated by calculating the rate between the number of successes and the total number of predictions 
N. The parameter k defines the tolerance bandwidth on BHM point forecast, i.e. yBHM(ti).  

RESULTS AND DISCUSSION 

The prediction errors are shown in Fig. 3, which reports the average RMSESV (a) and RMSELV (b) values for GT13, 
GT24 and GT26. The average values of RMSESV vary between 0.1 % and 0.3 %, while the values of RMSELV vary 
between 0.3 % and approximately 0.6 % for all the investigated Ntr values. Therefore, the results highlight the very 
good capabilities of the prognostic methodology based on BHM. Moreover, as already documented and discussed in 
[13], it can be noted that the prediction errors are sensitive to the considered engine. In particular, for all the values of 
Ntr, the prediction error achieves the highest values on GT13 and GT26 data. Moreover, for each value of RMSE, Fig. 
3 also reports the standard deviation of error values obtained on forecasted trends, to highlight the prediction error 
variability. Even if a training dataset composed of 20 trends is used, the prediction errors on GT13 and GT26 are 
characterized by higher variability compared to GT24. Instead, the average values of RMSESV and RMSELV for GT24 
are equal to 0.15 % and 0.25 % if at least 10 degradation trends are used to train the methodology, respectively, and 
the prediction errors obtained on the forecasted trends are close to the average value.  

In fact, the behavior over time of GT13 and GT26 engines is considerably different from GT24 as can be observed 
in Fig. 2. These two GT units are characterized by degradation trends with very different degradation rates; thus, 
highly heterogeneous trends are both predicted and used to train the BHM. This makes the prediction of BHM more 
challenging. In spite of this, the RMSESV is, in most cases, lower than 0.4 %, while RMSELV is usually lower than 1.0 
%. It has to be noted that a similar behavior was observed for the prediction of power output degradation trends [13]. 

Maximum values of RMSESV and RMSELV (not reported in this paper for the sake of brevity) are also very low 
from an engineering point of view. In fact, the maximum RMSESV is equal to 0.75 % and 0.25 % for GT13 and, GT24 
and GT26, respectively; while the maximum RMSELV exceeds 1.0 % only for GT13 and GT26.  
 

  
(a) (b) 

FIGURE 3. BHM prediction error for subsequent value prediction (a) and trend last value prediction (b) 
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The optimal forecasting capabilities of BHM methodology are confirmed by analyzing the SR. As made for the 
RMSE, also the SR was calculated for all the degradation trends of each unit. For the sake of brevity, only the results 
for Ntr=10 are reported in this paper. In fact, in agreement with the analyses carried out in [13], BHM prediction 
accuracy on compressor efficiency degradation trends are slightly influenced by the number of training trends Ntr, if 
Ntr is higher than 10.  

A sensitivity analysis on the values of k, in the range from 1 to 3, was carried out. In fact, the simulated values 
y*

BHM are drawn from a normal distribution (see Eq. (3)) and therefore almost all values should be within three standard 
deviations. 

Figure 4 shows the average values of SRSV and SRLV for the three considered values of k. The average SRSV is 
equal to 70% for k=1 for all the GT units and increases up to 93 % if k=2 and 98 % if k=3. It should also be observed 
that no noticeable difference is highlighted among the three GT units, unlike the analysis of RMSESV results.  

Instead, as expected, the success rate on trend last value prediction SRLV is lower than the success rate on 
subsequent value prediction SRSV. The decrease is mostly highlighted at k=1, while both the SRSV and the SRLV are 
higher than 90 % if k is assumed equal to 3. Moreover, a significant variability across GT units, which decreases by 
increasing the value of k, is observed.  
 

  
(a) (b) 

FIGURE 4. Success rate for subsequent value prediction (a) and trend last value prediction (b) 

CONCLUSIONS 

In this work, a BHM was applied to predict compressor efficiency deterioration over time by mean of field data 
taken from the literature. Degradation data trends covered a time frame of 7-9 years and were highly heterogeneous. 
Two different forecasting approaches, i.e. single-step and multi-step forecast, were adopted to test BHM prediction 
accuracy. 

The results proved the optimal capabilities of the BHM-based prognostic methodology. In fact, the average 
prediction error for single-step prediction was usually lower than 0.3 %, while the average prediction error for multi-
step prediction never exceeded 0.6 %, regardless of the considered gas turbine and number of training trends. The 
BHM prediction capabilities were also quantified by means of success rate. By considering a bandwidth equal to two 
standard deviations, the success rate of the single-step prediction was equal to approximately 90 %, while the success 
rate of multi-step prediction was in the order of 80 %. These results proved the high accuracy of BHM predicted 
outputs. 

NOMENCLATURE 

B Gibbs sampler “pre-convergence” period t time index 
e error T degradation phase duration 
g Gibbs sampler iteration V variability on regression coefficients 
G Gibbs sampler total iteration number w vector of regression coefficients 
k Parameter in Eqs. (10) and (11)  w̅  vector of common mean 
M fleet size X design matrix 
N number y health index 
𝒩  Normal distribution ε data random error 
p probability density function σ standard deviation 
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Subscripts and Superscripts 
BHM predicted by means of the BHM pt past trends 
j engine label SV subsequent value 
LV last value tr training 
meas measured   
    
Abbreviations 
BHM Batesian Hierarchical Model PDF Probability Density Function 
GT Gas Turbine PHM Prognostic and Health Management 
MCMC Markov Chain Monte Carlo RMSE Root Mean Square Error 
OLS Ordinary Least Square SR Success Rate  
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