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Abstract: The paper addresses the problem of the generation of collision-free trajectories for a robotic
manipulator, operating in a scenario in which obstacles may be moving at non-negligible velocities.
In particular, the paper aims to present a trajectory generation solution that is fully executable
in real-time and that can reactively adapt to both dynamic changes of the environment and fast
reconfiguration of the robotic task. The proposed motion planner extends the method based on a
dynamical system to cope with the peculiar kinematics of surgical robots for laparoscopic operations,
the mechanical constraint being enforced by the fixed point of insertion into the abdomen of the
patient the most challenging aspect. The paper includes a validation of the trajectory generator in
both simulated and experimental scenarios.

Keywords: robot motion planning; obstacle avoidance; dynamical systems; surgical robotics

1. Introduction

Modern applications of robotic technologies involve more and more frequently the interaction
of robots with a dynamic environment. The variability in the environment may be due to the
uncertainty on the presence of obstacles and on their location or to the fact that such obstacles
may be moving and, if so, in unknown or unpredictable ways. A notable source of environmental
variability is the involvement of humans, whose behavior is inherently uncertain, in the operations
of robots. For example, the manufacturing industry domain has been promoting for several years
the expansion of human–robot collaborations, in terms of both workspace sharing and physical
cooperation [1]. In this scenario, robots must be able to move while avoiding collisions with humans
or, if contacts are acceptable (i.e., physical human–robot interaction (pHRI)), to limit the forces exerted
during such contacts. The mentioned features are mandatory, of course, to guarantee the safety of
humans interacting with robots, and their realization entails sophisticated control and perception
technologies. Further advances on cognition and automated reasoning for industrial collaborative
robotics are being intensively studied by several authors [2]. Medical surgery is another important
context in which human safety is the primary issue and the presence of robots and their required
level of cognitive capabilities are constantly increasing. In particular, surgical robots are currently
improving their role from one of a sort of human arm extension to one of artificial assistants, able
to analyze the operating scenario and autonomously plan and execute their actions in support of
human surgeons. Indeed, the use of teleoperated robotics systems has already been a gold standard
for minimally-invasive surgery (MIS) for 20 years, while autonomous or semi-autonomous robots for
surgical tasks, especially considering operations involving the treatment of soft tissues, have not yet
reached high technological readiness levels (e.g., TRL 8 or 9). Notable exceptions are ROBODOC [3],
CyberKnife [4], or NeuroMate [5], but they operate on either rigid tissues (i.e., bones) or restricted
body portions. Increasing the autonomy level of surgical robots for more general MIS applications

Electronics 2019, 8, 957; doi:10.3390/electronics8090957 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-6065-9769
https://orcid.org/0000-0003-3480-1351
https://orcid.org/0000-0002-0287-6896
http://www.mdpi.com/2079-9292/8/9/957?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8090957
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 957 2 of 24

requires addressing both technical and ethical/legal issues (see [6,7] for updated reviews). In particular,
from the technological point of view, soft-tissue surgery in non-rigid anatomical environments forces
taking into account hardly predictable scene changes, complicating the tasks of collision-free motion
planning and physical environment interaction (i.e., contact with objects with unknown and even
variable viscoelastic properties).

The growth of investments in research and development projects for autonomous surgical robotics
demonstrates the confidence and the expectations of the medical community regarding the benefits
of such technologies. For example, the European Union has recently funded several projects related
to the automation of surgical tasks, like I-SUR (Intelligent Surgical Robotics, FP7 Grant No. 270396,
http://www.isur.eu/isur), MURAB (MRI and Ultrasound Robotic Assisted Biopsy, Horizon 2020 Grant
No. 688188, https://www.murabproject.eu), and SARAS (Smart Autonomous Robotic Assistant Surgeon,
Horizon 2020 Grant No. 779813, https://saras-project.eu). In particular, the I-SUR project addressed
the automation of needle insertion and suturing tasks [8] by means of a dual-arm robot with hybrid
parallel/serial kinematics. The cognitive control architecture proposed by I-SUR [9] was able to operate
in either teleoperated [10] or autonomous mode [11], guaranteeing a stable switch between the two and
an adaptive interaction with the environment in both modes [12]. The inherent relationship between
surgical and industrial collaborative robotics is demonstrated by the fact that the same control methods
(i.e., admittance control with variable dynamics) have also been applied by the same authors to enforce
stability in pHRI [13,14]. Turning back to the specific case of the suturing task, the work presented
in [11] proposed a motion planning solution based on a combination of previously-specified motion
primitives for the dual-arm system, designed to mimic the bimanual gestures of a human surgeon,
and collision-free paths generated with a plan-and-move strategy. Similar approaches to surgical robotic
suturing were described in [15,16], investigating advanced learning techniques, or [17,18], addressing
the task using more classical robot motion planning techniques and analytic geometry. Even though
surgical suturing tasks have also been automated by designing specific devices, not mimicking at
all human gestures [19], the solutions based on general-purpose multi-arm robots and appropriate
motion planners are more flexible and can be applied to different operations. Another notable example
emphasizing the latter aspects can be found in [20].

In all of the mentioned applications, a fundamental issue to address is the generation of
collision-free robot motions, avoiding obstacles that may be static, but at a previously-unknown
position within the workspace, or moving, along an either predictable or unpredictable trajectory.
The latter condition would prevail if the motion of obstacles is related to human behavior, for example
because the obstacle itself is a human or because the obstacle is a tool teleoperated by a human through
a haptic device. In this paper, we will primarily consider the problem of motion generation for an
assistive surgical robot operating in the same workspace of either a teleoperated surgical robot or a
manually-driven surgical tool, which is the application domain of the previously-mentioned SARAS
project. In particular, we aim to address laparoscopic MIS, a kind of surgery in which the surgical
tools are inserted into the abdomen of the patient through so-called trocars. The trocar at the tool entry
point imposes a constraint on the degrees of freedom (DOFs) of the surgical instruments, in particular
on the lateral translations, a constraint that is essential to guarantee that the operation is minimally
invasive. In other words, the tool can freely rotate around the trocar insertion point, but can only
translate along the direction connecting its tip and the insertion point itself. Therefore, the proposed
motion generation scheme assumes that the controlled robot is a rod-like manipulator whose motion
is compliant with the kinematic constraints imposed by the trocar. Furthermore, the proposed solution
takes into account possibly moving obstacles, whose position and velocity are not known a priori,
but their measurements are available at the current processing instant. Indeed, the motion generation
strategy described in this paper can be classified as a real-time adaptive motion planner (RAMP) [21].

http://www.isur.eu/isur
https://www.murabproject.eu
https://saras-project.eu
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The research on RAMP is relatively new, especially considering robots acting in a dynamic
and/or unknown environment, for which the plan-and-move strategy is not applicable. The latter
aspect also means that many of the collision-free path planning methods proposed in the literature
(e.g., RRT/RRT-Connect and all of their variants [22], just to name the most well known) and even
supported by state-ofthe-art software libraries [23,24] cannot be straightforwardly used. Notable
approaches introducing reaction capabilities into a path planning framework are those exploiting
the elastic deformations of a specified geometric path, by applying repulsive forces [25] or adjusting
traveling velocities along the path [26]. However, many robotic tasks in a dynamic environment cannot
be specified a priori by a geometric path. In such cases, methods based on random or probabilistic
sampling, like RRT, can be extended to implement fast selection/adaptation of the proper motion in
real time [27]. On the other hand, such approaches inherently produce indeterministic behaviors, which
could be a disadvantage in safety-critical applications like surgical and industrial collaborative robotics.

The rest of the paper will present a motion generation method that is designed to be compatible
with the requirements of an autonomous robot for laparoscopic MIS. The proposed method is derived
from the approach based on the Dynamical Systems (DS) of Khansari-Zadeh and Billard [28] and relies
uniquely on the knowledge of the environment, including the position and velocity of possibly moving
obstacles, at the same instant in which the desired motion of the robot is generated. The advantages of
the DS-based approach are the guarantee of a deterministic behavior with formally-provable obstacle
avoidance properties and the limited computational requirement, especially in comparison with
sampling-based or optimization-based methods. Indeed, the DS-based method allows analytically
(i.e., with a closed-form solution) computing the robot velocity avoiding the obstacles, based on
their shapes. On the other hand, most of the DS-based motion planners previously described in the
literature considered point-like robots without kinematic constraints, which is a model not adequate
for a laparoscopic surgical robot constrained by a trocar. A more suitable model for such a robotic
device is instead a rod (or, more precisely, a capsule) subject to the mechanical constraint of a remote
center of motion (RCM). In our proposal, the collision-free property of DS-based-generated motions
for the considered capsule-like robot is obtained by modulating, using the theoretical tools of [28],
the velocity of the closest point on the capsule to the closest obstacle and by computing in real time a
suitable waypoint to guide the obstacle avoidance maneuver. Therefore, the main contributions of the
paper are:

• an extension of the DS-based approach to real-time obstacle avoidance for a robot geometrically
modeled as a capsule with an RCM, which is suitable for surgical laparoscopic MIS;

• a detailed analysis of the collision-free properties of the proposed motion generation method
in both static and dynamic environments, including simulations and experimental results on a
multi-robot system composed by real surgical manipulators, in a non-clinical setup.

2. Related Works

The generation in real-time of trajectories for robot motion is a problem that has attracted the
interest of the research community since more than two decades. As real-time or online trajectory
generation (OTG), we consider the case in which the desired motion state (i.e., position, velocity, and
possibly acceleration) is calculated in the same instant in which it is commanded as a set-point to
the robot controller, on the basis of the desired motion state at the previous instant and a possibly
time-varying set of constraints. Such time-varying constraints typically include at least the final
motion target. Indeed, the intrinsic motivation for OTG is the necessity for prompt adaptations of the
robot motion to fast and unpredictable reconfigurations of the task. Other constraints that could be
relevant, especially for robotic applications in which the smoothness of motions or its compatibility
with physical limitation of the robot is primary, are the bounds on the time derivatives of the generated
trajectory (i.e., velocity, acceleration, jerk, etc.).
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A possible approach to OTG is to describe the trajectories in terms of piece-wise polynomials
or spline functions and then to design fast computational algorithms allowing the update of the
trajectory parameters even during the execution of the trajectory itself [29,30]. However, while such
a solution is suitable for fast adaptation to motion target changes, it cannot easily take into account
time-varying bounds on velocity or acceleration. Another interesting approach that is instead able
to cope with the latter issue is the generation of the desired motion by means of nonlinear filters.
Nonlinear filters for OTG were introduced first in [31], with a solution based on decision trees. Later
on, trajectory generation based on variable-structure (VS) dynamical systems, acting as time-optimal
smoothing filters for rough reference signals, was introduced in [32]. The latter reference presents
a second-order version of the VS filter, which is able to limit the velocity and acceleration of its
output within symmetric bounds. Further extensions of the method were proposed in [33] (third-order
continuous-time filter with bounded jerk), [34] (second-order discrete-time filter with asymmetric
bounds on velocity and acceleration), and [35] (third-order discrete-time filter with asymmetric bounds
on velocity, acceleration, and jerk). However, such nonlinear filters are inherently single-DOF systems,
and therefore, they are not designed to solve the obstacle avoidance problem. An adaptation of the
nonlinear filtering approach to the specific context of wheeled mobile robots was proposed in [36,37],
including obstacle avoidance capabilities in the latter reference.

Another solution to the OTG problem is the one developed mainly by Kröger, fully presented
in [21] and implemented by the well-known Reflexxes libraries (RML, http://reflexxes.ws/).
The method of Kröger provides most of the features of the nonlinear filters derived from [32], but adopts
decision trees like in [31]. An additional feature of the OTG supported by RML is the possibility to
synchronize multiple DOFs so that they reach their own target simultaneously. However, even
this kind of reactive planner is unable to generate collision-free trajectories for a manipulator in a
cluttered environment.

Considering instead obstacle avoidance as the primary objective, a relevant approach
(i.e., based on purely reactive behavior) that must be mentioned first is the seminal work on Velocity
Obstacles (VO) [38], proposing a method to compute the set of velocities that a circular robot
(moving in a 2D space) should not achieve, to avoid the collision with another moving agent with a
currently-known velocity. The method has been applied and extended by many other authors (see [39]
for a recent example), even considering motions in a 3D space. However, most of the works in the
literature related to VO addressed motion planning for mobile robots or aerial vehicles, rather than
manipulators. With the latter in mind, we would like to conclude this literature review by mentioning
the two approaches to robot motion planning, sharing several common aspects, which mostly inspired
our work: the one based on dynamic movement primitives (DMP) [40] and the one based on dynamical
systems (DS) [28]. The basic idea of the first method is to encode a trajectory by means of the definition
of a stable nonlinear differential equation, whose behavior is attracted by the desired motion target.
Even though the basic objective of the work proposing DMP is to learn a human-like or, more generally,
a biologically-inspired behavior from demonstrations (see [41] for a recent application in industrial
collaborative robotics), the approach may include obstacle avoidance features. However, in the context
of DMP, obstacles are generally modeled as single points in a 3D space. The approach proposed by
Khansari-Zadeh and Billard in [28], instead, puts a strong emphasis on the geometrical properties of
the obstacles and allows us to take into account objects with rather complex shapes, by embedding
them into multi-dimensional ellipsoids. Such geometric properties are exploited to modulate the
behavior of a DS, so that the obstacle avoidance feature is added to its original features (e.g., stability,
convergence to a goal, etc.). It is interesting to note that also the approach based on DS has been
applied to motion estimation and learning, for teaching by demonstration tasks [42].

Since the DS-based methodology is the starting point of our developments, the next section will
recall its main theoretical aspects.

http://reflexxes.ws/


Electronics 2019, 8, 957 5 of 24

3. DS-Based Obstacle Avoidance

The basic assumptions of the method outlined by Khansari-Zadeh and Billard in [28] are that
the desired velocity of the robot is generated by an admissible differential equation and that obstacle
avoidance is enforced by applying to such velocity a modulation matrix, which is properly built
according to a mathematical formulation that takes into account the shape of obstacles. In more detail,
the procedure returns a modulated command signal defined in an m-dimensional robot state-space as:

ξ̇ = M(ξ) f (.), (1)

where ξ ∈ Rm is the current robot state, M(ξ) is the modulation matrix, and f (.) is the function
generating the original desired velocity, generally driving the robot towards the goal state. Assuming
that the control is implemented in discrete time, the next state at time t + 1 of the robot is computed by
integrating Equation (1) using the Euler formula:

ξt+1 = ξt + ξ̇ δt (2)

where t is the current time and δt is the time step for the integration.
The simplest function f can be defined as a first-order dynamics convergent to the goal state:

f (.) = ξg − ξ , (3)

with ξg the goal of the task.
The modulation matrix is constructed on the basis of the geometric features of the obstacles and

their positions in the workspace. Each obstacle can be modeled as an m-dimensional ellipsoid in which,
for every point on its convex surface, the following expression holds:

Γ(ξ̃) :
m

∑
i=1

( ξ̃i
ηiai

)pi
= 1 , (4)

where Γ is a continuous function representing the level curves of the ellipsoid, ai are the length of the
axes of the ellipsoid, pi are customizable exponents, and ξ̃ = ξ − ξ0 with ξ0 the center of the ellipsoid.
The coefficients ηi are scalar values ≥ 1 called safety factors, which increase the dimension of the
corresponding axis in order to take into account the safety margins that should be maintained while
avoiding the obstacles.

The choice of Γ(ξ̃) as in Equation (4) provides high flexibility in modeling different shapes, while
maintaining an analytic expression. This leads to a simple computation of the parameters needed for
building the modulation matrix, such as the normal vector of the surface, which identifies a deflection
plane for the motion. The normal vector of the surface, in fact, is the gradient of Γ(ξ̃):

n(ξ̃) = ∇Γ(ξ̃) =
[

p1

η1a1

( ξ̃1

η1a1

)p1−1
. . .

pm

ηmam

( ξ̃m

ηmam

)pm−1
]T

. (5)

Then, the modulation matrix can be constructed as follows:

M(ξ) =
K

∏
k=1

Mk(ξ̃k) ; (6)

with the Mk(ξ̃k) modulation matrix of the kth obstacle and K the number of the obstacles. It is important
to remark that the latter is the main factor that affects the computational effort required to calculate
the collision-free motion with this method. Indeed, all of its processing steps are based on analytical
expressions, but repeated K times (i.e., one time for each obstacle populating the robot workspace).
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The modulation matrix Mk(ξ̃k) of an obstacle can be computed on the basis of Γk(ξ̃k) and nk(ξ̃k):

Mk(ξ̃k) = Ek(ξ̃k)Dk(ξ̃k)Ek(ξ̃k)−1 , (7)

with:

Ek(ξ̃k) =

[
nk(ξ̃k) ek,1(ξ̃k) . . . ek,m−1(ξ̃k)

]
, (8)

ek,i
j (ξ̃k) =


− ∂Γ(ξ̃k)

∂ξk
i

if j = 1
∂Γ(ξ̃k)

∂ξk
1

if j = i 6= 1, i ∈ 1 . . . m− 1, j ∈ 1 . . . m− 1

0 if j 6= 1, j 6= i

, (9)

and:

Dk(ξ̃k) =


1− ωk

|Γ(ξ̃k)|
1
ρ

0 0

0 1 + ωk

|Γ(ξ̃k)|
1
ρ

0

0 0 1 + ωk

|Γ(ξ̃k)|
1
ρ

 , (10)

where:

wk(ξ̃k) =
K

∏
i=1,i 6=k

Γi(ξ̃ i)− 1
Γk(ξ̃k)− 1 + Γi(ξ̃ i)− 1

, (11)

is a weight that determines how much the modulation matrix influences the motion in the case of
multiple obstacles and ρ is a scalar ≥ 1 that determines the reactivity of the modulation.

It is worth observing that the algorithm domain Rm can be the Cartesian space, as well as the
robot joint space. However, the forthcoming discussion will deal only with the Cartesian space R3,
since the obstacles, which are natively solids of the 3D Cartesian space, cannot be easily mapped into
the joint space of the robot.

Furthermore, this method can be extended considering the velocities of the obstacles as follows:

ξ̇ = M(ξ)( f (.)− ξ̇
o
) + ξ̇

o
, (12)

with:

ξ̇
o
=

K

∑
k=1

wk(ξ̃k)ξ̇o,k (13)

where ξ̇o,k is the net effect of the translational and rotational velocities of the kth obstacle.
Finally, the algorithm allows disabling the modulation in case the robot has already passed the

obstacle (i.e., to avoid the so-called tail effect). For further details on the algorithm and its mathematical
formulation, see [28,43].

4. DS-Based Obstacle Avoidance for Laparoscopic Surgical Robots

The algorithm outlined in Section 3 can be used to generate a motion for a robot under the
assumptions that its end-effector (EE) can be modeled as a point or a sphere, that it can move freely
in the space, and that the obstacles can be described using the analytic expression of ellipsoids.
However, in laparoscopic scenarios, these assumptions are limiting. Indeed, the laparoscopic tool
has a non-negligible dimension, and its motion is constrained by the trocar at the point of insertion
into the abdomen of the patient. Moreover, in laparoscopic surgery, at least four tools are generally
used, and when controlling one of them in an autonomous robotic platform, the other three tools are
to be considered as obstacles. Such obstacles can be modeled as ellipsoids; however, their analytic
expressions would require a very high value of pi exponents to fit the shape of the tools properly;
this would lead to a strong increase in the computational effort of the planner algorithm, since it
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is harder to compute the distances and the closest points using these analytic expressions (in the
following subsections, it will become clear why this information is needed for the planner algorithm).
Therefore, a simpler model for the description of the tools has been introduced in this paper. Each tool
is bounded by a capsule, which is a cylinder with a hemispheric termination (see Figure 1 and 2 on top).
Figure 1 shows also a generic scenario with different kind of obstacles and introduces the notation
which will be used in the following discussion. This model fits better to the shape of the laparoscopic
tool, while keeping the computation of distances and nearest points very efficient, as will be described
in the next subsection.

Figure 1. In blue: the controlled tool modeled as a capsule. In red: a spherical obstacle and a
capsule-shaped obstacle.

Figure 2. Top: a capsule. Bottom: a capsule sampled by its constituent overlapping spheres, with the
growing density of samples going from left to right.

4.1. Computation of Distances between Solids

Computing the tool-obstacles distances and the position of their closest points is necessary to
build the modulation matrix of the proposed method. Since the tool is modeled as a capsule, algorithms
to compute the distance between two capsules and between a capsule and an ellipsoid are required;
these can be implemented following two approaches:

1. using algorithms operating on the 3D meshes of the objects;
2. using algorithms implementing analytic solutions for the problem.
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The first approach can be time consuming to execute at each control cycle, so for this application,
the second approach is exploited.

The distance between two capsules d1,2 can be computed by subtracting the radii r1 and r2 of the
capsules from the distance between the two segments representing the axes of the capsules:

d1,2 = da1,a2 − r1 − r2, (14)

where da1,a2 is the distance between the axes of the capsules computed as explained in [44]. The closest
points on the capsules pc1 and pc2 can be computed starting from the closest points on the segments
pa1 and pa1 (which are found using the parameterization of the segments of [44]) by simply finding
the line that passes through them and considering the radii r1 and r2 as follows:

pc1 = pa1 + r1
pa2 − pa1

‖pa2 − pa1‖
; (15)

pc2 = pa2 + r2
pa1 − pa2

‖pa1 − pa2‖
. (16)

The distances between a capsule and an ellipsoid can be analytically computed in an efficient way
only if the ellipsoid is quadratic (i.e., pi = 2 in Equation (4)), so in this application, only quadratic
ellipsoids will be used. This distance and the closest points can be found by using geometric tools, like
for example those implemented in the NASA Spice toolkit [45], combining the operations computing
the distance between a line and an ellipsoid, the distance between a point and an ellipsoid, and the
related closest points for both cases:

• if the line does not intersect the ellipsoid (i.e., the line is at a distance dl,e > 0 from the ellipsoid),
then the distance between the end-points of the axis of the capsule and the ellipsoid has to
be computed; if both of them are greater than dl,e, then the distance between the line and the
ellipsoid is the minimum, and the relative closest points are kept; otherwise the end point with
the minimum distance is the closest point of the segment, and the relatively closest point on the
ellipsoid is the correct one.

• if the line intersects the ellipsoid, then one of the end points is the closest point, so for both of them,
the distance is computed, and the minimum one is kept together with the relative closest points.

Then, the point on the capsule closest to the obstacle pc can be computed as follows:

pc = pa + r
pe − pa

‖pe − pa‖
, (17)

where pa is the point on the axis of the capsule, pe is the point on the ellipsoid, and r is the radius of
the capsule.

As a final remark, the general quadratic form of the ellipsoid can be used also to describe
spheres (which in fact are ellipsoids with all the axes of the same length); however, it can be useful to
treat spheres separately, since more efficient methods for solving this problem can be implemented.
For example, a sphere can be considered as a degenerate capsule with an axis of null length, and then,
a capsule-to-capsule distance function can be used. Alternatively, it is possible to compute the distance
between a sphere and a capsule ds,c as follows:

ds,c = d− rs − rc . (18)

where d is the distance between a point (which is the center of the sphere) and a segment (which is the
axis of the capsule) and rs and rc are the radii of the sphere and capsule. The distance d can be found
by projecting the point with a normal projection onto the line that contains the segment and taking
the distance between these two points; this distance is then compared with the distances between the
point and the end points of the segment, and the minimum of the three is kept with the relative closest
points. Points on capsule pc and on sphere ps can be computed again as follows:
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ps = cs + rs
pa − cs

‖pa − cs‖
; (19)

pc = pa + rc
cs − pa

‖cs − pa‖
, (20)

where cs is the center of the sphere, pa is the point on the axis of the capsule, and rs and rc are
respectively the radii of the sphere and the capsule.

4.2. Rigid Body Modulation

Since the robot is no longer modeled as a point, the modulation should take into account the
whole tool as a rigid body. This introduces two problems:

1. how to manage the robot’s velocity for the modulation: in fact, there is no longer a unique
velocity for the EE, but each point of the tool has a different velocity (consistent with the rigid
body motion);

2. how to take into account the influences of multiple obstacles properly, since different parts of the
tool can be close to different obstacles.

Problem 1 was solved choosing as the velocity to be modulated the velocity ṗc of the point pc on
the axis of the tool closest to the closest obstacle, since this point resides in the tool area that will most
likely collide with an obstacle. The dynamics used to control the EE p were chosen as follows:

ṗ = vd
g− p
‖g− p‖ ; (21)

where vd is the norm of the desired velocity and g the goal of the task. Such dynamics, in case of no
obstacles on the path, is always convergent to the goal of the task and determines a linear trajectory
of the EE. The scalar quantity vd can be designed, for example, to obtain an acceleration ramp at the
beginning or a deceleration ramp at the end of the movement.

The velocity of the point on the axis of the tool closest to the closest obstacle ṗc can be computed
from Equation (21) considering the constraint of the fixed insertion point: the projection of the
tip velocity on the tool direction corresponds to the translational velocity along the tool direction
(the insertion/extraction velocity), then it can be subtracted from the tip velocity to obtain the tangential
velocity. That component depends on the position of the considered point inside the tool, so it has to be
properly scaled to obtain the tangential velocity of the desired point. Finally, the previously-computed
insertion/extraction component, which is the same for all the tool points, is added to the tangential
velocity to obtain ṗc.

A digest of this procedure is provided by the following equations:

ṗproj = (ṗ · â) â
‖â‖ ; (22)

ṗres = ṗ− ṗproj ; (23)

ṗc =
‖pc − pt‖
‖â‖ ṗres + ṗproj . (24)

where ṗproj is the projected velocity, â is the axis of the capsule, and ṗres is the resultant to be scaled.
The velocity ṗc is then modulated to enforce obstacle avoidance by means of a modulation matrix M,
built as described in Section 3:

ṗ?
c = M ṗc (25)

Then, the modulated velocity ṗ? at the end-effector tip is computed as follows:
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ṗ?
proj = (ṗ?

c · â)
â
‖â‖ ; (26)

ṗ?
res = ṗ?

c − ṗ?
proj ; (27)

ṗ? =
‖â‖

‖pc − pt‖
ṗ?

res + ṗ?
proj . (28)

where ṗ? is the modulated projected velocity; ṗ?
res is the modulated resultant to be scaled. This velocity

is then integrated, and the next position of the EE tip is obtained.
If the obstacles are moving, it is possible to take into account their motion considering the velocity

of the robot relative to the obstacle:

ṗrel = ṗc − ṗobs, (29)

where ṗobs is computed as shown in Equation (13), taking into account that, since the obstacles are rigid
bodies as well, each obstacle velocity must be computed as the velocity of the point on the obstacle
closest to the robot. For the capsules bounding the other laparoscopic tools, again Equations (22)–(24)
can be used, since they maintain the insertion point constraint. The velocity vector ṗrel can be
modulated by means of Equation (25), so that the modulated EE velocity relative to obstacles becomes:

ṗ?
rel = ṗ?

c + ṗobs (30)

Finally, ṗ?
rel has to substitute ṗ?

c into Equations (26)–(28).
As a solution to Problem 2, the influence of the obstacles was taken into account by computing the

modulation matrix M using each closest point on the tool axis and each minimum distance for each
obstacle in order to maximize their influences on the tool. In fact, this will lead to using the smallest
distance possible for each obstacle (so maximizing the weight and strength of their modulation matrix)
and using the normal vector direction, which identifies the tangent plane of the obstacle, which will
deviate the original motion in the best non-colliding direction (since it will be computed in the most
critical position).

4.3. Modulation Matrix for Capsules

The modulation matrix that guarantees avoiding collisions between capsule-modeled tools can
be constructed analogously to the modulation matrix of ellipsoidal-shaped obstacles as described in
Section 3, taking care of computing Γ(ipc) and the normal vector n̂(ipc) to the surface of the obstacle
in the point on the tool axis closest to the considered capsule (i.e., ipc, where i is the obstacle index).

In order to compute this matrix easily, a capsule can be considered as a sequence of infinite
overlapping spheres whose centers are the points laying on the axis of the capsule and whose radii are
the radius of the capsule (see Figure 2): in this way, Γ(ipc) is the value of the analytic expression of
a sphere centered in the point of the axis of the capsule closest to the tool and n̂(ipc) is the line that
contains both the point on the axis of the tool closest to the capsule and the center of the sphere and is
directed towards the tool:

Γ(ipc) =

[
3

∑
k=1

( ipa,k − ipc,k
ir

)2
]
− 1; (31)

n̂(ipc) =
ipc − ipa; (32)

where ipa is the point on the axis of the capsule closest to the tool and ir is the radius of the obstacle.
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4.4. Convergence

The modulation of the velocity of the point on the axis closest to the closest obstacle, as it is,
does not guarantee the convergence of the EE to the goal of the task even if the original dynamics is
convergent. Indeed, in the following cases, non-convergence may occur:

1. the desired velocity is collinear with the normal vector of the surface and directed towards the
obstacle (which is a problem already known and tackled in the algorithm proposed in [28]);

2. the modulation makes the tool insert even more into the abdomen (see Figure 3 Case a): this kind
of movement, although not colliding, clearly will not help the tool avoid the obstacle (since the
tool is constrained by the insertion point).

(a) (b)

Figure 3. In red: an obstacle. In blue: the tool. In light-blue: the goal pose. Case (a) shows that in
this configuration, ṗ? makes the end-effector (EE) move away from the insertion point; in this case,
the tool will never avoid the obstacle. Case (b) shows that placing a proper waypoint w will make ṗ?

be directed towards the insertion point; in this case, the tool will be able to avoid the obstacle.

In Case 1, we apply a task-specific heuristics: since the extraction of the tool is always a
collision-free movement (in fact, it will make the points of the tool occupy positions that were occupied
before by other points of the tools), we enforce a motion towards the insertion point. This collision-free
movement should lead the tool to a position where its commanded velocity and the normal vector of
the obstacle surface are no longer collinear.

Case 2 occurs mostly when the robot tries to avoid a capsule-shaped obstacle. In fact, the cylindrical
part of such a capsule-shaped obstacle would never push the tool laterally, with the result of forcing the
robot to be mainly inserted or extracted. A possible solution to cope with this problem consists of forcing
the desired dynamics to pass near a waypoint, which has to be specifically positioned according to the
relative configuration of the robot and obstacles (see Figure 3 Case b). The waypoint w is computed
at each step on the basis of the current positions of the EE, of the obstacles and the goal of the task.
The obstacle is surrounded by a set of points, and then, among them, the one closest to the insertion
point of the tool is selected. Then, this point is projected onto the plane determined by the tool axis and
the goal pose axis using as the direction of the projection a line parallel to the obstacle axis (see Figure 4);
the result of this projection is the waypoint sought.

The projection can be found by simply parametrizing the line âc parallel to the capsule axis
passing through the point r, which must be projected, and then finding the value of the parameter
that determines the intersection of the line with the plane of the motion. The line is parametrized
as follows:
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pl = r + u
e2 − e1

‖e2 − e1‖
(33)

where e1 and e2 are the end points of the axis of the capsule. In order to use Equation (33), it is
necessary to place the set of points aligned with e1 as in Figure 4.

The plane of the motion π is identified by its normal vector, which can be computed as follows:

n̂π =
p− pt

‖p− pt‖
× g− pt

‖g− pt‖
(34)

The value u of the parameter that determines the intersection can be found with the
following relation:

u =
n̂π · pt − n̂π · pl

âc · n̂π
(35)

The value is accepted only if u ∈ [0, 1], since values outside this interval mean that the capsule
is not intersecting the plane of the motion, and therefore, the waypoint is not necessary. In case u
is outside of that interval, the waypoint is set to be equal to g in order to have again the original
dynamics; otherwise, the waypoint is computed using the value of u in Equation (33). The waypoint
must be computed at each control cycle since the modulation does not guarantee that the modulated
movement belongs to the original plane of the motion.

The dynamics used to control the EE is modified in order to make it point towards the waypoint,
and then, when the EE reaches the waypoint (or when it is close enough), it is switched back towards
to the original goal g.

Since the waypoint lies on the motion plane, the corrected movement remains consistent with
the original motion computed without taking into account the presence of obstacles. Furthermore,
the introduction of the waypoint guarantees the convergence to the goal. Indeed, as depicted in
Figures 3 and 4, when the tool tip reaches the waypoint, the dynamics will start pointing again to g,
but the modulation will deviate the movement under the obstacle, which is a region of free space.

Figure 4. In red: an obstacle. In blue: the tool. In light-blue: the goal pose. In grey: the plane π

determined by the actual pose of the robot and the goal pose. The figure above shows the points ri

around the obstacle, for which the point within them is chosen, and how it is projected onto the plane
in order to get the waypoint w.

In case of multiple obstacles, the waypoint is computed as the centroid of the waypoints associated
with each obstacle, using as the weight of each waypoint the inverse of the distance between the
tool and the related obstacle. If a waypoint coincides with the goal of the task, it is associated with a
null weight:
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αi =

{
1
di

if wi 6= g

0 if wi = g ,
(36)

w =
∑N

i=1 αi wi

∑N
i=1 αi

. (37)

Despite the fact that waypoints are external to the obstacle, it is possible (though unlikely)
that their centroid, computed as in Equation (37), could lie inside one of the obstacles: in this case,
the waypoint w is not used, but the extraction heuristic is applied to bring the robot in a new position
for a new waypoint computation.

As a matter of fact, Problem 2 can occur also with spherical or ellipsoidal obstacles, but this is a
quite rare case, since the rounded parts of these shapes tend naturally to make the tool slide around
the obstacle. However, this problem can be solved again with a waypoint approach or with heuristic
methods that impose a lateral movement of the robot with respect to the obstacle, in order to unstick
the tool from the critical configuration.

5. Simulations and Experiments

The algorithms described in Section 4 were first tested through simulations performed with
MATLAB and then ported to C++ for testing on a realistic experimental setup.

5.1. Simulations

MATLAB simulations were designed to test the algorithm in different challenging scenarios
beyond the laparoscopic one in order to assess its capabilities and limits. In all the simulations that
will be described in the following sections, the EE moves from a start position to a goal position with a
trapezoidal velocity profile. Moreover, for each obstacle, the safety factor η was set equal to 1.5, while
reactivity ρ was set to 1.0.

5.1.1. Simulation of a Static Laparoscopic Scenario

A laparoscopic scenario was simulated using 4 capsules: one capsule bounds the robot, while
the other 3 capsules bound the other laparoscopic tools. The diameters of the capsules were scaled
according to the diameters of the real tools adopted in the experimental setup described in Section 5.2.
In this simulation, the obstacles were static. Figure 5 shows the trajectory of the EE: it is possible to
notice that the whole trajectory never collided with the obstacle, which was standing in the desired
path (which was the linear one going from the starting position to the goal position).

Figure 5. In blue, the starting pose of the robot, while in light-blue, the goal pose. In black, the obstacles.
In green, the trajectory of the EE.
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5.1.2. Simulation of a Moving Capsule-Shaped Obstacle

The algorithm was tested in a scenario where a capsule-shaped obstacle was moving and interferes
with the desired movement of the robot. The movement of the obstacle was designed to imitate the
movement of a laparoscopic tool that was working in a specific area, so the capsule bounding the
obstacle had a fixed end-point, while its other end-point (the tip of the tool) moved on a linear trajectory.
The norm of the velocity of the obstacle tip followed a slow sinusoidal profile designed to make the
tip move in both directions. Figure 6 shows the evolution of the trajectories during the movements,
including the complete trajectories of the EE and the obstacle in the last snapshot. The robot never
collided with the obstacle.

(a) (b)

(c) (d)

Figure 6. In blue, the starting position and the position in the snapshot of the robot, while in light-blue,
the goal pose. In black, the obstacle. In red, the trajectory of the obstacle tip. In green, the real trajectory
of the EE. The black arrows show the direction of the movement of the obstacle tip in that snapshot.
(a) First snapshot; (b) second snapshot; (c) third snapshot; (d) final snapshot.

5.1.3. Simulation of a Dynamic Laparoscopic Scenario

Since during a laparoscopic surgery, all four tools are moving, the algorithm was also tested in
a dynamic laparoscopic scenario. The movements of the tools were designed in order to generate
linear trajectories for the tool tips with sinusoidal velocity profiles. Such movements were slow and
with limited amplitude in order to replicate a realistic scenario. Figure 7 shows the evolution of the
collision-free trajectory of the EE and of the obstacles’ trajectories.
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(a) (b)

(c) (d)

Figure 7. In blue, the starting position and the position in the snapshot of the robot, while in light-blue,
the goal pose. In black, the obstacle. In red, the trajectory of the obstacle tip. In green, the real trajectory
of the EE. The black arrows show the direction of the movement of the obstacle tip in that snapshot.
(a) First snapshot; (b) second snapshot; (c) third snapshot; (d) final snapshot.

5.1.4. Simulation of a Moving Sphere Obstacle

In order to test the algorithm with an obstacle with a different shape and in a more challenging
scenario, a simulation was performed using a moving spherical obstacle approaching the robot near the
insertion point. The movement of the sphere was designed as a fast and wide linear movement with a
sinusoidal velocity profile. Figure 8 shows the evolution of the trajectories of the EE and the sphere
during the task. It is possible to see that the robot never collided with the sphere, even though it can
be noticed that the EE made some loops with fast and wide movements in order to avoid the sphere.
Indeed, in correspondence with the nearest point, the tool should at least have the same speed of the
obstacle in order to avoid it, and that speed is amplified at the tip as a result of the leverage due to the
insertion point constraint. This behavior may turn out to be unfeasible for the robot, because of either
workspace constraints (see the subsequent discussion of Section 6.1) or limited velocity capabilities
(see the subsequent discussion of Section 6.2).

A waypoint approach similar to that described in Section 4.4 can be introduced to overcome this
problem. In more detail, a point was selected outside the sphere on the line that went from the center of
the sphere to the insertion point, and then, it was projected on the plane of the motion using the sphere
velocity as the direction of the projection, obtaining the desired waypoint. It is important to note that
such a waypoint will always result in being inside the workspace of the robot, by construction, as will
be discussed in Section 6.1. The experiments demonstrated that the amplitude of the movements and
the velocities were strongly reduced making use of this approach, as shown in Figure 9. Indeed, the EE
maintained a collision-free trajectory that did not involve the above-mentioned loops.
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(a) (b)

(c) (d)

Figure 8. In blue, the starting position and the position in the snapshot of the tool, while in light-blue,
the goal pose. In black, the position of the sphere in the snapshot, while in transparent black, its starting
position. In red, the trajectory of the sphere. In green, the trajectory of the EE. The black arrows show
the direction of the movement of the sphere in that snapshot. (a) First snapshot; (b) second snapshot;
(c) third snapshot; (d) final snapshot.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. In blue, the starting pose of the robot, while in light-blue, the goal pose. In black, the position of
the sphere sphere in the snapshot, while in transparent black, its starting position. In green, the trajectory
of the EE. The black arrows show the direction of the movement of the sphere in that snapshot. (a) First
snapshot; (b) second snapshot; (c) third snapshot; (d) final snapshot.

Figure 10 shows how much the velocity of the EE was reduced with the use of a waypoint. It is
worth noting that the tool stopped its motion at 4.1 s because the goal was reached, and then, at 4.3 s,
it started a new movement again to avoid the approaching sphere.
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Figure 10. In blue, the norm of the desired velocity. In red, the norm of the modulated velocity.
The plot (a) shows the velocity of the modulation without a waypoint for the sphere, while (b) shows
the modulated velocity using a waypoint for the sphere.

5.2. Experiments on a Real Setup

The algorithm was tested on a real setup involving four laparoscopic tools mounted on
four robotic arms for surgical applications. The setup was developed within the SARAS project
(https://saras-project.eu) for research on the automation of assistive functions during prostatectomy
and nephrectomy tasks. The SARAS setup was composed of the following elements:

• a DaVinci robot, which is a teleoperated surgical robot from Intuitive Surgical Inc., with two
patient-side manipulators (PSM) and an endoscopic camera manipulator (ECM) on the slave side
and two master tool manipulators (MTM) on the master side. The DaVinci was inserted in the
whole system architecture thanks to the dVRK interface (https://research.intusurg.com);

• two SARAS robots, which were developed by Medineering GmbH (http://www.medineering.de)
specifically for the objectives of the SARAS project. Each of these robots was composed of a passive
7-DOF arm for the positioning of an active 3-DOF head, which held a standard laparoscopic tool.

https://saras-project.eu
https://research.intusurg.com
http://www.medineering.de
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The overall control architecture of the SARAS robotic system was developed using the ROS
(Robot Operating System, http://www.ros.org) environment. Therefore, the algorithm proposed in
this paper was embedded in a C++ ROS node. Figure 11 shows the robots of the setup used for the
experiments, while Figure 12 shows the surgical scenario seen through the dVRK endoscope. In the
following, we describe experiments in which all the obstacles considered for collision-free motion
generation belonged to the robotic structures of the setup (i.e., DaVinci PSM/ECM or SARAS arms).
Therefore, the information about obstacles’ position and velocity was computed from joint position
sensors and forward kinematic calculations.

ENDOSCOPE

SARAS ARMS

DAVINCI ARMS

Figure 11. The setup used for the experiments. SARAS, Smart Autonomous Robotic Assistant Surgeon.

Figure 12. The surgical scenario from the point of view of the DaVinci endoscope; the red circle marks
the controlled tool.

5.2.1. Static Laparoscopic Scenario

The robotic platform was configured to replicate a real static laparoscopic scenario, with the
DaVinci tools and one of the SARAS tools used as obstacles and the other SARAS tool used as the
commanded tool. The robot task was designed as a motion from a starting point to a goal point since
this was one of the most frequent tasks that the autonomous assistant should perform.

In this experiment, the commanded velocity followed a trapezoidal profile. In order to take into
account the uncertainties due to the calibration procedure (which is necessary to make the robots work
correctly in the shared workspace), the safety factor η was raised from 1.5 of the simulations to 2.0,
while the reactivity parameter ρ remained unchanged.

Figure 13 shows the actual collision-free trajectory performed by the SARAS robot. Note that
such a trajectory is very close to the simulated trajectory of Figure 5. The experiment is also reported
in the accompanying video (see Supplement Material).

http://www.ros.org
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Figure 13. In blue, the starting pose of the robot, while in light-blue, the goal pose. In black, the other
laparoscopic tools that are to be considered as obstacles. In green, the trajectory of the EE.

5.2.2. Dynamic Laparoscopic Scenario

An additional test was carried out on the real setup in order to try out the algorithm in a dynamic
laparoscopic scenario. The test involved both the DaVinci tools and one of the SARAS tool as an
obstacle, while the other SARAS tool was the controlled robot. One dVRK PSM was teleoperated
using the related MTM (i.e., the haptic device handled by the human) in order to imitate the smooth
movement performed by a surgeon, while the other two obstacles were kept static. The task of the robot
was to travel from a starting position to a goal position on a path where the DaVinci tool was operating.
Figure 14 shows the evolution of the trajectories of the moving obstacle and the controlled tool.

(a) (b)

(c) (d)

Figure 14. In blue, the starting pose of the robot, while in light-blue, the pose in the related snapshot.
In black, the other laparoscopic tools, which are to be considered as obstacles (in transparent black, the
moving one). In green, the trajectory of the EE. In red, the trajectory of the moving obstacle. (a) First
snapshot; (b) second snapshot; (c) third snapshot; (d) final snapshot.



Electronics 2019, 8, 957 20 of 24

6. Discussion

The simulations and the experiments described in Section 5 showed that all the modulated
trajectories were non-colliding, so the method worked properly in terms of dynamic obstacle avoidance.
However, the method presented some limitations regarding the feasibility of the generated movement.
Indeed, both the original algorithm and the extensions provided did not take into account the
workspace of the robot and its velocity and acceleration constraints when modulating the original
dynamics. Finally, since computing the closest points and the distances required high computational
efforts, real-time algorithms must be implemented. As a matter of fact, only quadratic ellipsoids can be
considered, since more complex ellipsoid formulations involve time-consuming numeric approaches.

6.1. Workspace Constraints

Even if the motion generated by the original dynamics was designed to be entirely contained
in the workspace of the robot, the same was not guaranteed for the modulated motion. In order to
prevent the modulated trajectory from going outside of the workspace, two different approaches can
be applied (singularly or together):

1. forcing the trajectory to converge again into the workspace by modifying the original dynamics;
2. modeling the workspace limits as obstacles.

Approach 1 was basically related to the waypoint computation heuristics presented in Section 4.4,
whose behavior was already shown in Section 5.1.4: in fact, the waypoint introduced led the tool into
a specific region of space that was internal to the workspace. More precisely, the workspace (inside
the abdomen) of a surgical robot for laparoscopic MIS was a cone with the vertex at the insertion
point, height equal to the length of the laparoscopic tool, and a given opening angle. For example,
the tools used in the SARAS setup had a length of 30 cm and an opening angle of about 30–40 degrees.
Assuming that the goal of the desired motion (i.e., the target of the original dynamics) was reachable,
the waypoint selected by the previously-described procedure and as depicted in Figure 4 will certainly
be inside the conical workspace, since it lied on a triangle delimited by the insertion point, the current
position of the tool tip, and the goal itself. This approach is very useful in static environments, while in
dynamic environments, the modification of the original dynamics through a waypoint may not prevent
the trajectory from going out of the workspace in the case of fast-approaching obstacles. However,
in static environments, the problem of the workspace limitation is quite rare if the original dynamics is
properly designed. Indeed, the modulation with the waypoint extension tended to generate trajectories
that deviated from the original plane of the motion very little.

Approach 2, which was also more general, can be implemented modeling a limitation in the
Cartesian space as an obstacle with a planar shape: this again can be inserted into the algorithm using
an approach similar to the one explained in Section 4.3 for the computation of the modulation matrix
of a capsule. The closest points on the plane and the tool can be computed as segment-plane distances,
taking into account the radius of the tool.

6.2. Dynamic Constraints

The algorithm described in Section 3 did not natively take into account the velocity and
acceleration constraints of the robot, leading to planning of a modulated motion that could not
be feasible for the robot. The modulation matrix, as stated in [46], can amplify the original velocity at
most by a factor of 2:

‖ṗ‖ ≤ 1
2
‖ṗmax‖; (38)

with ṗ the velocity to be modulated and ‖ṗmax‖ the upper velocity bound of the robot. This relation
imposes as a matter of fact an upper bound on the norm of the commanded velocity in order to
satisfy the robot constraints on velocity. Even though the commanded velocity satisfied Equation (38),
there were no guarantees about the feasibility of the motion in terms of acceleration; however, it is
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possible to operate on the values of the reactivity parameter ρ (see Equation (10)) in order to make the
modulation intervene beforehand, leading to possible reductions on the accelerations needed for the
obstacle avoidance.

These arrangements are easily applicable only if the obstacles are static, while they are not so
straightforward in the case of moving obstacles: in fact, the velocities of the obstacles were taken into
account in the velocity ṗ that must be modulated (see Equation (13)), making Equation (38) dependent
not only on the desired dynamics, but also on the obstacle’s dynamics, which could not be known
a priori.

The critical aspects on motion feasibility, which so far were discussed for the modulation algorithm
presented in Section 3, were even more emphasized in the laparoscopic surgery case study: in fact,
the velocity needed at the tool tip to avoid obstacles was strongly affected by the velocity of the
obstacles and their approaching position along the tool, since the insertion point constraint forced the
tip to move faster the nearer the approaching point was to the insertion point.

All of these aspects make the problem of ensuring a feasible non-colliding motion quite
challenging; however, it is possible to apply task-based heuristics on the original dynamic (as shown
in Section 5.1.4) in order to bring the EE in configurations where it would be possible to avoid the
obstacle with lower velocities and accelerations.

7. Conclusions

The paper described a method for online trajectory generation that is able to compute collision-free
motions for a robotic manipulator modeled as a capsule with a constrained end. The proposed
approach was based on the modulation of the velocity of a dynamical system (DS), associated with the
point on the capsule-like robot that was closest to an obstacle. A specific waypoint generation strategy
was developed to cope with cluttered situations, in which the DS-based velocity modulation alone
would not provide a feasible solution to avoid obstacles for the considered kind of manipulators.

The proposed motion planner was developed within the context of a research project on surgical
robotics for laparoscopic applications. Therefore, many of the technical aspects described in the paper
were focused on the peculiar issues of the application domain. On the other hand, the basic concepts
of the proposed approach, namely the use of capsules as bounding boxes for the robot links and
the real-time computation of waypoints to enforce suitable obstacle avoidance maneuvers, could be
applied to collision-free trajectory generation for other kinds of robotic manipulators. In particular,
the kinematic constraint imposed on a laparoscopic surgical robot by the trocar could be revisited to
take into account more general kinematic models, like those of classical multi-DOF serial robots. In the
future, we aim to investigate the latter aspect.

Supplementary Materials: The following are available at http://www.mdpi.com/2079-9292/8/9/957/s1.
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